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A B S T R A C T

This paper uses fractional growth model modified from McKendrick equation to describe the growth of abalone
length. The fractional model is analyzed by generalized differential transform method to obtain Taylor’s series
which is then used to predict the abalone length growth. The results are indicated by fractional order equal to
0.8. The results also show that by simulating the series with fractional order and integer order, the fractional
model provides more robust results than the model with integer order.
1. Introduction

Abalone, a type of seashell, is extensively farmed in various coun-
tries, including Indonesia. It is not only cherished as a favored food
item due to its high protein content but is also crafted into attractive
souvenirs using its shells. Nonetheless, abalone cultivation demands
a significant amount of time because of its slow growth. Moreover,
the length of the abalone plays a crucial role in determining its price.
Consequently, a growth model for abalone length was presented in the
form of an ordinary differential equation as follows.1

𝑙(𝑡) = 12
(

1 − 𝑒−0.04305(𝑡+0.0537509)
)

, (1)

where 𝑙(𝑡) represents the length of abalone at time 𝑡. However, the
growth model has been expanded in different ways including the
McKendrick equations. The McKendrick equation stands out as a widely
recognized growth model for partial differential equations. Originally
presented by McKendrick, this model emerged from his resolution
of an ecological challenge related to a singular population with age
structure.2 Let 𝑤(𝑠, 𝑡) be a density of individuals of age 𝑠 at time 𝑡, then

𝜕𝑤(𝑠, 𝑡)
𝜕𝑡

+
𝜕𝑤(𝑠, 𝑡)

𝜕𝑠
= −𝜇(𝑠, 𝑡)𝑤(𝑠, 𝑡), (2)

with 𝜇(𝑠, 𝑡) denotes the mortality rate which is dependent of time.
The Eq. (2) is well known as McKendrick model. The model provides
more detailed prediction of population growth. For instance, it pre-
dicted the Swedish female population (1831–1925) properly, showing
age patterns for decreasing birth rates and increasing deaths.3 In ad-
dition, the model indicate that the growth rate of a population at
immature and adults stages is different due to consumption ability
and limited resources.4 Also, many cases of disease or virus spread
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have been modeled based on age-structure to obtain more accurate re-
sults.5–8 Furthermore, the model has been also modified as formulation
of hiring age and retirement age of workers as well as modified into
goodwill model for length of product life cycle.9,10

On the other side, fractional integral and derivative have played
an essential role in expansion of mathematical modeling theory. Some
researches indicated that mathematical modeling with fractional order
more realistic than integer order. For example, the fractional partial
differential equation (FPDE) of behavior the oil pollution in water
provide solution more properly than the model with classical integer
order.11 The system fractional PDE of anomalous diffusion process also
shows more realistic results than the system equation with integer
order.12 In addition, fractional PDE of the complex fluid flow process in
confined nano-scale shale formation sufficiently to optimize shale gas
recovery has presented better understanding than the PDE with integer
order13 and so on.

Therefore, this study propose the partial differential equation of
growth model with fractional order to predict the growth of abalone
length in more detail. The results of this study can be a reference
to analyze the growth of abalone length in the further cultivation.
It implies that the optimal harvesting time can be also predicted. In
addition, the model is constructed as expansion of McKendrick equation
and pure growth model as indicated by Arora (2023). The pure growth
of particles was given as follows.

𝜕𝑣(𝑠, 𝑡)
𝜕𝑡

+
𝜕[ℎ(𝑠)𝑣(𝑠, 𝑡)]

𝜕𝑠
= 0, (3)

where 𝑣(𝑠, 𝑡) denotes the number density distribution of particles with
size 𝑠 at time 𝑡 and ℎ(𝑠) is the growth rate process. The solution
of Eq. (3) was solved by the Adomian decomposition method which
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produced the exponential function.14 Furthermore, the generalized
differential transform method (GDTM) is one also popular method to
solve the fractional differential equations as specially linear differential
equations. Basically, this method was first introduced by Zhou who
solved the linear and non-linear equations of electric circuit.15 For more
detail there are some equations have been solved properly by GDTM
including: linear and non-linear Volterra integral equation16; fractional
diffusion-wave equation17; the local diffusion equations18; conformable
pace–time PDE19,20; couple time fractional non-linear evolutions equa-
ions21; fractional generalized Burger–Fisher equations,22 and analyti-
al study of atmospheric internal waves model.11 Thus, in this study
he fractional partial differential equation of growth model is analyzed
sing GDTM.

