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Low energy absorption rates cause luminescence instability in magnesium
borotellurite glass. Hence, a research was carried out to report the physical,
structural, optical and elastic properties of new tellurite glass system with
nominal composition of (60-x)TeO2-30B203-10MgO- x(Sm20s3), where 0.0 < x >
3.0 mol% and (58-y)Te02-30B203-10MgO-2Sm20s3- yAg NPs, where 0.0 <y >
2.0 mol% synthesized via fast-cooling melt quenching method. To achieve the
goals, the glasses are analyzed using densitometer, X-Ray Diffraction (XRD),
Transmission Electron Microscopy (TEM), UV-Visible Spectroscopy (UV-Vis),
Photoluminescence (PL), CIE Chromaticity analysis, ultrasonic testing, and
Makishima-Mackenzie modelling. The density of Sm3 doped Magnesium
Borotellurite (MBT) glass increased from 4.105 g/cm3 to 4.403 g/cm?® with
increment of Sm3* content meanwhile for Ag co-doped samarium MBT glass,
the density is decreased from 4.162 to 4.310 g/cm? with incorporation of Ag NPs.
No sharp peak appeared in the XRD region proved the amorphous state in both
series of glasses. In TEM, the diameter size of Ag NPs is increasing from
40.94 nm to 367.70 nm with the rise of Ag NPs content from 0.1 mol% to
2.0 mol% in glass matrix. The optical absorption spectra were characterized to
determine the energy band gap, Urbach energy, and refractive index of the
glasses. The optical absorption spectra revealed eleven energy transitions
bands centered at Gz, *l11/2, *Far2, *Gsy2, 8F 1112, 8F 12, 8F 712, 6F 52, 8F 312, 8H1s/2, 6F1/2
from ground state of 6Hs2. The optical energy band gap of the Sm3* doped MBT
glass system is manifested to be in the range of 2.560 eV to 2.820 eV for indirect
transitions and 2.830 eV to 2.958 eV for direct transitions. The refractive index
lied in the range between 2.447 to 2.526 while the Urbach energy is measured
to be in range of 0.299 to 0.345 eV. For Ag co-doped samarium MBT glass, the
indirect transitions have an optical band gap of 2.618 to 2.800 eV, while direct
transitions have an optical band gap of 2.839 to 2.897 eV. The refractive index
is ranging between 2.453-2.508 while the Urbach energy, AE, is in the range of



