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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Master of Science 

STRUCTURAL, ELASTIC AND OPTICAL PROPERTIES OF ZINC-
ALUMINO-BOROSILICATE DOPED GADOLINIUM OXIDE GLASS-

CERAMICS 

By 

NUR ATIKAH NAZIHAH BINTI ISMAIL 

Chairman   : Mohd Hafiz Mohd Zaid, PhD 
Faculty       : Science 

In recent years, researchers are developing a great interest towards the 
fabrication and synthesizing willemite (Zn2SiO4) glass-ceramics. However, 
intensity luminescence of willemite based glass ceramic doped with gadolinium 
oxide (Gd2O3) is less reported. Hence, this study is focusing on fabricate and 
synthesized willemite based glass-ceramics using Gd2O3 as dopant. The Gd2O3 
doped zinc-alumino-borosilicate (ZnO-Al2O3-B2O3-SiO2) glass system were 
synthesized via the melt-quenching approach using composition (60–x)ZnO–
5Al2O3–15B2O3–20SiO2:x(Gd2O3)(x = 0, 0.5, 1.0, 2.0 and 3.0 mol%) and 
willemite-based glass-ceramics were obtained from these precursor glasses 
through a controlled crystallization process. 

According to all analysis, the best willemite based glass-ceramic has been 
selected from the glass system when doped with 3 mol% of Gd2O3 and 
temperature at 800 °C. XRD and FESEM methods were also used to analyze 
the structural properties of precursor glass, the formation of willemite crystal 
phase, shape, and size as crystallization temperatures increased. The average 
approximated crystallite size determined by XRD is in the 50-70 nm range. The 
structural properties of glass and glass-ceramics were assessed using FTIR 
spectroscopy. The infrared spectra studies reveal the existence of SiO2 and ZnO4 
vibrational groups indicating the establishment of the willemite crystal phase. As 
for elastic analysis, the values for experimental elastic moduli were obtained from 
ultrasonic velocities measurement by using the non-destructive ultrasonic 
technique. The longitudinal and shear velocities vary from 4798 to 6976 m/s and 
2991 to 3082 m/s, respectively. The experimental elastic moduli (longitudinal 
modulus (L), shear modulus (G), bulk modulus (K) and Young’s modulus (E)) 
increases from 94.60 to 202.98 GPa, 36.77 to 39.61 GPa, 45.56 to 150.17 GPa 
and 86.94 to 109.22 GPa, respectively. In addition, the optical band willemite 
based glass-ceramics doped with Gd2O3 fluctuate from 3.64 to 3.38 eV due to 
structural rearrangement of network. The emission spectra of gadolinium ions 
show the strong emission peak at wavelengths of 425, 447, 462, 485, and 530 
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nm. The willemite phase shows prominent green emission spectra located at 530 
nm. These emission spectra produce when the dopant content and heat 
treatment temperatures increase, the luminescence performance of the glass-
ceramics also improves. The incorporation of gadolinium ions into the willemite 
crystals as heat treatment temperatures increase affect the intensity of the 
emission. The structural, elastic and optical properties of willemite glass-
ceramics enhanced with the addition of Gd2O3 as dopant. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Master Sains 