The remainder sections of this paper are organized as follows.
ection 2, describes the fundamental theory of fractional integral and
erivative. Section 3, presents the generalized differential transform
ethod. Section 4, modifies the growth model into fractional growth
odel. Section 5, examines the fractional growth model by predicting

he growth of abalone length. Section 6, draws the conclusions.

. Fractional integral and derivative

This part recalled several prominent definitions and properties con-
isely of the fractional integral and derivative as follows.

efinition 2.1 (Ref. 23). Given a function 𝑓 ∶ [0,∞) ⟶ R. The
Riemann–Liouville fractional integral and derivative with order 𝛼 are
defined respectively as follows.

𝐼𝛼𝑎 𝑓 (𝑠) =
1

𝛤 (𝛼) ∫

𝑠

𝑎
(𝑠 − 𝜏)𝛼−1𝑓 (𝜏)𝑑𝜏 (4)

and

𝑅𝐿𝐷𝛼
𝑠 𝑓 (𝑠) =

⎧

⎪

⎨

⎪

⎩

𝑑𝑚

𝑑𝑠𝑚 if 𝛼 = 𝑚 ∈ N,

𝑑𝑚

𝑑𝑠𝑚 ∫ 𝑠
0

(𝑠−𝜏)𝑚−𝛼−1
𝛤 (𝑚−𝛼) 𝑓 (𝜏)𝑑𝜏 if 𝛼 ∈ (𝑚 − 1, 𝑚), 𝑚 ∈ N.

(5)

The definition (5) indicates that the derivative of constant function
is not equal to zero so that the definition was modified into Caputo
fractional derivatives.

Definition 2.2 (Refs. 24, 25). Let a function 𝑓 ∶ [0,∞) ⟶ R. Caputo
fractional derivative of function 𝑓 with order-𝛼 is defined as,

𝐶𝐷𝛼
𝑎𝑓 (𝑠) =

⎧

⎪

⎨

⎪

⎩

𝑑𝑚

𝑑𝑠𝑚 if 𝛼 = 𝑚 ∈ N,

∫ 𝑠
𝑎

(𝑠−𝜏)𝑚−𝛼−1
𝛤 (𝑚−𝛼) 𝑓 (𝑚)(𝜏)𝑑𝜏 if 𝛼 ∈ (𝑚 − 1, 𝑚), 𝑚 ∈ N.

(6)

Clearly, by the definition (6) derivative of constant function is zero.
Here, some basic properties as below.

1.
(

𝐼𝛼𝑎 𝐼
𝛽
𝑎 𝑓

)

(𝑠) =
(

𝐼𝛽𝑎 𝐼𝛼𝑎 𝑓
)

=
(

𝐼𝛼+𝛽𝑓
)

(𝑠),

2. 𝐼𝛼𝑎 (𝑠 − 𝑎)𝜆 = 𝛤 (𝜆+1)
𝛤 (𝜆+𝛼+1) (𝑠 − 𝑎)𝜆+𝛼 ,

3.
(

𝐼𝛼𝑎
𝐶𝐷𝛼

𝑎𝑓
)

(𝑠) = 𝑓 (𝑠) −
∑𝑚−1

𝑘=0 𝑓 (𝑘)(𝑎) (𝑠−𝑎)
𝑘

𝑘! ,

where 𝛼, 𝛽 > 0, 𝑎 ≥ 0, 𝛼 ∈ (𝑚 − 1, 𝑚), 𝑚 ∈ N, and 𝜆 > −1.17

Similarly, the definition of fractional partial derivative is written as
below.

