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The flowering signals were perceived by angiosperms for the transition from 
vegetative to reproductive state at their apical tissue. The transition was triggered 
by environmental conditions and the internal regulation of various genes. Plants 
are capable of integrating environmental changes such as photoperiod and 
temperature into their developmental program. Mucuna bracteata is a legume 
originated from North India and is planted as a cover crop in the oil palm and 
rubber plantations in Malaysia. This legume is able to grow well locally but unable 
to produce flowers. Non-flowering M. bracteata plants may not perceive the 
flowering signals to initiate the reproductive phase due to environmental 
differences. This study is the first report on the cloning of a putative flowering 
gene, CONSTANS-LIKE 2 (COL2) from the leaves of M. bracteata. In this study, 
the MbCOL2 sequence with the length of 1335bp was successfully identified and 
cloned. MbCOL2 protein (335 amino acid residues) consisted of two BBOX 
domains, a CCT domain and a VP motif. The bioinformatic analysis on the 
unpublished transcriptome data showed that 13 COL protein members were 
present in the M. bracteata genome which had been classified into Groups 1, 2 
and 3. To understand the molecular regulation of this gene in locally grown M. 
bracteata, the expression analysis of MbCOL2  in different tissues of M. 
bracteata seedlings and in response to low temperature was carried out using 
real time PCR. MbCOL2 expression in all selected tissues; leaf, shoot apical 
meristem and stem of 2-month, 6-month and 12-month old seedlings showed 
that MbCOL2 was expressed at the early stage of the plant growth. However, a 
higher abundance of MbCOL2 expression was detected in the leaf tissues as 
reported previously in other reference species. Meanwhile, the expression of 
MbCOL2 was increased by low temperature. However, the actual molecular 
mechanism of the flowering initiation of locally grown M. bracteata is still 
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unknown. In the future, identification and expression profiling of various flowering 
genes can be performed to further understand the flowering induction in M. 
bracteata.  
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Angiosperma mengesan isyarat pembungaan untuk peralihan daripada fasa 
vegetatif ke fasa pembiakan pada tisu apikalnya. Peralihan ini dicetus oleh 
keadaan persekitaran dan regulasi dalaman pelbagai gen. Tumbuhan mampu 
mengintegrasikan perubahan persekitaran seperti fotokala dan suhu ke dalam 
program pengembangannya. Mucuna bracteata adalah sejenis kekacang 
penutup bumi yang berasal dari India Utara dan ditanam sebagai tanaman 
penutup bumi di ladang kelapa sawit dan getah Malaysia. Kekacang ini mampu 
tumbuh dengan baik secara tempatan tetapi tidak mampu menghasilkan bunga. 
Tumbuhan M. bracteata yang tidak berbunga mungkin tidak mengesan isyarat 
pembungaan untuk memulakan fasa pembiakan kerana perbezaan 
persekitaran. Kajian ini adalah laporan pertama tentang pengklonan gen 
berbunga, CONSTANS-LIKE 2 (COL2) daripada daun M. bracteata. Dalam 
kajian ini, jujukan MbCOL2 dengan panjang 1335bp telah berjaya dikenal pasti 
dan diklon. Protein MbCOL2 (335 asid amino) terdiri daripada dua domain 
BBOX, domain CCT dan motif VP. Analisis bioinformatik pada data transkrip 
yang belum diterbitkan menunjukkan bahawa terdapat 13 ahli protein COL 
dalam genom M. bracteata yang telah diklasifikasikan kepada Kumpulan 1, 2 
dan 3. Untuk memahami peraturan molekul gen ini dalam M. bracteata yang 
ditanam secara tempatan, analisis ekspresi MbCOL2 dalam tisu berbeza anak 
benih M. bracteata dan sebagai tindak balas kepada suhu rendah telah 
dijalankan menggunakan PCR masa nyata. Ekspresi MbCOL2 telah dikenal 
pasti dalam semua tisu terpilih; daun, pucuk meristem apikal dan batang anak 
pokok berumur 2 bulan, 6 bulan dan 12 bulan menunjukkan bahawa MbCOL2 
telah terekspresi pada peringkat awal pertumbuhan tumbuhan. Ekspresi 
MbCOL2 yang lebih tinggi telah dikesan dalam tisu daun seperti yang dilaporkan 
sebelum ini dalam spesies rujukan lain. Sementara itu, jujukan MbCOL2 
meningkat dengan suhu rendah. Walau bagaimanapun, mekanisma sebenar 
permulaan proses pembungaan M. bracteata yang ditanam tempatan masih 
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tidak diketahui. Pada masa hadapan, pengenalpastian dan pemprofilan ekspresi 
pelbagai gen berbunga boleh dilakukan untuk memahami lebih lanjut aruhan 
berbunga dalam M. bracteata. 
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CHAPTER 1 