0.338-0.391 eV. Four strong emission peaks occurred in photoluminescence for
both glass series, with the highest red emission peak at 600 nm. Colour
chromaticity analysis for both series presented colour coordinates lied down in
the red-orange region. In elastic properties, the longitudinal, shear, Young’s and
Bulk modulus are increased from 60.57-73.24 GPa, 20.39-24.93 GPa, 50.83-
61.92 GPa and 33.37-40.00 GPa, respectively in Sm3* doped MBT glass
system. Ag co-doped Samarium MBT glass showed a fluctuated trend in which
the longitudinal, shear, Young’s and Bulk modulus lied in the range 59.17-70.84
GPa, 20.70-24.21 GPa, 50.97-60.02 GPa and 31.57-41.77 GPa, respectively.
Elastic properties for Makishima Mackenzie model of Sm doped MBT glass is
increased from 44.58-48.55 GPa (Bulk moduli), 70.15-72.73GPa (Young’s
moduli) and 28.34-29.08 GPa (Shear moduli). Makishima Mackenzie model for
Ag co-doped samarium MBT glass analyzed a decreasing trend of elastic moduli
in which Bulk moduli (28.83-27.29 GPa), Young’'s moduli (47.21-42.37 GPa),
Shear modulus (28.83-27.29 GPa).
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Kadar penyerapan tenaga yang rendah menyebabkan ketidakstabilan
pendarkilau dalam kaca borotellurit magnesium. Oleh itu, sebuah penyelidikan
dijalankan untuk menghuraikan sifat-sifat fizikal, struktur, optik dan kekenyalan
sistem kaca tellurit baharu dengan komposisi hominal (60-x)TeO2-30B20s-
10MgO- x(Sm203), dimana 0.0 < x = 3.0 mol% dan (58-y)Te02-30B203-10MgO-
2Sm20s3- yAg NPs dimana 0.0 £y = 2.0 mol% disintesis melalui kaedah lindapan
leburan. Untuk mencapai matlamat ini, kaca dianalisis menggunakan
densitometer, Belauan Sinar X (XRD), Mikroskopi Elektron Penghantaran
(TEM), Spektroskopi UV-Visible (UV-Vis), Fotopendarcahayaan (PL), analisis
Kekromaan CIE, ujian ultrasonik dan model Makishima-Mackenzie. Ketumpatan
kaca Magnesium Borotelurit terdop Sm* (MBT) meningkat dari 4.105 g/cm3
kepada 4.403 g/cm? dengan pertambahan kandungan Sm3* manakala untuk
kaca samarium MBT terdop bersama Ag, ketumpatan berkurangan daripada
4.162 kepada 4.310 g/cm?3 dengan pencampuran Ag NPs. Tiada puncak tirus
yang muncul di kawasan XRD membuktikan keadaan amorf dalam kedua-dua
siri kaca. Dalam TEM, saiz diameter Ag NPs meningkat daripada 40.94 nm
kepada 367.70 nm dengan peningkatan kandungan Ag NPs daripada 0.1 mol%
kepada 2.0 mol% dalam matriks kaca. Spektrum penyerapan optik telah di ukur
untuk menentukan jurang jalur tenaga, tenaga Urbach, dan indeks biasan kaca.
Spektrum penyerapan optik mendedahkan sebelas jalur peralihan tenaga
berpusat pada “Gor, *l112, *F32, *Gsp2, 6F1112, ®Fer2, 8F712, ®Fs/2, 8Fs3/2, SHuis/2, 6F12
daripada asas bawah ®Hsp.. Jurang jalur tenaga optik sistem kaca MBT terdop
Sm3* ditunjukkan dalam julat 2.560 eV hingga 2.820 eV untuk peralihan tidak
langsung dan 2.830 eV hingga 2.958 eV untuk peralihan terus. Indeks biasan
terletak dalam julat antara 2.447 hingga 2.526 manakala tenaga Urbach diukur
berada dalam julat 0.299 hingga 0.345 eV. Untuk kaca samarium MBT terdop
bersama Ag, jurang jalur optik peralihan tidak langsung ialah 2.618 hingga 2.800
eV, manakala peralihan terus mempunyai jurang jalur optik 2.839 hingga 2.897



eV. Indeks biasan adalah antara 2.453 — 2.508 manakala tenaga Urbach, AE,
berada dalam julat 0.338-0.391 eV. Empat puncak sinaran keluar yang kuat
berlaku dalam fotopendarcahayaan untuk kedua-dua siri kaca, dengan puncak
pelepasan merah tertinggi pada 600 nm. Analisis kekromatan warna untuk
kedua-dua siri menunjukkan koordinat warna terletak di kawasan merah-oren.
Dalam sifat kekenyalan, modulus membujur, ricih, Young dan Bulk meningkat
masing-masing daripada 60.57-73.24 GPa, 20.39-24.93 GPa, 50.83-61.92 GPa
and 33.37-40.00 GPa dalam system kaca MBT terdop Sm3*. Kaca Samarium
MBT yang didop bersama Ag menunjukkan aliran turun naik di mana modulus
membujur, ricih, Young dan Bulk masing-masing terletak dalam julat 59.17-
70.84 GPa, 20.70-24.21 GPa, 50.97-60.02 GPa and 31.57-41.77 GPa. Sifat
kekenyalan untuk model Makishima Mackenzie bagi kaca MBT terdop Sm
meningkat daripada 44.58-48.55 GPa (modul Bulk), 70.15-72.73GPa (modul
Young) dan 28.34-29.08 GPa (modul ricih). Model Makishima Mackenzie
menganalisa satu aliran penurunan untuk modul-modul kekenyalan kaca
samarium MBT terdop Ag di mana modul Bulk (28.83-27.29 GPa), modul Young
(47.21-42.37 GPa), modul ricih (28.83-27.29 GPa).
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CHAPTER 1