Definition 2.3 (Ref. 26). The Caputo fractional partial derivatives of
function 𝑓 with order-𝛼 are defined as,
𝜕𝛼𝑓 (𝑠, 𝑡)

𝜕𝑠𝛼
= 1

𝛤 (𝑛 − 𝛼) ∫

𝑠

0
(𝑠 − 𝜏)𝑛−𝛼−1

𝜕𝑛𝑓 (𝜏, 𝑡)
𝜕𝜏𝑛

𝑑𝜏, 𝑛 − 1 < 𝛼 ≤ 𝑛, (7)

and
𝜕𝛼𝑓 (𝑠, 𝑡)

𝜕𝑡𝛼
= 1

𝛤 (𝑛 − 𝛼) ∫

𝑡

0
(𝑡 − 𝜏)𝑛−𝛼−1

𝜕𝑛𝑓 (𝑠, 𝜏)
𝜕𝜏𝑛

𝑑𝑠, 𝑛 − 1 < 𝛼 ≤ 𝑛. (8)

So, the basic properties can be also generalized similarly.
2

3. Generalized differential transform method

In this part we provide some succinctly definition and theorems of
generalized differential transform method. The definition and theorems
are given as below.

Definition 3.1. Let 𝑓 (𝑠, 𝑡) be analytical function that it can be pre-
ented as multi-Taylor series about (𝑠0, 𝑡0) as follows:

(𝑠, 𝑡) =
∞
∑

𝑘=0

∞
∑

𝑚=0
𝐹 (𝑘, 𝑚)(𝑠 − 𝑠0)𝑘𝛼(𝑡 − 𝑡0)𝑚𝛼 , (9)

ith

(𝑘, 𝑚) = 1
𝛤 (𝑘𝛼 + 1)

1
𝛤 (𝑚𝛼 + 1)

(

𝜕(𝑘+𝑚)𝛼𝑤(𝑠, 𝑡)
𝜕𝑠𝑘𝛼𝜕𝑡𝑚𝛼

)

(𝑠0 ,𝑡0)
(10)

where 𝑘, 𝑚 = 0, 1,… , 𝑛 and 𝛼 ∈ (0, 1].
Here, 𝐹 (𝑘, 𝑚) is called differential transform of the function 𝑓 (𝑠, 𝑡).

Furthermore, some theorems of GDTM are provided as follows.

Theorem 3.1.

If 𝑓 (𝑠, 𝑡) = 𝑎𝑢(𝑠, 𝑡) ± 𝑏𝑣(𝑠, 𝑡), then 𝐹 (𝑘, 𝑚) = 𝑎𝑈 (𝑘, 𝑚) + 𝑏𝑉 (𝑘, 𝑚) (11)

roof. It is clear from Definition 3.1.

heorem 3.2. If

(𝑠, 𝑡) = 𝑎𝑢(𝑠, 𝑡)𝑣(𝑠, 𝑡),

hen

(𝑘, 𝑚) = 𝑎
𝑘
∑

𝑖=0

𝑚
∑

𝑗=0
𝑈 (𝑘, 𝑚 − 𝑗)𝑉 (𝑘 − 𝑖, 𝑚). (12)

roof. By Definition 3.1, we have

(𝑠, 𝑡) = 𝑎
∞
∑

𝑘=0

∞
∑

𝑚=0
(𝑠 − 𝑠0)𝑘𝛼(𝑡 − 𝑡0)𝑚𝛼𝐹 (𝑘, 𝑚)

=

(

𝑎
∞
∑

𝑘=0

∞
∑

𝑚=0

(𝑠 − 𝑠0)𝑘𝛼

𝛤 (𝑘𝛼 + 1)
(𝑡 − 𝑡0)𝑚𝛼

𝛤 (𝑚𝛼 + 1)
𝜕(𝑘+𝑚)𝛼𝑢(𝑠, 𝑡)
𝜕𝑠𝑘𝛼𝜕𝑡𝑚𝛼

)

𝑠=𝑠0 ,𝑡=𝑡0

⊗

( ∞
∑

𝑘=0

∞
∑

𝑚=0

(𝑠 − 𝑠0)𝑘𝛼

𝛤 (𝑘𝛼 + 1)
(𝑡 − 𝑡0)𝑚𝛼

𝛤 (𝑚𝛼 + 1)
𝜕(𝑘+𝑚)𝛼𝑣(𝑠, 𝑡)
𝜕𝑠𝑘𝛼𝜕𝑡𝑚𝛼

)

𝑠=𝑠0 ,𝑡=𝑡0

= 𝑎
𝑘
∑

𝑖=0

𝑚
∑

𝑗=0
𝑈 (𝑘, 𝑚 − 𝑗)𝑉 (𝑘 − 𝑖, 𝑚).