SIFAT STRUKTUR, ELASTIK DAN OPTIK ZINK-ALUMINA-BOROSILIKA 
DOP GADOLINIUM OKSIDA KACA-SERAMIK 

Oleh 

NUR ATIKAH NAZIHAH BINTI ISMAIL 

Pengerusi   : Mohd Hafiz Mohd Zaid, PhD 
Fakulti         : Sains 

Beberapa tahun kebelakangan ini, penghasilan dan kajian terhadap willemite 
(Zn2SiO4) berasaskan kaca-seramik telah berjaya menarik minat dan tumpuan 
ramai penyelidik. Walau bagaimanapun, keamatan pendarkilau wilemit 
berasaskan kaca-seramik didopkan dengan gadolinium oksida Gd2O3 kurang 
dilaporkan. Oleh itu, kajian ini menumpukan untuk fabrikasi dan penghasilan 
wilemit berasaskan kaca-seramik dengan menggunakan Gd2O3 sebagai bahan 
pengedop. Sistem kaca zink-alumina-borosilika (ZnO-Al2O3-B2O3-SiO2) 
didopkan dengan Gd2O3 telah dihasilkan melalui kaedah sepuh lindap 
menggunakan komposisi (60–x)ZnO–5Al2O3–15B2O3–20SiO2:x(Gd2O3)(x = 0, 
0.5, 1.0, 2.0 dan 3.0 mol%) dan wilemit berasaskan kaca-seramik diperolehi dari 
bahan pemula kaca melalui proses penghabluran yang dikawal. 

Menurut semua analisis, wilemit berasaskan kaca-seramik terbaik telah dipilih 
daripada sistem kaca apabila didopkan dengan 3 mol% Gd2O3 dan bersuhu pada 
800 °C. Kaedah XRD dan FESEM digunakan untuk menganalisis sifat struktur 
bahan pemula kaca, penghasilan fasa hablur wilemit, bentuk dan saiz apabila 
suhu proses penghabluran meningkat. Purata anggaran saiz hablur halus 
ditentukan menggunakan XRD adalah dalam julat 50-70 nm. Sifat struktur kaca 
dan kaca-seramik dinilai menggunakan FTIR spektroskopi. Kajian spektrum 
inframerah mendedahkan kewujudan kumpulan getaran SiO2 dan ZnO4 
menunjukkan pertumbuhan fasa hablur wilemit. Manakala untuk analisis elastik, 
nilai uji kajian modulus kenyal diperoleh daripada pengukuran halaju gelombang 
yang menggunakan teknik tak musnah ultrasonik. Halaju membujur dan ricih 
berubah dari 4798 ke 6976 m/s dan 2991 ke 3082 m/s masing-masing. Uji kajian 
modulus kenyal (modulus membujur (L), modulus ricih (G), modulus pukal (K) 
and modulus Young (E)) meningkat dari 94.60 ke 202.98 GPa, 36.77 ke 39.61 
GPa, 45.56 ke 150.17 GPa dan 86.94 ke 109.22 GPa masing-masing. 
Tambahan pula, tenaga jurang jalur kaca dan kaca-seramik berkurang dari 3.64 
ke 3.38 eV oleh kerana penyusunan semula struktur rangkain. Spektrum 
pancaran gadolinium ion menunjukkan puncak pancaran kuat di panjang 
gelombang 425, 447, 462, 485 dan 530 nm. Fasa wilemit menunjukkan pancaran 
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utama berwarna hijau dilokasi 530 nm. Spektrum pancaran tersebut dihasilkan 
apabila kandungan bahan pengedop dan suhu rawatan haba meningkat, 
prestasi pendarkilau kaca-seramik juga bertambah baik. Penerapan gadolinium 
ion ke dalam hablur wilemit apabila suhu rawatan haba meningkat 
mempengaruhi keamatan pancaran. Sifat struktur, elastik dan optik willemite 
berasaskan kaca-seramik dipertingkatkan dengan penambahan Gd2O3 sebagai 
bahan pengedop. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
  

1.1 Research background 
 

In recent years, researchers are developing a great interest toward transparent 
glass and glass-ceramics due to availability as attractive materials in optical 
devices. Transparent glass-ceramics have great shaping versatility of glasses 
and the optical efficiency of crystals (Yaowakulpattana et al., 2015). 
Furthermore, due to the outstanding optical properties for neon discharge lamps, 
fluorescent lamps, color TVs, light emitting diodes, oscilloscopes, and other 
displays and lighting devices, the manufacturing and analysis of glass and glass-
ceramics based phosphors has been explored (Bernardo et al., 2008; Takesue 
et al., 2009; Sahu et al., 2016). 
 
