UNIVERSITI PUTRA MALAYSIA

PROGNOSTIC MARKERS OF RESISTANCE AND RELAPSE IN ACUTE LEUKAEMIA

MAHA ABDULLAH@MAHA-LAKSWMI-PON

FPSK (P) 2003 3
PROGNOSTIC MARKERS OF RESISTANCE AND RELAPSE IN ACUTE LEUKAEMIA

By

MAHA ABDULLAH@MAHA-LAKSWMI-PON

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

December 2003
Specially dedicated to,

Allah, Most Gracious, Most Merciful

Thank you for the knowledge, the sustenance and my family, my children, husband, mother, brother and sisters for their love, understanding, encouragement and patience.

May Allah bless you all.
Leukaemia is the malignant transformation of cells of the haemopoietic system. It is the most common cancer in children. The Ministry of Health, Malaysia (1999) reported an incidence rate of 3.36 in every 100,000. Nevertheless, leukaemia is nine times more frequent in adults. It is differentiated into acute and chronic leukaemia by morphology of the cell. Acute leukaemia is also a more aggressive disease. Chronic leukaemia is rare among children. The majority of leukaemia (83%) is acute leukaemia (National Cancer Registry, Malaysia, 2002). The two main cell types are the lymphoid and myeloid lineage.

The conventional method for the treatment of acute leukaemia is chemotherapy. Children achieve a remission rate of > 90%. In adult acute lymphoblastic leukaemia (ALL) remission is only 65-80%. Response rate is worst among adults with acute myeloid leukaemia (AML), 70% in young adults decreasing to 25% in the elderly. The rest are resistant to treatment. Many patients relapse within the first two years after
achieving remission. Children achieve a cure rate of 57-73% while adults have a dismal 35%. The relapsed disease is usually resistant to chemotherapy.

Many factors have been implicated in the cause of resistance and relapse. Much work is still needed to explain the mechanism involved to improve treatment and find alternative targets for therapy.

We postulate that the cause of resistance and relapse arises from the biology of the cell and its response upon exposure to chemotherapeutic drugs. We collected de novo acute leukaemia samples to determine the phenotype and survival potential of the cells and obtained samples from patients undergoing induction therapy to observe for changes with regards to inhibition of survival pathways and the response of the apoptotic machinery. We also collected resistant and relapsed samples to analyze for these factors. Furthermore, we cultured primary acute leukaemia cells to observe the behaviour of the cells in vitro.

We found resistant and early relapsed samples had a more immature phenotype being of the French-American-British (FAB) M1, M4 and M5a subtypes. We used MTT assay to measure proliferation, and showed high proliferative potential among these samples, reflecting self-renewal capacity and a stem cell nature. We obtained a significant difference between the proliferative potential of cells from patients with longer remission duration compared to patients with shorter survival period (p=0.013). Very few reports have used this technique to correlate with treatment outcome. We report the first significant correlation between lower proliferative potential and long term clinical outcome.
We were also able to show a significantly (p=0.033) higher rate of proliferation in the earlier B-cell ALL subtype (null ALL, CD10-) compared to the more mature (pre-B ALL, CD10+) subtype. Thus, we determined a new way to recognize the distinction between these two groups. In ALL cases, we found samples with a higher S-phase fraction were associated with a younger age group (p=0.000) and better survival. This was also not reported before.

We observed resistant and relapsed samples also expressed more growth factors such as c-kit receptor, IL (Interleukin)-1β, GM-CSF (granulocyte-monocyte colony stimulating factor) and IL-18 and this corresponded with higher levels of pro-survival factors such as Bcl-2 and phosphorylated Bad. We found relapsed samples to have a higher expression of the multi-drug resistance genes especially MRP1 and also MDR1 and LRP.

We report the first few observations of cells treated in vivo. We found resistant samples maintained high levels and increased levels of growth factors. This was supported by increased phosphorylation of signaling mediators such as Akt, p42/44, transcription factors such as FKHR (Forkhead) and sequestration of pro-apoptotic genes such as Bad. In cells that responded to treatment, down-regulation of these factors occurred and at the same time up-regulation of factors involved in pathways leading to cell death, such as TNF-α, p38 and Jnk was observed. The Fas receptor/ligand system did not appear to mediate chemotherapeutic induced death. The decoy receptor was also not involved in resistance. DR5 was also observed up-regulated in cells responding to chemotherapy. DR4 may play a role in resistance.
We found many changes occurred when cells were cultured including acquisition of mature markers, up-regulation of growth factors and corresponding signaling mediators. However, changes that alter a prognostic factor, e.g. an increase in S-phase fraction, render the culture no longer representative of *in vivo* treatment. Nevertheless, we found cell culture can still provide information that cannot be obtained *in vivo* e.g. by removing cells from the inhibitory factors of the original environment revealed novel insights that may be utilized in improving treatment.

