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Meyerozyma guilliermondii strain SO isolated from spoiled orange has been developed 

as a free-inducer expression system and attains a positive impact in industrial 

recombinant proteins production. The comprehension on genomic features is 

necessitated to cater its competency to perform as an expression host. Furthermore, it 

may enhance the yield of production at lower cost in the absence of an inducer. 

Therefore, the complete genome data of M. guilliermondii strain SO representing the 

host system from the perspective of genome arrangement, polymorphic variants, the 

composition of genes and the association in metabolic pathway is prerequisite in genomic 

comparative and toxicity analyses. Thus, the genome data were generated from Illumina 

Hiseq 4000 sequencing platform and assembled into 51 scaffolds successfully 

accumulated into 10.63 Mbp. These enclosed 5,335 CDS genes and 5,349 protein 

sequences with 43.72% GC content. About 99.29% of it were annotated to public 

databases. These data were employed to conduct a comparison of M. guilliermondii 

intraspecies strains which comprises of SO, ATCC 6260, YLG18 and RP-YS-11. The 

study discovered 99.18% genes similarity among these strains and subsequently 

embarking high accuracy analysis. Besides, the evaluation of established yeast 

expression systems, Komagataella pastoris and Saccharomyces cerevisiae with our in-

house strain SO and the reference strain of M. guilliermondii were carried out 

comparatively to identify the consensus domain or subdomain that putatively responsible 

to perform as an expression host. A non-expression yeast species, Candida albicans was 

included in the investigation to structure normalization. This interspecies study revealed 

666 homologous genes with 55 consensus regions of genome identified exclusively in 

M. guilliermondii and both expression hosts. Hence, the connectivity enzymes that

played pivotal roles during carbon metabolism particularly on the utilization of methane

was accessed. The study recognised an absence of alcohol oxidase (AOX) enzyme in

strain SO which contributed to the factor of methanol-independency. This eventually

highlighted the strength of M. guilliermondii strain SO to perform as a forthcoming free-

inducer alternative host for recombinant protein expression. Additionally, the selected
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potential virulence factors in M. guilliermondii strain SO were determined from system-

level insights. The algorithm of Hidden Markov Model detected in silico indication of 

proteases (SAP), phospholipases (PLC and PLD) and hemolysin (MAM3) motifs in the 

genome which possessed 85% similarity to C. albicans, a pathogenic yeast that caused 

candidiasis and triggering safety concerns. Hence, the investigation of apportioning 

virulence factors in strain SO to predict SAP, PLC, PLD and MAM3 were executed and 

identified the resemblance of C. albicans with the expect value 2.4e-107, 9.5e-200, 0.0e+00 

and 1.2e-258, respectively. Accordingly, these significant genes possibly play roles in 

pathogenicity. The topology of phylogenetic analysis constructed strain SO and C. 

albicans branches from the same node and clustered together as a clade to signify 

molecular relatedness and congeneric among these species. Nevertheless, in vitro 

analysis in quantifying the level of expression need to be investigated from the assay to 

quantify the enzymatic activity which may and may not activate strain SO as an 

opportunistic pathogenic yeast, subsequently, certifying the toxicity status of M. 

guilliermondii strain SO.  
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Meyerozyma guilliermondii strain SO yang diperolehi melalui isolasi ke atas buah oren 

yang rosak telah berjaya menghasilkan sistem pengekspresian tanpa induksi dan 

memberi kesan positif ke atas industri penghasilan protein rekombinan. Kefahaman 

mengenai ciri-ciri genomik adalah perlu bagi mempertingkatkan kebolehcapaiannya 

sebagai hos. Ini sekaligus meningkatkan penghasilan produksi pada kos yang rendah 

tanpa kehadiran induksi. Oleh itu, genom data M. guilliermondii strain SO yang lengkap 

menunjukkan sistem hos dari perspektif penyusunan genom, polimorfik varian, 

komposisi gen dan hubung-kait dalam rangkaian metabolik diperlukan sebagai asas 

dalam analisis perbandingan genomik dan toksisiti. Seterusnya, melalui platfom Illumina 