INTRODUCTION

1.1 Research background

The glass industry has been one of the most economic industries nowadays.
Glass is a common material that people encounter and use on a daily basis. The
most frequent ancient applications of glass materials are drinking vessels,
medical implants, windows, spectacles, and storage containers (Musgraves et
al., 2019). Glasses have been known for their good properties and wide potential
applications. Even so, many more extensive studies and detailed information on
the various properties of glass materials have been done. Glass is a very
transparent material and is amorphous (Brinker & Scherer, 2013).

Researchers have focussed on the glass industry owing to the overwhelming
need for glass applications such as optics, photonics and solid-state laser (Qi et
al.,, 2014; Halimah et al., 2019; Hossain et al., 2021). This intrigued people to
figure out more about physical, structural, optical, elastic, or even thermal
properties (Mondal et al., 2020; Shen et al., 2021). The contributions of glass
are not limited to personal use only but can serve as worldwide application such
as medical devices, construction materials, radiation protection materials, and
telecommunication systems. Glass with ability to adapt with very extreme
conditions and corrosive liquid would be a great advantage to form a superior
glass (Halimah, 2005).

The types of glass can be fabricated through the variation of chemical
composition and glass melting procedures. Glass can be classified into borate,
silicate, phosphate, germinate, and tellurite. As compared to other glasses,
tellurite glass is promising to have a captivating ability in physical and optical
properties (Azlan et al., 2019). Tellurite-based glass is a new-fangled glass
system and has been notorious among the glass industry. Borotellurite glass
system is an extensive study apart from the tellurite glass. Borotellurite glass is
avowed for its ability to be a saturable absorber, fibre glass, amplifiers, photonic
and optoelectronic applications (Halimah, et al., 2010). Some would explain that
borotellurite glass has the more extraordinary ability in lasing, sensors
telecommunication, and display devices (Mahraz et al., 2013).

To date, many have recognized borotellurite glass for its potential and ability in
the glass industry. In virtue of outstanding properties combination such as low
photon energy, high refractive index, low acoustic losses by tellurium oxides
(Leena, 2013) and high melting point, low preparation cost by borate oxides
(Hazlin et al., 2017), a brighter discovery of future glass has been governed.



Plus, the combination of these two elements contributed to a non-hygroscopic
material as the final product which helps more in manufacturing the glass. The
linkage network of the borotellurite glass is more stable due to the number of
atoms increased, and the bridging oxygen (BO) bond created (Hashim et al.,
2013).

Previous research showed a tremendous improvement of glass when doping
with transition metals, alkaline earth metal, and alkali metal (Salman et al, 2007;
Babu et al, 2009; Aziz et al, 2018). These network modifiers played their parts
respectively in the glass network. Some usually used zinc oxide (ZnO) and
magnesium oxide (MgO). Both MgO and ZnO can act as stabilizers and lower
the rate of crystallization, which helps much in the glass industry (Ahmad et al.,
2014). Besides, lead oxide (PbO) insertion is also reported to provide a good
accomplishment by enhancing thermal stability (Iskandar et al., 2012).

Nowadays, attention has been focused on rare earth ions (REI) doping in glass
networks to enhance glass performance. REI characterizations are intensively
experimented due to their benefits in manufacturing glasses (Azlan et al., 2016,
Azlan et al., 2017; Halimah, et al., 2017). An excellent result was established by
a previous study on REI doping in glass systems, such as increased stiffness by
creating more NBO (Aziz et al., 2017a). Trivalent samarium ion, Sm3*, as
dopants in the glass systems assisted in generating intense emission, hence
able to produce luminescence materials. Besides, the ability of Sm3* to develop
a high refractive index tends to fabricate an optical switching device (Mondal et
al., 2020).