INTRODUCTION 

Oil palm requires large amounts of nutrients to sustain its growth and 
production, so that high yield levels of oil, 30 tons/ha/yr-1 or more can be 
achieved and maintained. Sustainable oil palm cultivation is gaining popularity 
in Malaysia. Leguminous cover crop (LCC) has been widely used in oil palm 
and rubber plantation to maintain soil health. Mucuna bracteata is an 
important LCC, originated in North-Eastern of India. It is distributed in the 
Indian subcontinent, Thailand, Myanmar, Vietnam, Laos and China (Wilmot-
Dear, 1987). In 1991, M. bracteata was first introduced to Malaysia by the 
Golden Hope Plantations Berhad. This legume was first grown in the North 
Labis Estate, Johor as green manure to cover the inter-row of oil palm plants 
(Mathews, 1998). The introduction of M. bracteata has brought back the 
interest and emphasis to establish pure legume cover for the oil palm 
plantation. Preliminary agronomic work has shown that it confers similar 
benefits to oil palm as the conventional leguminous cover crops, which are 
more difficult and costly to establish well. Its shade-tolerant attribute enables 
it to persist under mature palms and continues its roles in soil and water 
conservation, fertility preservation and atmospheric-fixed nitrogen (N) cycling 
to the oil palm plants (Chua et al., 2007).  

In order to compare the amount of LCC needed required per hectare of 
plantation land, few field studies have been performed. Usually one to two 
grams per 10 square meters or one to two kilograms of cover crop seeds per 
hectare is needed to fully cover the planation interrows. However, only around 
200 to 300 grams of M. bracteata seeds are needed for one-hectare land 
(Chee, 2007), which is very cost-effective. M. bracteata is capable of fixing 
about 70% of its N requirement and researchers estimated that a net return 
of 35 kg N ha-1 will be produced in a turnover time of 10 weeks with a 
decomposition rate at 76% (Chiu, 2004). The comparison between M. 
bracteata and Pueraria phaseoloides in the conversion of dry weight to fresh 
weight also showed that M. bracteata produces more dry matter than P. 
phaseoloides. The dry green matter conversion of M. bracteata and P. 
phaseoloides was 28% and 18%, respectively. 

In term of pest and disease attacks, M. bracteata is found to be the most 
resistant LCC towards all pests and diseases commonly exist in oil palm 
agroecosystem. It is generally due to the high level of phenolic compound 
found in the leaf of this legume (Mathews, 1998b). The thick M. bracteata 
covering on the palm trunk and ground also reduce the damage of oil palm 
plants caused by Oryctes rhinoceros beetles from 35% to 7%. The thick cover 
crop has limited the ability of the beetles to find breeding sites and thus 
protects the plantation (Chua et al., 2007). In addition, this legume has high 
resistance against nematode (Thankamoni et al., 1989), reduces parasitic 
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nematode in soil (Kothandaraman et al., 1989) and survive with Ganoderma 
infection (Ariffin et al., 2003). Despite all the advantages of this species, M. 
bracteata also has few drawbacks. Its fast-growing nature and the ability to 
regenerate very rapidly, if uncontrolled, can smother the palms, especially the 
young seedlings.  Thus, maintenance of the plantation is still needed to make 
sure the oil palm plants grow at the optimum pace. The thick cover crop was 
recommended to be trimmed at knee-level monthly or maintained using a 
chemical control alternative, which is time-effective to control the rapid growth 
( Goh et al., 2014). 