Hiseq 4000, data genomik telah dijujuk 51 scaffold berjaya menjana 10.63 Mbp data. Ia 

merangkumi 5,349 jujukan protein dan 5,335 gen diterjemah dilokasi pengekodan 

dengan 43.72% kandungan GC. Sekitar 99.29% daripadanya berpadanan dengan 

pengkalan data awam. Data ini kemudiannya digunakan bagi menjalankan perbandingan 

sesama spesies M. guilliermondii strain SO, ATCC 6260, YLG18 dan RP-YS-11. Kajian 

mendapati terdapat 99.18% persamaan gen di antara strain-strain M. guilliermondii dan 

ini seterusnya membuktikan ketepatan aras tinggi analisis yang dijalankan. Selain itu, 

semakan ke atas sistem ekspresi yis Komagataella pastoris dan Saccharomyces 

cerevisiae terhadap strain SO kajian kami dan strain rujukan M. guilliermondii 

dijalankan secara perbandingan bagi mengenalpasti kesamaan domain dan subdomain 

yang dianggarkan berperanan sebagai hos pengekspresian. Spesies hos bukan yis 

pengekspresi, Candida albicans turut dikaji bagi membentuk normalisasi. Kajian antara 

spesies mengenal pasti 666 gen homolog bersamaan 55 kawasan turutan penganjuran 

genom secara khususnya dalam M. guilliermondii dan kedua-dua hos pengekpresi. 

Kemudian, hubung kait enzim yang berperanan penting semasa metabolik karbon, 

khasnya dalam penggunaan metana diperhati. Kajian mendapati ketiadaan enzim alkohol 

oksida (AOX) di dalam strain SO menyumbang kepada faktor bebas-metanol. Hal ini 

menunjukkan kekuatan M. guilliermondii strain SO sebagai hos alternatif untuk 

penghasilan protein rekombinan tanpa induksi. Sebagai tambahan, beberapa 
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kebarangkalian faktor virulensi yang terpilih dikenal pasti dalam M. guilliermondii strain 

SO. Algoritma model Markov tersembunyi telah mengesan secara in silico kehadiran 

jujukan motif enzim protease (SAP), phospholipase (PLC dan PLD) dan hemolisin 

(MAM3) di dalam genom, di mana membawa 85% persamaan dengan C. albicans, yis 

patogenik yang menyebabkan candidiasis dan kebimbangan dari aspek keselamatan. 

Oleh itu, kajian kehadiran faktor virulensi dalam strain SO seperti penjangkaan SAP, 

PLC, PLD dan MAM3 dilaksanakan dan mengenal pasti kemiripan C. albicans dengan 

parameter nilai jangkaan masing-masing 2.4e-107, 9.5e-200, 0.0e+00 dan 1.2e-258. 

Berdasarkannya juga, gen yang signifikan ini berkemungkinan berperanan dalam 

patogenisiti. Topologi analisis filogenetik menunjukkan cabang konstruksi strain SO dan 

C. albicans berasal dari nodus dan kelompok yang sama bagi membuktikan kaitan 

molekular dan taksonomi kedua spesies ini. Walau bagaimanapun, kajian lanjutan secara 

in vitro perlu bagi mengukur aras pengekspresian aktiviti enzim melalui asai dan 

berkemampuan mengaktifkan peluang strain SO sebagai yis patogenik, seterusnya 

mengesahkan status toksisiti M. guilliermondii strain SO.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Background 

 

 

The advancement on the production of recombinant proteins offers significant potential 

for therapeutic and industrial enzymes. The conventional strategies are merged with 

molecular technology to yield higher protein at lower cost. Yeasts are unicellular 

eukaryotic microbial that were discovered to provide capability to growth robustly on 

simple media, capable to accommodate genetic modifications and incorporate post-

translational modifications. Pertaining to the advantages of yeast cellular machinery, the 

production of functional protein in a large amount via recombinant DNA approach to 

regulate heterologous gene mechanism is achievable (Nielsen, 2014). Several 

commercial products manipulated from heterologous protein secretion are available in 

the market, for example, insulin, vaccine against hepatitis B, detergents and paper pulp 

(Porro et al., 2005). 