Thus, many factors may play a role in causing resistance and relapse in acute leukaemia. A comprehensive and more thorough examination of each sample may be required to better understand the mechanism behind it. Furthermore, there is a need for continuity with the present samples for future techniques and other factors of study.

Cara rawatan yang utama untuk akut leukemia ialah kimoterapi. Lebih daripada 90% kanak-kanak dapat diubati dengan cara ini. Dikalangan dewasa, 65-80% daripada sel pesakit leukemia akut limfoid dapat dihapuskan dengan cara pengubatan ini. Untuk leukemia akut myeloid pula, kadar pesakit yang dapat diubati turun dari 70% antara yang muda kepada 25% antara yang tua. Pesakit selebihnya tidak dapat diubati kerana sel darah tidak mati (apoptosis) dengan kimoterapi. Sel pesakit ini dikatakan resistan.
terhadap kimoterapi. Pada ramai pesakit yang pada mulanya sembuh, penyakit ini akan timbul kembali (relaps). Peratus kanak-kanak yang tidak mengalami relaps ialah 57-73\% dan antara dewasa hanya 35\%. Sel leukemia relaps biasanya resistan terhadap kimoterapi.

Banyak faktor yang mungkin terlibat dalam membentuk sel yang resistan dan relaps. Kajian-kajian perlu dilakukan untuk mengenalpasti mekanisma yang terlibat supaya cara pengubatan dapat diperbaiki dan target baru pengubatan dapat dicari.

Hasil kajian kami menunjukkan sel resistan mempunyai sifat sel baru terbentuk (immature). Ini dapat dilihat dari pengelasan FAB (French-American-British) yang kebanyakkannya M1, M4 dan M5a. Potensi menambah bilangan dengan banyaknya menbayangkan sifat “immature” nya. Kami menggunakan esei MTT untuk memerhati pertumbuhan sel dan mendapati banyak sel resistan mempunyai kadar pertumbuhan yang tinggi. Lebih-lebih lagi, kami mendapati perbezaan yang signifikan (p=0.013) dalam kadar pertumbuhan sel antara pesakit yang relaps awal dengan yang dapat
bertahan lama dari mendapat penyakit itu semula. Cara mengesias ini jarang dipakai dan kami melapurkan pemerhatian signifikan pertama ke atas yang tersebut di atas.

Kami juga dapat menunjukkan perbezaan signifikan (p=0.033) antara kadar pertumbuhan sel B limfosit yang lebih muda (null, CD10-) dengan yang lebih matang (pre-B, CD10+) dan dengan demikian menentukan cara baru membeza antara dua kumpulan sel ini. Kami juga mendapati bahawa untuk leukemia akut jenis sel B, bahagian fasa S nya adalah lebih tinggi dikalangan pesakit yang lebih muda berbanding yang lebih tua (p=0.000). Ini belum pernah di tentukan.

Sampel resistan dan relaps juga didapati mengexpresi gen faktor pertumbuhan (growth factor) seperti reseptor c-kit, IL (Interleukin)-1β, GM-CSF (granulocyte-monocyte colony stimulating factor) dan IL-18 dengan lebih banyak daripada sampel sel yang diperolehi dari pesakit yang sensitif kepada kimoterapi. Ini juga diiringi peninggian dalam expresi faktor “pro-survival” seperti Bcl-2 dan fosforilasi protin Bad. Sampel relaps juga didapati menghasilkan banyak gen “multi-drug resistance” seperti MRP1, MDR1 dan LRP.

Kami melapurkan pemerhatian pertama ke atas sel yang telah diberi kimoterapi. Sel dari sampel resistan yang dikenakan kimoterapi mengekalkan paras tinggi faktor pertumbuhan dan meningkatkan fosforilasi protin perantara seperti Akt, p42/44, “transcription factor” FKHR (Forkhead), dan Bad, yang kesemuanya mengutuskan isyarat untuk sel terus hidup. Pada sel yang sensitif terhadap kimoterapi, protin perantara seperti p38 and Jnk pula di fosforilasikan untuk mengutuskan isyarat “apoptosis”. Kami mendapati, DR (death receptor)-4 dan mungkin TNF (Tumour
necrosis factor)-α terlibat dalam proses "apoptosis". DR4 pula mungkin memainkan peranan dalam resistan.