Therefore, we get

(𝑘, 𝑚) = 𝑎
𝑘
∑

𝑖=0

𝑚
∑

𝑗=0
𝑈 (𝑘, 𝑚 − 𝑗)𝑉 (𝑘 − 𝑖, 𝑚).

heorem 3.3. If

(𝑠, 𝑡) =
𝜕𝛼(𝑎𝑢(𝑠, 𝑡))

𝜕𝑠𝛼
,

then

𝐹 (𝑘, 𝑚) =
𝑎𝛤 ((𝑘 + 1)𝛼 + 1)

𝛤 (𝑘𝛼 + 1)
𝑈 (𝑘 + 1, 𝑚) (13)

Proof. From Eq. (10), we get

𝐹 (𝑘, 𝑚) = 1
𝛤 (𝑘𝛼 + 1)𝛤 (𝑚𝛼 + 1)

(

𝜕(𝑘+𝑚)𝛼𝑓 (𝑠, 𝑡)
𝜕𝑠𝑘𝛼𝜕𝑡𝑚𝛼

)

(𝑠0 ,𝑡0)

= 𝑎
𝛤 (𝑘𝛼 + 1)𝛤 (𝑚𝛼 + 1)

⎛

⎜

⎜

⎜

𝜕(𝑘+𝑚)𝛼
(

𝜕𝛼𝑢(𝑠,𝑡)
𝜕𝑠𝛼

)

𝜕𝑠𝑘𝛼𝜕𝑡𝑚𝛼

⎞

⎟

⎟

⎟

⎝ ⎠(𝑠0 ,𝑡0)
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Table 1
Fractional PDE transform.

(k,m) 0 1 2

0 𝐴 𝐴
𝑟𝛤 (𝛽+1)

(𝑐 − 𝜂) 𝐴
𝑟2𝛤 (2𝛽+1)

(𝑐2 − 2𝑐𝜂 + 𝜂2)

1 −𝑐𝐴 − 𝐴
𝑟𝛤 (𝛽+1)

(𝑐2 − 𝑐𝜂) − 𝐴
𝑟2𝛤 (2𝛽+1)

(𝑐3 − 2𝑐2𝜂 + 𝑐𝜂2)

2 𝑐2𝐴
2!

𝐴
2!𝑟𝛤 (𝛽+1)

(𝑐3 − 𝑐2𝜂) 𝐴
2!𝑟2𝛤 (2𝛽+1)

(𝑐4 − 2𝑐3𝜂 + 𝑐2𝜂2)

3 − 𝑐3𝐴
3!

− 𝐴
3!𝑟𝛤 (𝛽+1)

(𝑐4 − 𝑐3𝜂) − 𝐴
3!𝑟2𝛤 (2𝛽+1)

(𝑐5 − 2𝑐4𝜂 + 𝑐3𝜂2)

4 𝑐4𝐴
4!

𝐴
4!𝑟𝛤 (𝛽+1)

(𝑐5 − 𝑐4𝜂) 𝐴
4!𝑟2𝛤 (2𝛽+1)

(𝑐6 − 2𝑐5𝜂 + 𝑐4𝜂2)

(k,m) 3 4

0 𝐴
𝑟3𝛤 (3𝛽+1)

(𝑐3 − 3𝑐2𝜂 + 3𝑐𝜂2 − 𝜂3) 𝐴
𝑟4𝛤 (4𝛽+1)

(𝑐4 − 4𝑐3𝜂 + 6𝑐2𝜂2 − 4𝑐𝜂3 + 𝜂4)

1 − 𝐴
𝑟3𝛤 (3𝛽+1)

(𝑐4 − 3𝑐3𝜂 + 3𝑐2𝜂2 − 𝑐𝜂3) − 𝐴
𝑟4𝛤 (4𝛽+1)

(𝑐5 − 4𝑐4𝜂 + 6𝑐3𝜂2 − 4𝑐2𝜂3 + 𝑐2𝜂4)

2 𝐴
2!𝑟3𝛤 (3𝛽+1)

(𝑐5 − 3𝑐4𝜂 + 3𝑐3𝜂2 − 𝑐2𝜂3) 𝐴
2!𝑟4𝛤 (4𝛽+1)

(𝑐6 − 4𝑐5𝜂 + 6𝑐4𝜂2 − 4𝑐3𝜂3 + 𝑐2𝜂4)

3 − 𝐴
3!𝑟3𝛤 (3𝛽+1)