 
Transition metal and rare earth ions doped glass and glass ceramics are 
interesting optical host materials because they boost the optical properties of the 
system by exhibiting high transparency from the ultraviolet and infrared regions, 
a low refractive index, thermal stability, and a high likelihood of assimilating a 
large number of dopant ions (Hou et al., 2014). Several studies on synthesize of 
willemite glass-ceramics doped with europium ions and samarium ions were 
reported using sintering process (Tarafder et al., 2013; Tarafder et al., 2014). 
From the research study, it was observed the rare earth added improving the 
optical quality of the material as the luminescence of europium ions and 
samarium ions showing emission transitions from 5D0 → 7F4 and 4G5/2 → 6H11/2 
energy state. According to the result, it was discovered red emission spectra 
based on absorption band around 601 and 615 nm. Recently, Effendy and 
coworkers synthesize and studies the optical performance of europium ions 
doped willemite glass-ceramic (Effendy et al., 2019). From the results, they 
observed strong green emission peak around 557 nm with three different 
transition states of europium ions photon excitation. To the best of our 
knowledge, no reports on the luminescence performance of gadolinium ions 
doped willemite glass-ceramic have been published. We discovered that among 
numerous rare earth ions, gadolinium ions have emerged as a superior 
candidate for optical host materials because it emits intense green fluorescence 
in the visible range. Furthermore, previous work also states that the gadolinium 
ions doped materials attract greater interest in lighting industry for various 
applications (Abo-Naf et al., 2015). 
 
 
Zinc silicate (Zn2SiO4), known colloquially as willemite, a zinc ore mineral with a 
phenakite structure, is one of the most common zinc ore minerals. Willemite 
persists in multiple polymorphs, crystalizing in various space groups (Akimoto, 
1967). Willemite powder is produced using a variety of standard processes, 
including solid-state diffusion, pulsed laser deposition (PLD), sol-gel forced 
precipitation, organometallic complex route, dry reaction, spray-pyrolysis, 
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combustion methods, polymer aided and hydrothermal procedures (Su et al., 
1996; Bhatkar, 2007; Sharma & Bhatti, 2011; Van & Klement, 2016). However, 
the most preferred technique to obtain willemite is melt-quenching method 
because it is simple, homogeneous and easy shapes formation (Abdel-hameed 
& Margha, 2020). Additionally, the excellent properties of willemite, such as 
chemical stability, transparency in the visible range, and ultraviolet transparency, 
will contribute to enhance the optical characteristics that meet the criteria for 
phosphor materials in a variety of applications, such as televisions, fluorescent 
lamps, and other lighting or display devices (Brunold et al., 1996; Chakradhar et 
al., 2004; Wan et al., 2006; Yan & Huang, 2007; Takesue et al., 2009;). 
 

In the proposed research, a series of gadolinium ions doped zinc-alumino-
borosilicate (ZABS) glasses are made using a standard melt-quenching 
approach. The gadolinium ions doped willemite glass-ceramics are obtained by 
a controlled heat treatment procedure from these precursor glasses. 
Characterization of the precursor glass and willemite based glass-ceramics in 
terms of structural, elastic, and optical performance were conducted to evaluate 
the influence of heat treatment temperature and Gd2O3 doping. X-ray diffraction 
(XRD) and Fourier transform infrared (FTIR) were employed to study the 
structural characteristics of precursor glass and gadolinium ions doped willemite 
glass ceramics at varying heat treatment temperatures, while ultrasonic velocity 
was used to study the elastic properties. The optical properties were studied 
using UV-Visible (UV-Vis) and photoluminescence (PL) spectroscopy. Thus, the 
focus of this research is to fabricate and characterize gadolinium ions doped 
willemite glass-ceramics in a zinc-alumino-borosilicate (ZnO-Al2O3-B2O3-SiO2) 
glass system. 
 