Kami mendapati banyak ciri-ciri sel telah berubah apabila sel dikulturkan termasuk pemilikan ciri-ciri kematangan sel, kenaikan faktor pertumbuhan sel dan protein perantaraan. Perubahan yang mengubah "prognositic factor" sesuatu sample e.g. peningkatan dalam peratus fasa-S akan menjadikannya tidak sesuai untuk dibandingkan dengan kajian pangubatan in vivo. Walaubagaimanapun, kami perhatikan kerja-kerja kultur dapat menyumbang kepada pengetahuan baru tentang sel dan persekitaran asalnya yang mungkin mengandungi faktor "inhibitori" yang menyekat perkembangannya seperti sel biasa. Pengetahuan ini dapat membantu dalam "mengembalikan" sel kanser ini kepada sel normal yang dapat dihapuskan dari tubuh dengan semulajadinya.

Maka banyak faktor yang menyebabkan sel resistan dan relaps dalam leukemia akut. Pemeriksaan yang lebih komprehensif dan mendalam mungkin diperlukan atas setiap sampel untuk memahami mekanisma yang terlibat. Maka perlunya penyinambungan dengan teknik atau faktor baru atas sampel sedia ada.
I would like to express my deepest gratitude to my supervisors, Associate Prof. Dr. Seow Heng Fong, Prof. Dr. Cheong Soon Keng and Dr. Leong Chooi Fun for providing me the opportunity to work on this project. I would like to thank them for their guidance, encouragement, confidence, constructive criticism and patience throughout the project. I am especially grateful to Prof. Seow for her trust and encouragement in times of need.

I am grateful to the staff in the Haematology Unit, Blood Bank and Medical and Paediatric Department of Hospital Universiti Kebangsaan Malaysia especially Ms Sivagengei who taught me flow cytometry and showed me simple deeds in kindness. I would like to thank the Head of Haematology Unit, Assoc Prof Dr Hamidah Hussin, Prof Dr Ainoon Othman, Prof Dr E. George and Prof Dr Rahman Jamal of Paediatric Department and not forgetting the medical officers, Dr Nik, Dr Kalai, Dr Rhaudhah, Dr Alawiyah, Dr Tun, Dr Asmah and Dr Norris for their tolerance and help.

I would like to thank Prof Manaf who gave me my footing on cell culture techniques, Dr. Leong on the technicalities of flow cytometry, Miss Andrea Lisa Holme and Mrs. Wang Suk Mei on the beginnings of PCR and also Dr Saidi for help in statistics. I would also like to thank Mr Soo Eng Tong and Mr Anthonysamy for their assistance.
To my fellow students, past and present, Dr Ban Kechen, Miss Ong Hooi Tin, Mr. Khor Tin Oo, Mrs Lim Moon Nian, Ms Stella, Puan Aini and to all the junior students in UPM as well as HUKM, thank you for your help and best of luck!
I certify that an Examination Committee met on 30 December 2003 to conduct the final examination of Maha Abdullah @ Maha-Lakswmi-Pon on her Doctor of Philosophy thesis entitled “Prognostic Markers of Resistance and Relapse in Acute Leukaemia” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

LOKMAN MOHD. NOH, MBBS, DCH, FRCP(Edin), FIBCI, Fel Med Immunol (Stanford, USA)
Professor,
Faculty of Medicine and Health Sciences
University Putra Malaysia
(Chairperson)

SEOW HENG FONG, Ph.D.
Professor of Molecular Immunology
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

CHEONG SOON KENG, FAMM, FRCP(Glasg), FRCP (Edin), FRCPA, FASc
Professor of Haematology
Senior Consultant Haematologist
MAKNA-HUKM Cancer Institute
Hospital Universiti Kebangsaan Malaysia
(Member)

LEONG CHOOI FUN, MD, M.Path (Haemato).
Lecturer,
Faculty of Medicine
Hospital Universiti Kebangsaan Malaysia
(Member)

ZAUYAH YUSUF, MD, M.Path (Immunol), Ph.D.
Associate Professor,
Department of Microbiology and Medical Immunology
Faculty of Medicine
University Kebangsaan Malaysia
(Independent Examiner)