 

 

A locally isolated ascomycetous species from spoiled orange identified as Meyerozyma 

guilliermondii strain SO (GenBank JN084128) (Oslan et al., 2012) has been developed 

as a prospective system for heterologous protein expression providing an alternative to 

the intensively used species, Komagataella pastoris (formerly known as Pichia pastoris) 

(Oslan et al., 2015). In fact, this novel strain is capable to express heterologous 

recombinant enzyme such as lipase (Oslan et al., 2015), α-amylase (Mohamad et al., 

2020), protease and diamino oxidase (Mahyon, 2017). Moreover, the competency of this 

yeast to compatibly host an expression vector mediated by alcohol oxidase (AOX) and 

formaldehyde dehydrogenase (FLD) promoters successfully proved the commencement 

of mRNA transcription independently without being initiated by any inducer such as 

methanol or methylamine (Mohamad et al., 2020). The outstanding achievement on 

demonstrating the ability to perform as a yeast expression system obliquely could reduce 

the production cost, minimize methanol toxicity effects and would innovate the 

technology of enzyme research.  

 

 

Significantly, M. guilliermondii shares a common approach to K. pastoris in regulating 

the expression of recombinant protein. The compatibility of this strain using pPICZαB 

vector likewise in K. pastoris features AOX1 promoter (PAOX1) which is responsible to 

initiate the metabolism process in peroxisome of methylotrophic yeast, thus, represented 

as a control element for heterologous gene expression (Chiruvolu et al., 1997). The 

AOX1 gene particularly utilizes methanol as a carbon source to control the transcription 

of foreign protein via repression / derepression mechanism and undergoes an oxidation 

process to compose formaldehyde and hydrogen peroxide as a byproduct (Cregg et al., 

1989). Furthermore, BLAST algorithm identifies the promoter in M. guilliermondii 

strain SO is 100 percent identical to the AOX1 promoter in K. pastoris expression system 

(Oslan et al., 2015). Besides, prior study remarkably discovered that strain SO required 

shorter cultivation time to produce heterologous protein as compared to K. pastoris, 
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therefore, worthwhile to be established as the next commercial expression system. 

 

 

The complete genomic data of M. guilliermondii strain SO is necessary in order to 

construct a model of expression host. To date, the available genomic data of M. 

guilliermondii in public databases reported are from 6 strains, where ATCC 6260 is 

recognised as representative genome. Moreover, each strain may reveal nucleotide 

polymorphism and demonstrated heterogeneity. The urgency of having its own whole 

genome sequencing (WGS) data is crucial for further modification, hence, leading the 

objective of this study. The establishment of WGS pipeline is embedded according to the 

Illumina next-generation sequencing technology platform and performed bioinformatics 

analysis, from assembly, annotation and finalization through interspecies and 

intraspecies comparative analysis.  

 

 

Eventually, the inception of this novel strain as prospective yeast expression system 

deemed an emergence study regarding its toxicological concern to determine ‘Generally 

Recognized as Safe’ (GRAS) status. So, the identification of virulence factors is decisive 

to implicate adverse effects cause by the yeast. 

 

 

1.2 Problem statement 

 

 

Inadequate information on genomic data of M. guilliermondii strain SO is pivotal to 

comprehend and manipulate the competency of the host as an expression system. 

Furthermore, prior studies have reported the species possesses similarity to Candida 

albicans, the opportunistic human pathogenic yeast. Yet, the candida-like virulence 

proteins of M. guilliermondii strain SO have not been identified/analysed. 

 

 

1.3 Objectives 

 

 

A comprehensive understanding of yeast expression system performed by M. 

guilliermondii was achieved in this study through objectives as followed; 

i Acquiring, assembling and annotating the full genome sequence of M. 

guilliermondii   strain SO. 

ii Comparing the full genome of M. guilliermondii strain SO intraspecies and 

interspecies of yeast expression system. 

iii Predict the potential virulence factors in silico from M. guilliermondii strain SO 

proteome. 
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