1.2 Problem statement 
 

Previously, willemite glass-ceramics materials containing transition metal and 
rare earth ions have been encounter greater emphasis. Rare-earth doped 
willemite glass-ceramics are piquing the scrutiny of scientists in laser cooling, 
solid-state lasers, optical devices for three-dimensional color displays, optical 
communications, and upconverting optical components (Tick et al., 1995; Sohn 
et al., 1999; Suzuki & Ohishi, 2004; Campbell et al., 2011; Nemova & Kashyap, 
2012). Given the fact that willemite glass-ceramics is significant with high 
chemical and physical stability and high luminescence efficiency (El Ghoul et al, 
2012c). Generally, willemite glass-ceramics as luminescent materials produce 
emission of light due to absorption of energy. Impurities and defects in crystals 
obtained in willemite glass-ceramics causing luminescence instability due to low 
energy absorption rates. In order to obtain high intensity luminescence, willemite 
glass-ceramics have high possibility of being a multi-color phosphor by doped 
with various rare earth ions producing emission ranging from ultraviolet to 
infrared spectral range (El Ghoul, 2018). Several reports on luminescence 
performance of willemite glass-ceramics doped with different rare earth ions 
such as manganese ions for green emission, gallium ions for violet emission, 
cerium ions for blue emission and europium ions for red emission color (Lu & 
Yun, 2013; El Ghoul, 2018; Nuraidayani et al., 2019). However, to the best of our 
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knowledge, no reports on the luminescence performance of gadolinium ions 
doped willemite glass-ceramic have been published. We discovered that among 
numerous rare earth ions, gadolinium ions have emerged as a superior 
candidate for optical host materials because it emits intense green fluorescence 
in the visible range. Besides, Gd3+ increase energy transfer efficiency towards 
Ce3+, Tb3+ and Mn3+ luminescent center that act as a sensitizer in scintillator or 
phosphor materials (Martino et al., 2008). Furthermore, previous work also states 
that the gadolinium ions doped materials attract greater interest in lighting 
industry for various applications (Abo-Naf et al., 2015). 
 

Usually, band-gap energy of willemite glass is related with electronic band 
structure that depending on the temperature (Sessolo & Bolink, 2011). Energy 
bandgap tend to decreased with progression of temperatures leading to increase 
in atomic vibrations and resulting to widen average interatomic spacing (Alibe et 
al., 2021). Generally, low green emission color and high optical band gap of zinc 
silicate glass were overcome by heat treatment process to produce multiple 
emissions with wide optical band gap in willemite glass-ceramics. To address 
this issue, ZnO-Al2O3-B2O3-SiO2 (ZABS) glass systems doped with Gd2O3 are 
synthesized followed by controlled heat treatment process to study their 
influence on the properties of willemite glass ceramics. 
 

In the proposed research, a series of gadonium doped zinc aluminium 
borosilicate (ZABS) glasses are made using a standard melt-quenching 
approach. The Gd3+-doped willemite glass-ceramics are obtained by a controlled 
heat treatment procedure from these precursor glasses. Characterization of the 
precursor glass and willemite based glass-ceramics in terms of structural, elastic, 
and optical performance were conducted to evaluate the influence of heat 
treatment temperature and Gd2O3 doping. X-ray diffraction (XRD) and Fourier 
transform infrared (FTIR) were employed to study the structural characteristics 
of precursor glass and Gd3+-doped willemite glass ceramics at varying heat 
treatment temperatures, while ultrasonic velocity was used to study the elastic 
properties. The optical properties were studied using UV-Visible (UV-Vis) and 
photoluminescence (PL) spectroscopy. Thus, the focus of this research is to 
fabricate and characterize Gd3+-doped willemite glass-ceramics in a ZnO-Al2O3-
B2O3-SiO2 glass system. 
 

1.3 Objectives of the study 
 

The primary goal of this research is to build and synthesize willemite-based 
glass-ceramics doped with gadolinium oxide. This project entails the 
identification of glass with various compositions, the melt-quenching method, a 
variety of heat treatment processes, the advancement of the doping process and 
fundamental studies of the crystallization process. 
 

1. To synthesize the Gd3+-doped willemite glass-ceramics derived 
from ZnO-Al2O3-B2O3-SiO2 glass system. 
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2. To study the effect Gd2O3 doping on structural, elastic and 
optical properties of precursor glass and willemite glass-
ceramics. 