MAD NASIR SHAMSUDIN, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 13 APR 2004
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

SEOW HENG FONG, Ph.D.
Professor of Molecular Immunology
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairperson)

CHEONG SOON KENG, FAMM, FRCP(Glasg), FRCP (Edin), FRCPA, FASc
Professor of Haematology
Senior Consultant Hamatologist
MAKNA-HUKM Cancer Institute
Hospital Universiti Kebangsaan Malaysia
(Member)

LEONG CHOOI FUN, MD, M.Path (Haemato)
Lecturer,
Faculty of Medicine
Hospital Universiti Kebangsaan Malaysia
(Member)

AINI IDERIS, Ph.D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 15 APR 2004
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

MAHA ABDULLAH
@ MAHA-LAKSWMI-PON

Date: 18.4.2022
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK vii
ACKNOWLEDGEMENTS xi
APPROVAL xiii
DECLARATION xv
LIST OF TABLES xx
LIST OF FIGURES xxi
LIST OF ABBREVIATIONS xxvii

CHAPTER

I INTRODUCTION 1

II LITERATURE REVIEW 10
 2.1 Haemopoietic System 10
 2.1.1 Blood Cells 11
 2.1.2 Bone Marrow Cells 11
 2.2 Haemopoietic Growth Factors 11
 2.3 Signal Transduction Pathways 16
 2.3.1 PI3K 18
 2.3.2 Ras/MAPK pathway 24
 2.3.3 The Nuclear Factor (NF)-κB 25
 2.3.4 The N-terminal Kinase (JNK) 25
 2.3.5 JAK/STAT 25
 2.4 Bcl-2 Family 28
 2.5 Acute Leukaemia 32
 2.5.1 Causal Agents 34
 2.5.2 Factors Involved in Leukaemogenesis 35
 2.5.2.1 MSI in AML 36
 2.5.2.2 Cell Cycle Checkpoint Defects 37
 2.5.2.3 Gene Alterations in Haemopoietic Factors 37
 2.5.2.4 Defect in Survival Pathways 38
 2.5.3 Diagnosis 39
 2.5.3.1 French-British-American (FAB) Classification 39
 2.5.3.2 Cytochemistry 41
 2.5.3.3 Morphologic, Immunologic and Cytogenetic (MIC) Classification 41
 2.5.3.4 Immunological Classification 42
 2.5.4 Clinical Management 45
 2.5.4.1 ALL 46
 2.5.4.2 AML 50
 2.5.4.3 Importance of Cell Cycle Kinetics 53
 2.5.4.4 Treatment with Cytokines 54
2.6 Chemotherapeutic Drugs
2.6.1 Drug transport, processing and action 56
 Cytrabine or Cytosine Arabinoside (Ara-C) 56
 Daunorubicin 57
 Vincristine 58
 6-Thioguanine 58
2.6.2 Apoptosis - Early effects 59
 2.6.2.1 DNA damage 60
 p53 62
 NFκB 63
 2.6.2.2 Sphingomyelin metabolism - ceramide Induction 64
2.6.3 Late effects 64
 2.6.3.1 Induction of death receptors 65
 2.6.3.2 Induction of caspases 71
 2.6.3.3 Stimulation of Bid 72
 2.6.3.4 Effect on Bcl-2 Family 72
2.6.4 Inhibition of survival pathways 72
2.6.5 Induction of terminal differentiation 73
2.7 Drug Resistance 73
 2.7.1 Mechanisms of Ara-C resistance 74
 2.7.2 Mechanisms of Dnr resistance 75
 2.7.3 Multi-Drug Resistance (MDR) Proteins 76
 2.7.4 Apoptosis inhibitory molecules 79
 2.7.4.1 Decoy receptors 79
 2.7.4.2 Inhibitory Apoptosis Proteins (IAP) 80
 2.7.4.3 NF-κB 81
 2.7.5 FLIP 82
 2.7.6 Bcl-2 family 82
 2.7.7 p53 84
 2.7.8 Survival pathways 85
 2.7.9 Haemopoietic growth factors 86
 2.7.10 c-myc 87
 2.7.11 Fusion proteins 87
2.8 In vitro Culture Techniques for the Study of Drug Resistance 88
 2.8.1 Autonomous cell growth 88
 2.8.2 Spontaneous apoptosis 89
 2.8.3 MTT Assay 90