(𝑐6 − 3𝑐5𝜂 + 3𝑐4𝜂2 − 𝑐3𝜂3) − 𝐴
3!𝑟4𝛤 (4𝛽+1)

(𝑐7 − 4𝑐6𝜂 + 6𝑐5𝜂2 − 4𝑐4𝜂3 + 𝑐3𝜂4)

4 𝐴
4!𝑟3𝛤 (3𝛽+1)

(𝑐7 − 3𝑐6𝜂 + 3𝑐5𝜂2 − 𝑐4𝜂3) 𝐴
4!𝑟4𝛤 (4𝛽+1)

(𝑐8 − 4𝑐7𝜂 + 6𝑐6𝜂2 − 4𝑐5𝜂3 + 𝑐4𝜂4)
4

f
m
t
T

w

𝑤

= 𝑎
𝛤 (𝑘𝛼 + 1)𝛤 (𝑚𝛼 + 1)

(

𝜕(𝑘+𝑚+1)𝛼𝑢(𝑠, 𝑡)
𝜕𝑠(𝑘+1)𝛼𝜕𝑡𝑚𝛼

)

(𝑠0 ,𝑡0)

=
𝑎𝛤 ((𝑘 + 1)𝛼 + 1)

𝛤 (𝑘𝛼 + 1)
𝑈 (𝑘 + 1, 𝑚)

Thus,

𝐹 (𝑘, 𝑚) =
𝑎𝛤 ((𝑘 + 1)𝛼 + 1)

𝛤 (𝑘𝛼 + 1)
𝑈 (𝑘 + 1, 𝑚) (14)

Theorem 3.4. If

𝑓 (𝑠, 𝑡) =
𝜕𝛽 (𝑏𝑢(𝑠, 𝑡))

𝜕𝑡𝛽
,

then

𝐹 (𝑘, 𝑚) =
𝑏𝛤 ((𝑘 + 1)𝛽 + 1)

𝛤 (1 + 𝑘𝛽)
𝑈 (𝑘, 𝑚 + 1) (15)

roof. Similarly, by Eq. (10), we find that

(𝑘, 𝑚) = 1
𝛤 (𝑘𝛽 + 1)𝛤 (𝑚𝛽 + 1)

(

𝜕(𝑘+𝑚)𝛽𝑓 (𝑠, 𝑡)
𝜕𝑠𝑘𝛽𝜕𝑡𝑚𝛽

)

(𝑠0 ,𝑡0)

= 𝑏
𝛤 (𝑘𝛽 + 1)𝛤 (𝑚𝛽 + 1)

⎛

⎜

⎜

⎜

⎝

𝜕(𝑘+𝑚)𝛽
(

𝜕𝛽𝑢(𝑠,𝑡)
𝜕𝑡𝛽

)

𝜕𝑠𝑘𝛽𝜕𝑡𝑚𝛽

⎞

⎟

⎟

⎟

⎠(𝑠0 ,𝑡0)

= 𝑏
𝛤 (𝑘𝛽 + 1)𝛤 (𝑚𝛽 + 1)

(

𝜕(𝑘+𝑚+1)𝛽𝑢(𝑠, 𝑡)
𝜕𝑠𝑘𝛽𝜕𝑡(𝑚+1)𝛽

)

(𝑠0 ,𝑡0)

=
𝑏𝛤 ((𝑚 + 1)𝛽 + 1)

𝛤 (𝑚𝛽 + 1)
𝑈 (𝑘, 𝑚 + 1)

Therefore,

(𝑘, 𝑚) =
𝑏𝛤 ((𝑘 + 1)𝛽 + 1)

𝛤 (1 + 𝑘𝛽)
𝑈 (𝑘, 𝑚 + 1) (16)

heorem 3.5. . If

(𝑠, 𝑡) =
𝜕(𝑙+𝑟)𝛼(𝑐𝑢(𝑠, 𝑡))

𝜕𝑠𝑙𝛼𝜕𝑡𝑟𝛼

then

𝐹 (𝑘, 𝑚) =
𝑐𝛤 ((𝑘 + 𝑙)𝛼 + 1)𝛤 ((𝑚 + 𝑟)𝛼 + 1)

𝛤 (𝑘𝛼 + 1)𝛤 (𝑚𝛼 + 1)
𝑈 (𝑘 + 𝑙, 𝑚 + 𝑟). (17)

where 𝑙, 𝑟 = 0, 1,… , 𝑛 and 𝛼 ∈ (0, 1].