3. To analyze the influence of various heat treatment temperatures 
on structural, elastic and optical properties of precursor glass, 
willemite based glass-ceramics and Gd3+-doped willemite glass-
ceramics. 

 

1.4 Scopes of the study 
 

The study's scopes are as follows in order to achieve the study's goal: 
 

1) A series of precursor glass based on stoichiometric equation of (60-
x)ZnO-5Al2O3-15B2O3-20SiO2-x(Gd2O3) where x = 0, 0.5, 1.0, 2.0 and 
3.0 mol% has been prepared using ZnO, Al2O3, B2O3, SiO2 and Gd2O3 
powder by simple melt-quenching technique. 

2) The glass transition temperature (Tg) and glass crystallization 
temperature (Tc) have been measured using DSC spectroscopy. 

3) Willemite based glass-ceramics has been derived from the precursor 
ZnO-Al2O3-B2O3-SiO2 (ZABS) glass system by a controlled 
crystallization process. 

4) The structural, elastic and optical properties of precursor ZABS glass, 
willemite glass-ceramics and Gd3+-doped willemite glass ceramics has 
been analyzed using Archimedes method, XRD, FTIR, FESEM, 
ultrasonic velocity, UV-Vis and PL spectroscopy. 

 

1.5 Hypothesis 
 

Hypothesis of the study are related with gadolinium ions that improving the 
properties of network. Gadolinium ions has many strong absorption bands that 
emit one of strong green fluorescence and thus, improving the optical properties 
of glass and glass-ceramics. Therefore, incorporation of gadolinium ions in ZABS 
glass systems will improve the optical properties of glass and willemite glass-
ceramics. 
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1.6 Importance of the study 
 
 
Nowadays, due to excellent luminous materials, many glass systems have a 
wide range of applications in a variety of sectors. To optimize the structural, 
elastic, and optical characteristics of transparent glass systems and glass-
ceramics, transition metal (TM) and rare earth (RE) ions are doped into the 
systems. A vast amount of research is focusing on the production and 
synthesizing of glass and glass-ceramics based phosphor doped with gadolinium 
ions due to possible applications in lighting industry. 
 
 
Willemite is a prominent and frequently used phosphor in optic, optoelectronic, 
and lighting technologies. All of the atoms are in the same general location and 
are made up of a tetrahedral framework. As a result, willemite is recognized as 
a good host matrix for several TM and RE ions in order to achieve high efficiency 
luminescence (Tarafder et al., 2014). 
 
 
There have been few recent publications on the structural, elastic, and optical 
characteristics of Gd3+-doped willemite glass-ceramics generated from precursor 
glass. The current study reports on the production of a precursor ZnO-Al2O3-
B2O3-SiO2 glass system using a traditional melt-quenching approach and the 
derived willemite-based glass-ceramics using a control crystallization process of 
precursor glasses. Thus, the willemite glass-ceramics has been doped with 
gadolinium oxide (Gd2O3) to increase the properties and quality of the final 
products. 
 

1.7 Outline of thesis 
 

The thesis consists of five chapters and the arrangement is structured as follows. 
Chapter 1 gives an introduction of research background that consists of willemite 
glass ceramics and Gd3+-doped willemite glass-ceramics, the problem 
statements, the objectives, the scopes and also the importance of this study. 
Chapter 2 discussed glass theory, glass-ceramics, and earlier studies, both past 
and present, that have been carried out by other researchers as a guideline and 
citations. The list of substances, apparatus, method to prepare the samples and 
characterization of the precursor glass, willemite glass-ceramics and willemite 
glass-ceramics doped gadolinium oxide are elaborated in Chapter 3. Chapter 4 
is the most significant part as the result concerning the effect of different 
percentage Gd2O3 doping content and progression of heat treatment 
temperatures towards the structural, elastic and optical properties of precursor 
glass ZnO-Al2O3-B2O3-SiO2 and Gd3+-doped willemite glass-ceramics are 
analyzed and discussed in Chapter 4. Lastly, the conclusion and future work 
suggestions are stated in Chapter 5. 
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