On top of that, introducing metallic nanoparticles has also become a trend today.
Nanoparticles have had a big impact on the performance of the glasses. Metallic
nanoparticles such as silver and gold are the most being used. This can help
improve the bonding and structural characteristic of glass hosts (Yusoff & Sahar,
2015a). The addition of silver oxide (Ag20) can intensify the rigidity of glass
samples by reconstructing the atom arrangement in glass matrix (Halimabh,
2010). Besides, luminescence properties of glass are enhanced with
incorporation of Ag NPs. This is attributed by strong local electric field around
NPs which led radiative transition probability of energy level of REI to increment
(Meng et al, 2020; Yun et al., 2021).

In this study, two series of glass with composition of (60-x)Te02-30B203-10MgO-
x(Sm203), where 0.0 < x = 3.0 mol% and (58-y)TeO2-30B203-10MgO-2Sm20s-
yAg, where 0.0 < y > 2.0 mol% are prepared by using melt quenching method.
The precursor of the glass encountered weighing, mixing, grinding, melting, and
annealing process to fabricate a glass structure. After that, the glass samples
underwent few characterizations such as density measurement, molar volume,
X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), UV-Visible
spectroscopy (UV-Vis), Photoluminescence (PL) spectroscopy, colour



chromaticity, and ultrasonic testing in corresponding to probe the physical,
structural, optical and elastic properties of the glasses.

1.2 Problem statement

Over the years, it can be seen the glass industry has developed tremendously.
Magnesium borotellurite glass diverted the attention of researchers to dig into
the topics deeper. Glass doped with transition metal and REI are intrigued many
researchers to have a close-up on theirimprovements as well (Babu et al., 2009;
Aziz et al.,, 2018). Currently, researchers are focusing on developing an
exemplary process for fabricating glass as well as improving its performance.
Another alternative, such as the Sol-gel process, would be far more expensive
and challenging to implement. As a result, to overcome this issue, magnesium
borotellurite glass was prepared using the melt quenching method, which is very
practical, effortless to do, and saves time.

Tellurium oxide is believed to be unable to form glass by itself. Incorporating
heavy transition metal oxide and alkaline earth into glass matrices is a current
trend due to the benefits far outweigh its drawbacks (Rajendran et al., 2003).
Magnesium oxide (MgO) and boron trioxide, B2Os can serve as network
modifiers due to its ability to lower the rate of crystallization and enhance the
stability of glass (Salman et al., 2007). Nonetheless, luminescence instability
induced by low energy absorption rates has hindered the utilisation of
magnesium borotellurite (MBT) glass. Hence, insertion of rare earth ions (REI)
into the host glasses would be effective way to overcome this problem.

Rare earth ion (REI)-doped glasses have developed as active media for a wide
range of photonic applications, including solid-state lasers, optical fibers,
waveguides, and optical amplifiers ( Jackson, 2003; Biju et al., 2004). Trivalent
REI-doped glasses have gained interest in fabricating visible and infrared optical
devices due to their efficient luminescence properties (Dantas et al., 2002).
Initially, Sm3* ions were added to glass to produce a prominent orange-red
colour or unique optical properties to manufacture lasers for specific applications
(Lim et al., 2013). Due to its lowest emission level, *Gs;2 has a better quantum
efficiency and distinct quenching pathways, Sm3*ion is considered suitable to
probe energy transfer processes (Carnall et al., 1968).

Silver NPs embedded in zinc-tellurite glass exhibit surface enhanced Raman
scattering and Plasmon enhanced Er3* fluorescence. However, less exposure of
nanoparticles as doping agent to enhance glass system is detected. The large
local electric field generated by the silver NPs was found to be responsible for a
significant increase in Raman and photoluminescence intensities (Amjad et al.,
2013; Meng et al., 2020). Moreover, elastic properties of Makishima Mackenzie
model for both samarium and silver nanoparticles doped magnesium
borotellurite glass is less reported.