III MATERIALS AND METHODS 91
3.1 Materials 91
 3.1.1 Patient Samples 91
 3.1.2 Antibodies 92
 3.1.3 PCR Primers 93
 3.1.4 Chemical and Reagents 94
 3.1.5 Equipments 95
3.1 Methods 95
 3.2.1 Cell Isolation 95
3.2.2 Viability and Cell Count
3.2.3 Immunophenotyping
 3.2.3.1 Surface Staining
 3.2.3.2 Cell Permeabilization and Intracellular Staining
 3.2.3.3 Annexin V/Propidium Iodide (PI) Stain
 3.2.3.4 Negative Controls
3.2.4 DNA Analysis
3.2.5 FACS Analysis
3.2.6 Gene Expression – Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
 3.2.6.1 RNA Isolation
 3.2.6.2 Reverse Transcription
 3.2.6.3 Polymerase Chain Reaction
3.2.7 Cell Culture
 3.2.7.1 Serum Free Medium,(SFM)
 3.2.7.2 MTT Assay
3.3 Statistical Analysis

IV RESULTS

4.1 Patients
 4.1.1 Clinical Data and Diagnosis
 4.1.2 Treatment Outcome
4.2 Immunophenotyping – Early and Late Markers
4.3 Cell Cycle Profile
4.4 *In vitro* Proliferation Potential
4.5 Gene Expression of Growth Factors and Cytokines
 4.5.1 c-Kit Receptor (CD117) and Stem Cell Factor (SCF)
 4.5.2 Interleukin-1β (IL-1β)
 4.5.3 Granulocyte-Monocyte Colony Stimulating Factor (GM-CSF)
 4.5.4 Interleukin-6 (IL-6)
 4.5.5 Interleukin-10 (IL-10)
 4.5.6 Interleukin-18 (IL-18)
 4.5.7 Interferon-γ (IFN-γ)
4.6 Gene Expression of Death Receptors and Ligands
 4.6.1 TNFRI and TNF-α
 4.6.2 CD95 Receptor (CD95R) and CD95 Ligand (CD95L)
 4.6.3 Death Receptor 4 (DR4) and DR5
 4.6.4 TRID
4.7 Gene Expression of the Multi-drug Resistance Proteins
 4.7.1 Multi-drug Resistance Protein (MDR1)
 4.7.2 Multi-drug Resistance Related Protein (MRP)
 4.7.3 Lung Resistance Protein (LRP)
4.8 Bcl-2 Family
 4.8.1 Bcl-2
 4.8.2 Bcl-2 and CD117
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Cell types producing regulatory cytokines</td>
<td>14</td>
</tr>
<tr>
<td>2.2 Inhibitors of cell proliferation</td>
<td>15</td>
</tr>
<tr>
<td>2.3 Haematopoietin-dependent JAK-STAT signaling</td>
<td>17</td>
</tr>
<tr>
<td>2.4 The FAB classification of acute leukaemia</td>
<td>40</td>
</tr>
<tr>
<td>2.5 Cytochemistry of acute leukaemia</td>
<td>41</td>
</tr>
<tr>
<td>2.6 The MIC classification of acute leukaemia</td>
<td>43</td>
</tr>
<tr>
<td>2.7 Immunological classification of ALL</td>
<td>43</td>
</tr>
<tr>
<td>2.8 Immunological markers in AML</td>
<td>44</td>
</tr>
<tr>
<td>2.9 Acute lymphoblastic leukaemia prognostic factors</td>
<td>47</td>
</tr>
<tr>
<td>2.10 Cell cycle relationships of major classes of drugs</td>
<td>54</td>
</tr>
<tr>
<td>3.1 Sources of antibodies (surface markers) for flow cytometry</td>
<td>92</td>
</tr>
<tr>
<td>3.2 Sources of antibodies (intracellular) for flow cytometry</td>
<td>93</td>
</tr>
<tr>
<td>3.3 Primer sequences and expected band sizes of the genes used in this study</td>
<td>93</td>
</tr>
<tr>
<td>3.4 Chemical reagents and company of purchase</td>
<td>94</td>
</tr>
<tr>
<td>3.5 Primers of genes and cell cycle specifications in PCR/multiplex</td>
<td>103</td>
</tr>
<tr>
<td>4.1 Breakdown of the total number of ALL cases collected from adult and Paediatric (Paed) wards according to FAB subtypes</td>
<td>108</td>
</tr>
<tr>
<td>4.2 Breakdown of the total number of AML cases collected from adult and Paediatric (Paed) wards according to FAB subtypes</td>
<td>108</td>
</tr>
<tr>
<td>4.3 Response rate of de novo ALL cases according to age and gender</td>
<td>110</td>
</tr>
<tr>
<td>4.4 Survival rate of de novo ALL cases according to age</td>
<td>110</td>
</tr>
<tr>
<td>4.5 Response rate of de novo AML cases according to age and gender</td>
<td>111</td>
</tr>
<tr>
<td>4.6 Survival rate of de novo AML cases according to gender</td>
<td>111</td>
</tr>
</tbody>
</table>
4.7 Median percentage of S-phase fraction and median optical density from MTT assays performed on ALL and AML samples