Despite all the advantages of this species, M. bracteata also has few 
drawbacks. Its fast-growing nature and the ability to regenerate very 
efficiently, if uncontrolled, can smother the palms, especially the young 
seedlings. Thus, maintenance of the plantation is still needed to make sure 
the oil palm plants grow at the optimum pace. The thick cover crop was 
recommended to be trimmed at knee-level monthly or maintained using a 
chemical control alternative, which is time-effective to control the rapid growth 
(Goh et al., 2014). 

Another drawback of this species is that the locally-grown M. bracteata has 
the non-flowering characteristic. It is almost impossible to produce the flower 
in Malaysia, although few research had been carried out by growing the plants 
at hilly regions. Researchers had planted M. bracteata in areas with different 
latitudes and temperature such as Penang Hill in Penang. It has flowered but 
no seed formation (Chee, 2007). Since M. bracteata only flowered under 
certain environment locally, it is important to study the condition needed for 
the seeds to be produced. Until now, there is very limited information on the 
molecular event of M. bracteata reproductive growth. The unavailability of the 
genomic sequence of this legume in the database also causes the difficulty to 
study the non-flowering properties of this locally grown M. bracteata.  

Throughout this research, the Zinc-finger transcription factor CONSTANS that 
has a well-established central role in the mechanism of flowering activation 
was targeted as the gene of interest in this study. Although CONSTANS-LIKE 
(COL) genes in other species have also been shown to regulate flowering 
time, it is not clear how widely this central role in flowering induction is 
conserved. Orthologs of several Arabidopsis genes have been shown to 
participate in legume photoperiodic flowering, but the possible function of 
COL genes as photoperiodic integrators of the photoperiod response has not 
yet been thoroughly investigated (Wong et al., 2014). Prior to that, COL gene 
from M. bracteata needs to be sequenced and characterised in order to 
investigate the flowering induction in this locally-grown legume. The initiation 
of flowering is controlled by both genotype and environmental stimuli such as 
day length, temperature, and light intensity. In a model plant, Arabidopsis 
thaliana (A. thaliana), flowering is stimulated by long photoperiods, and it is 
therefore categorized as a facultative long day (LD) plant (Rédei, 1962). In 
some species, flowering is hastened by low temperatures, in which the 
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process called vernalization and by a high ratio of far red to red light (Bagnall, 
1993). In species such as Arabidopsis, the flowers are initiated from a 
population of stem cells, which is collectively known as the shoot meristem. 
During the transition from vegetative phase to reproductive phase, shoot 
meristem cells undergo divisions and change the development of leaf 
primordia into inflorescence primordia, giving rise to both inflorescence and 
flower meristems (Putterill et al., 1995). Signaling cascades are specific to 
plants in response to stimuli. Light signaling, photoperiodic flowering and 
regulation of circadian rhythms in A. thaliana are controlled by a CCT 
(CONSTANS, CONSTANS-LIKE, TIMING OF CAB1; TOC1) domain. This 
domain has been found in 45 A. thaliana proteins, which include protein 
classes that are necessary in several of the signaling pathways. The CCT 
domain was formerly described as a 43–amino acid region of homologs found 
in the A. thaliana, which were CO, CO-LIKE (COL), and TOC1 proteins 
(Wenkel et al., 2006). In this study, COL2 gene was successfully identified 
and cloned, instead of CO. Although CO and its close relative COL1 and 
COL2 exhibit high amino acid sequence similarities, only the CO protein 
regulates floral induction in Arabidopsis. However, the function of COL family 
protein members was diversed in different species. In this study, COL2 was 
hypothesized to be involved in the flowering activation of the locally grown M. 
bracteata and the expression of COL2 gene is increased when exposed to 
low temperature. 

Hence, the aims of this study were: 

1. To identify and clone the sequence of a putative flowering transcript, 
CONSTANS-LIKE 2 (COL2) from M. bracteata leaves; 

2. To analyse members of the CONSTANS-LIKE family from 
transcriptome data obtained from RNA sequencing; and 

3. To determine the expression profile of MbCOL2 in different tissues of 
locally grown M. bracteata seedlings and in response to low 
temperature.  
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