Proof. By Eq. (10), we have

𝐹 (𝑘, 𝑚) = 1
(

𝜕(𝑘+𝑚)𝛼𝑓 (𝑠, 𝑡)
𝑘𝛼 𝑚𝛼

)

3

𝛤 (𝑘𝛼 + 1)𝛤 (𝑚𝛼 + 1) 𝜕𝑠 𝜕𝑡 (𝑠0 ,𝑡0)
= 𝑐
𝛤 (𝑘𝛼 + 1)𝛤 (𝑚𝛼 + 1)

⎛

⎜

⎜

⎜

⎝

𝜕(𝑘+𝑚)𝛼
(

𝜕(𝑙+𝑟)𝛼𝑢(𝑠,𝑡)
𝜕𝑠𝑙𝛼𝜕𝑡𝑟𝛼

)

𝜕𝑠𝑘𝛼𝜕𝑡𝑚𝛼

⎞

⎟

⎟

⎟

⎠(𝑠0 ,𝑡0)

= 𝑐
𝛤 (𝑘𝛼 + 1)𝛤 (𝑚𝛼 + 1)

(

𝜕(𝑘+𝑙+𝑚+𝑟)𝛼𝑢(𝑥, 𝑦)
𝜕𝑠(𝑘+𝑙)𝛼𝜕𝑡(𝑚+𝑟)𝛼

)

(𝑠0 ,𝑡0)

=
𝑐𝛤 ((𝑘 + 𝑙)𝛼 + 1)𝛤 ((𝑚 + 𝑟)𝛼 + 1)

𝛤 (𝑘𝛼 + 1)𝛤 (𝑚𝛼 + 1)
𝑈 (𝑘 + 𝑙, 𝑚 + 𝑟).

. Fractional partial differential equation of growth model

In this section we provide the fractional growth model obtained
rom a modification of the McKendrick equation and pure growth
odel. Let 𝑤(𝑠, 𝑡) represents the density of population, 𝜇 denotes mor-

ality and 𝛽 is fractional order of model as well 𝑔(𝑠) denotes velocity.
hen the fractional model is written as below.
𝜕𝑤(𝑠, 𝑡)

𝜕𝑡
+ 𝑔(𝑠)

𝜕𝛽𝑤(𝑠, 𝑡)
𝜕𝑠𝛽

= −𝜇𝑤(𝑠, 𝑡), (18)

with 𝑔(𝑠) = 1
𝑠 , 𝑠 ∈ (0, 1] and initial condition

𝑤(0, 𝑡) = 𝐴(1 − 𝑒−𝑐(𝑡−𝑡0)).

Here 𝐴 denotes the initial number of population and 𝑐 is a growth rate.
Furthermore, Eq. (18) is analyzed by generalized differential transform
method to obtain the growth model. Therefore, by Definition 3.1, the
transformation of the initial condition as follows.

𝑤(0, 𝑚) = 1
𝑚!

[

𝑑𝑚𝑤(0, 𝑡)
𝑑𝑡𝑚

]

𝑡=0
=

(−𝑐)𝑚

𝑚!
𝐴.

Similarly, the transformation of fractional PDE is given as

𝑊 (𝑘 + 1, 𝑚) = −
(𝑚 + 1)(𝛤 (𝑘𝛽 + 1))
𝑟𝛤 ((𝑘 + 1)𝛽 + 1)

(𝑊 (𝑘, 𝑚 + 1) + 𝜇𝑊 (𝑘, 𝑚)) .

ith assuming 𝑔(𝑠) = 1
𝑠 = 𝑟. By running iteration we have, see Table 1.