For all that reasons, a comprehensive study of the samarium REI doped
magnesium borotellurite glass incorporating silver nanoparticles has been
investigated to measure all the potentials.

1.3 Research objective

The main objective of this study is to synthesis magnesium borotellurite glass
doping with Sm3* and co-doped with silver (Ag) nanoparticles. This study
includes the election of compositions, chemicals used, melt-quenching process,
annealing, and doping process to fabricate a suitable glass. This study was
carried out to achieve few objectives as in the following:

1.

To study the influence of samarium ions doping on the physical,
structural, optical, and elastic properties of the magnesium
borotellurite glasses.

To study the effect of silver nanoparticles as co-doping on the
physical, structural, optical, and elastic properties of the samarium
magnesium borotellurite glasses.

To evaluate the elastic properties of samarium co-doped silver
nanoparticles magnesium borotellurite glass using Makishima
Mackenzie model.

1.4 Scope of the study

To achieve the objectives of the study, the scopes of the study are as follows:

1.

Two series of glass with nominal composition of (60-x)TeO:-
30B203-10MgO- x(Sm203), where 0.0 < x = 3.0 mol% and (58-
y)Te02-30B203-10MgO-2(Sm203)-yAg, where 0.0 <y > 2.0 mol%
has been prepared using melt quenching method.

The physical, structural, optical and elastic properties of samarium
doped magnesium borotellurite glass incorporated with silver
nanoparticles have been analyzed using densitometer, X-Ray
Diffraction, Transmission Electron Microscopy, UV-Visible
spectroscopy, Photoluminescence spectroscopy, Colour
chromaticity analysis and Ultrasonic testing.

The experimental data of the elastic moduli for investigating glasses
were compared with theoretical values from Makishima-Mackenzie
Model.

TEM analysis was carried out to determine the occurrence and size
of nanoparticles in glass system.



15 Significant of the study

Compared to silicate, borate, and phosphate glass, tellurite glass is dominated
in high electronic polarizability denoted by strong lone pair in the valence shell
and high Te** ions polarizability (Ersundu & Ersundu, 2016). Moreover, high
transparency and high refractive index would make tellurite the best candidate
for the host glass (Pereira et al., 2016). The incorporation of alkaline earth or
heavy metal oxide in tellurite glass has greatly promises a brighter future for
glass. It is believed that magnesium oxide can lessen the crystallization rate and
raise the stiffness of the glass (Salman et al., 2007).

REI doped tellurite glass are getting high interest from many aspects due to
comprehensive coverage in applications. RElI doped materials could be
industrialized in infrared optical devices, visible optical devices, and
telecommunication systems (Devi et al., 2016). Silver (Ag) nanoparticles’
insertion into glass matrix could enhance the luminescence properties of glass
by its strong local field (Xu et al., 2004; Yun et al., 2021).

To the best of our knowledge, the reports on physical, structural, optical and
elastic properties of samarium doped magnesium borotellurite glass are
significantly less. In the present research, the preparation of samarium doped
magnesium borotellurite glass incorporated with silver nanoparticles by
conventional melt-quenching is reported. Subsequently, the incorporation of
trivalent Sm3* and silver nanoparticles (Ag) is done to increase the improvement
and quality of the final products.

1.6 Outline of thesis

The thesis arrangement is organized as follows. Chapter 1 is about the
introduction of borotellurite glass, the doping agent, problem statements, and
significance of study, the scope and objectives of the projects. Chapter 2 gives
out the literature review about previous studies by other researches on the
related topics. All the apparatus, chemicals used, methodology and
characterization of the borotellurite glass are discussed in Chapter 3. The results
and justification of the samarium doped magnesium borotellurite glass
incorporating metal nanoparticles are explained in Chapter 4. Finally, the
conclusion and recommendations are suggested for future in Chapter 5.
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