4.8 In vitro proliferation of acute leukaemia samples. Changes in phenotype, cell cycle profile and cytokine expression

4.9 Comparison between percentage phosphorylation of signal transduction proteins before and upon cell culture

5.1 Proliferative potential: significant findings

5.2 Correlation between CD117 with IL-1β, IL-18 and Bcl-2

5.3 Median intensity of Bcl-2 family members: comparison between survival groups

A.1 Adult patients diagnosed with ALL and AML; clinical data, subclassification and treatment outcome

A.2 Paediatric patients diagnosed with ALL and AML; clinical data, subclassification and treatment outcome

A.3 Peripheral blood samples from adult ALL and AML patients treated with chemotherapy drugs; treatment and day of collection

A.4 Treated samples of peripheral blood samples from paediatric ALL and AML patients; treatment and day of collection

A.5 Untreated ALL samples: Immunophenotype, cell cycle profile and growth potential of leukaemia cells from adult and paediatric patients: comparison between age groups

A.6 Untreated ALL samples: Immunophenotype, cell cycle profile and growth potential of leukaemia cells from adult and paediatric patients: comparison between good and poor survival groups

A.7 Untreated AML samples: Immunophenotype, cell cycle profile and growth potential of leukemia cells from adult and paediatric patients: comparison between good and poor response groups

A.8 Untreated AML samples: Immunophenotype, cell cycle profile and growth potential of leukemia cells from adult and paediatric patients: comparison between good and poor survival groups

A.9 Untreated ALL samples: Gene expression of cytokines, death receptor molecules and multidrug resistant genes in adult and paediatric patients: comparison between age groups

A.10 Untreated ALL samples: Gene expression of cytokines, death receptor
molecules and multidrug resistant genes in adult and paediatric patients: a comparison between survival groups

A.11 Untreated AML samples: Gene expression of growth factor/cytokines, death receptors and multidrug resistance genes in adult and paediatric patients: comparison between good and poor responders

A.12 Untreated AML samples: Gene expression of growth factor/cytokines, death receptors and multidrug resistance genes in adult and paediatric patients: comparison between good and poor survivals

A.13 Treated ALL and AML samples: Gene expression of growth factor/cytokines, death receptor molecules and multidrug resistant genes in cells of adult patients: comparison between responder and resistant cases

A.14 Untreated ALL samples: Protein expression of members of the Bcl-2 family: comparison between good and poor survival groups

A.15 Untreated AML samples: Protein expression of members of the Bcl-2 family: comparison between good and poor survival groups

A.16 Untreated AML samples: Protein expression of members of the Bcl-2 family in new AML and corresponding relapse/resistant cases

A.17 Untreated ALL and AML samples: Expression of phosphorylated mediators of signaling pathways

A.18 Untreated AML samples: Expression of phosphorylated mediators of signaling pathways: comparison between good survival and poor survival groups

A.19 Treated ALL and AML samples: Expression of phosphorylated proteins of signaling pathways
LIST OF FIGURES

Figure

2.1 Examples of growth factors acting at different stages of development and influencing cell proliferation, and the acquisition of the functional characteristics of specific mature cells (Testa and Dexter, 1999) 13

2.2 Similarities in signaling between a haemopoietic receptor tyrosine kinase and a haemopoietic cytokine receptor. The receptors for M-CSF and G-CSF serve as models (Corey and Anderson, 1999) 19

2.3 Survival signaling pathways. A schematic downstream effectors of the Jak/STAT, PI3K, and Ras/MAPK are shown. GF (growth factor), PDK1 (PI-dependent kinase 1) (Talapatra and Thompson, 2001) 19