If the iteration is proceeded further into 𝑚 times, we obtain

𝑤(𝑠, 𝑡) =
(

1 + 𝑠𝛽

𝑟𝛤 (𝛽 + 1)
(𝑐 − 𝜂)

)

𝐴𝑒−𝑐𝑡

+
(

𝑠2𝛽

𝑟2𝛤 (2𝛽 + 1)
(

𝑐2 − 2𝜂𝑐 + 𝜂2
)

)

𝐴𝑒−𝑐𝑡+
(

𝑠3𝛽

𝑟3𝛤 (3𝛽 + 1)
(

𝑐3 − 3𝜂𝑐2 + 3𝜂2𝑐 + 𝜂3
)

)

𝐴𝑒−𝑐𝑡 +⋯

Therefore, the growth model for single population is given as

(𝑥, 𝑡) = 𝐴𝑒−𝑐𝑡
𝑛
∑

𝑚=0

(𝑐 − 𝜂)𝑚

𝑟𝑚𝛤 (𝑚𝛽 + 1)
𝑠𝑚𝛽 . (19)

Clearly, Eq. (19) is convergent for 𝑠 ∈ (0, 1) and 𝑐 ≥ 0. For more detail
the model will be examined on the abalone length growth in the next
section.
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Fig. 1. Abalone length.
Table 2
Abalone length.

Month l(cm) Month l(cm) Month l(cm) Month l(cm)

1 0.5322 7 3.1930 13 5.2365 19 6.8058
2 1.0258 8 3.5721 14 5.5276 20 7.0294
3 1.4982 9 3.9349 15 5.8062 21 7.2434
4 1.9503 10 4.2821 16 6.0728 22 7.4481
5 2.3829 11 4.6143 17 6.3279 23 7.6441
6 2.7968 12 4.9322 18 6.5722 24 7.8316

5. Applications

This part we provide the fractional growth model for option abalone
length growth. Let consider the abalone length data in Lombok Marine
Aquaculture Center Indonesia 20151 as in Table 2.

By processing the data with linear regression and Von Bertalanffy
model, the growth of abalone length was presented in Eq. (1). Further-
more, According to the data and Eq. (18) we propose the following
fractional equation. Let 𝑙(𝑠, 𝑡) represent the body length of abalone
species at the 𝑠-age and time 𝑡. If 𝜇(𝑠, 𝑡) = 𝜂 is an inhibition rate
of abalone length growth and coefficient 𝑟 is constant, the fractional
equation is given as follows.
𝜕𝑙(𝑠, 𝑡)
𝜕𝑡

+ 𝑟
𝜕𝛽 𝑙(𝑠, 𝑡)
𝜕𝑠𝛽

= −𝜂𝑙(𝑠, 𝑡), (20)

with initial condition

𝑙(0, 𝑡) = 𝑙𝑖
(

1 − 𝑒−0.04305(𝑡+0.0537509)
)

where 𝑖 = 0, 1, 2, 3,… , 23.
Using the GDTM concepts we may determine the transformation of

the initial condition as follows.

𝐿(0, 𝑚) = 1
𝑚!

(

𝑑𝑚𝑙(0, 𝑡)
𝑑𝑡𝑚

)

𝑡=0
=

(−0.04305)𝑚𝐴
𝑚!

where 𝐴 = 𝑙𝑖𝑒−0.0023.
By applying the growth model (19), we find that the growth model

for abalone length as follows.

𝑙(𝑠, 𝑡) = 𝐴𝑒−(0.04305)𝑡
23
∑ (0.04305 − 𝜂)𝑚

𝑚 𝑠𝑚𝛽 . (21)
4

𝑚=0 𝑟 𝛤 (𝑚𝛽 + 1)
Table 3
Approximation of abalone length.

Month r 𝜂 𝑙1 𝑙0.9 𝑙0.8 𝑙0.7 𝑙0.6
1 – – 0.5322 0.5322 0.5322 0.5322 0.5322
2 0.0490 0.0150 0.9409 0.9789 1.0198 1.0655 1.1076
3 0.0470 0.0280 1.4097 1.4357 1.4614 1.4897 1.5092
4 0.0450 0.0320 1.9108 1.9359 1.9601 1.9854 2.0024
5 0.0430 0.0360 2.2925 2.3109 2.3280 2.3476 2.3597
6 0.0420 0.0370 2.7458 2.7647 2.7821 2.8007 2.8101
7 0.0400 0.0383 3.1423 3.1596 3.1754 3.1964 3.2000
8 0.0380 0.0390 3.5440 3.5613 3.5769 3.5955 3.6010
9 0.0360 0.0400 3.8790 3.8937 3.9068 3.9252 3.9264
10 0.0350 0.0406 4.2105 4.2234 4.2349 4.2524 4.2517
11 0.0330 0.0410 4.5461 4.5583 4.5691 4.5886 4.5849
12 0.0320 0.0410 4.9083 4.9219 4.9340 4.9555 4.9517
13 0.0300 0.0415 5.1818 5.1933 5.2033 5.2236 5.2178
14 0.0280 0.0416 5.5021 5.5143 5.5250 5.5442 5.5404
15 0.0270 0.0418 5.7763 5.7876 5.7975 5.8191 5.8117
16 0.0260 0.0420 6.0316 6.0419 6.0508 6.0702 6.0635
17 0.0250 0.0420 6.3188 6.3300 6.3398 6.3597 6.3537
18 0.0230 0.0423 6.5227 6.5316 6.5393 6.5606 6.5501
19 0.0230 0.0422 6.8039 6.8144 6.8236 6.8449 6.8366
20 0.0210 0.0423 7.0371 7.0476 7.0567 7.0804 7.0696
21 0.0200 0.0425 7.2088 7.2170 7.2241 7.2449 7.2340
22 0.0200 0.0425 7.4282 7.4366 7.4440 7.4671 7.4542
23 0.0200 0.0425 7.6382 7.6469 7.6544 7.6781 7.6649
24 0.0190 0.0426 7.8093 7.8169 7.8235 7.8468 7.8326

Where 𝑙𝛽 represents the abalone length with fractional order 𝛽.

Applying the model (21), we need to determine the parameter values
of the model. Here 𝑟 is a velocity, with 𝑟 =▵ 𝑙 ∶ 10 ▵ 𝑡. Meanwhile, the
values of 𝜂 are simulated refer to the data. The results of the model are
indicated on the Table 3 as below.

From the Table 3 show that as velocity of the abalone length
decreases the smaller the fractional order of the model, indicating the
bigger prediction value. In addition, we find that the error of 𝑙1, 𝑙0.9,
𝑙0.8, 𝑙0.7, and 𝑙0.6 are 0.041534; 0.029108; 0.020225; 0.021118; and
0.022219 respectively. Therefore, the best result of Eq. (21) is indicated
by fractional order for 𝛽 = 0.8. It can be also presented in Fig. 1 as
below
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On the other hand, Eq. (20) can be also expressed as the following
system equations.

𝜕𝑙(𝑠, 𝑡)
𝜕𝑡

+ 𝑟1
𝜕𝛽 𝑙(𝑠, 𝑡)
𝜕𝑠𝛽

= −𝜂1𝑙(𝑠, 𝑡),

𝜕𝑙(𝑠, 𝑡)
𝜕𝑡

+ 𝑟2
𝜕𝛽 𝑙(𝑠, 𝑡)
𝜕𝑠𝛽

= −𝜂2𝑙(𝑠, 𝑡)

⋮

𝜕𝑙(𝑠, 𝑡)
𝜕𝑡

+ 𝑟23
𝜕𝛽 𝑙(𝑠, 𝑡)
𝜕𝑠𝛽

= −𝜂23𝑙(𝑠, 𝑡)

or it can be written as
⎡

⎢

⎢

⎢

⎢

⎣

1 𝑟1
1 𝑟2
⋮ ⋮
1 𝑟23

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝜕𝑙(𝑠, 𝑡)
𝜕𝑡

𝜕𝛽 𝑙(𝑠, 𝑡)
𝜕𝑠𝛽

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

−𝜂1𝑙(𝑠, 𝑡)
−𝜂2𝑙(𝑠, 𝑡)

⋮
−𝜂23𝑙(𝑠, 𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

and

𝑓 (𝑟1, 𝜂1, 𝛽) = 𝑙1, 𝑓 (𝑟2, 𝜂2, 𝛽) = 𝑙2,… , 𝑓 (𝑟23, 𝜂23, 𝛽) = 𝑙23.

6. Conclusion

This study shows that the modification of McKendrick equation
into fractional partial differential equation with exponential function
as the initial condition is capable of predicting the growth model
specially in ecology. In this study, the fractional equation is analyzed by
generalized differential transform method which produces the Taylor’s
series. By further substituting the parameter values of the series with
the abalone length growth data, we obtained the approximations of
abalone length growth. Furthermore, the growth model with fractional
order 𝛽 = 0.8 shows that the result is the most approaching to the real
data compare to the other orders including integer order.
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