2.4 Akt regulates survival through the phosphorylation of multiple substrates involved in the regulation of apoptosis. Akt has thus far been shown to block apoptosis through the regulation of the transcriptional activity of both Forkhead family members and NF-kappaB, and through phosphorylation and inactivation of the Bcl-2 homolog Bad and caspase-9. In addition, other targets for Akt, including telomerase and NOS, may play important roles in cellular survival (Datta et al., 1999) 23

2.5 NF-kappaB and target molecules. NF-kappaB is bound by IkappaB which prevents NF-kappaB activity. NF-kappaB target genes with antiapoptotic function include the IAP family, TRAF1 and TRAF2, thought to suppress caspase-8 activation, the prosurvival Bcl-2 homologs Bfl1/A1 and Bcl--XL, and nitrous oxide synthase-inducible genes. The apoptotic signaling of NF-kappaB may be due to the promoter activation of death receptors and ligands such as CD95, CD95L, TNF-alpha and the TRAIL receptor DR4 and DR5 (Herr and Debatin, 2001) 26

2.6 JNK and target molecules. Jnk signaling can be turned off by MAPK phosphatases. JNK activation results in phosphorylation of AP-1 transcription factor family members which bind to AP-1 binding sites in the promoters of multiple target genes. JNK apoptotic signaling occurs via c-Jun/AP-1 (leading to promoter induction of CD95L, TNF-alpha, and p53) or posttranscriptional proapoptotic processes (leading to cytochrome c release, stabilization of p53 protein, inactivation of Bcl-2, Bcl-XL and activation of c-myc) (Herr and Debatin, 2001) 26

2.7 Drug induced pathways leading to apoptosis. Drugs have a choice of many pathways that lead to cell death. Through lipid hydrolysis and DNA damage, drugs activate transcription factors such as c-Jun, p53 and NF-kappaB which regulate transcription of death ligands and death receptors leading to activation of the death machinery and apoptosis.
Drugs also act on the Bcl-2 family by activating pro-apoptotic members through inhibition of survival pathways and inhibiting pro-survival activities in the mitochondrial resulting in cytochrome c release, caspase stimulation and cell death (Sanchez-Prieto et al., 2000; Herr and Debatin, 2001; Laurent and Jaffrezou, 2001).

2.8 Structure and signaling from some tumour necrosis factor receptor (TNF) family members and their intracellular adaptor proteins. Homologous motifs that interact with each other are shown with the same patterns. Due to limited space, all possible interactions are not shown. Some pathways that are not established to date are indicated with question marks: see text for discussion (Magnusson and Vaux, 1999).

4.1 Age and sex distribution of ALL and AML de novo samples collected.

4.2 Flow cytometry staining on an acute myeloid leukaemia sample collected at diagnosis (220) and after treatment (220.treated). A, B and C explains the steps taken to determine percentage of positive cells.

4.3 Expression of A) early markers (CD34, CD7 and CD13) and B) late markers (CD11c, CD14 and CD16) in ALL and AML samples. Comparison between age groups in ALL samples, response (resp) (good vs poor) in AML samples and survival groups (ALL: DFS>12 vs DFS>12, AML: DFS>24 vs DFS <24). DFS=disease free survival. Number on bar= number of patients analyzed per group.

4.4 Cell cycle profile showing G0/G1 (M1), synthesis (M2), G2/M (M3) and sub-G0 (M4) peaks. Percentages were obtained from histogram statistics on CellQuest software.

4.5 Examples of a few cases of aneuploidy detected in acute leukaemia using flow cytometry.

4.6 Gene expression of CD117 and haemopoietic growth factors SCF (A), IL-1β, GM-CSF (B), IL-6, IL-10 ©, IL-18 and IFN-γ (D) in ALL and AML samples. Comparison between age groups in ALL samples, response (resp) (good vs poor) and survival groups (ALL: DFS>12 vs DFS>12, AML: DFS>24 vs DFS <24). Treated (tr) samples from good and poor response patients were also included. DFS=disease free survival. Number on bar= number of patients analyzed.

4.7 Multiplex PCR result showing expression of IL-1β, IL-18, TNFRI and TRID in ALL and AML samples.

4.8 Multiplex PCR showing expression of MRP2, IFN-γ, FasL, GM-CSF, MRP3, TNF-a, IL-6 and DR5 in cultured and newly diagnosed ALL and AML samples.

xxiv