UNIVERSITI PUTRA MALAYSIA # CONGENITAL KYPHOSIS AND KYPHOSCOLIOSIS: THE NATURAL HISTORY AND RESULTS AFTER SURGERY **HARWANT SINGH** FPSK (P) 2000 1 ## CONGENITAL KYPHOSIS AND KYPHOSCOLIOSIS: THE NATURAL HISTORY AND RESULTS AFTER SURGERY ## By #### **HARWANT SINGH** Thesis Submitted in Fulfilment of the Requirements for the Degree of Doctor of Philosophy in The Faculty of Medicine and Health Sciences, Universiti Putra Malaysia October 2000 #### **DEDICATION** This thesis is dedicated to my parents, to whom I owe everything; and to my wife, who put up with my nuances while I was doing this study. It is also dedicated to the late Professor N. Subramaniam of the University of Malaya, and the late Professor Q.M. Iqbal of Universiti Kebangsaan Malaysia; who were the pioneers of scoliosis surgery in Malaysia, and who taught me that treating children's spinal deformities is a life long passion and not just a vocation. Lastly, but by no means least; this is also dedicated to all the spinal deformity patients who have given me the opportunity to treat them, and who have taught me so much more than any book, conference or meeting; and have given me valuable insight into what spinal deformity is. Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy. CONGENITAL KYPHOSIS AND KYPHOSCOLIOSIS: THE NATURAL HISTORY AND RESULTS AFTER SURGERY By **HARWANT SINGH** October 2000 Chairman: Professor Dr Leslie Lai Chin Loy Faculty: **Medicine and Health Sciences** Congenital kyphosis and kyphoscoliosis are due to vertebral anomalies that are present at birth. These vertebral anomalies cause a deformity of the spine in the sagittal plane. If allowed to progress, this deformity can produce neural dysfunction due to bowstringing of the cord over the apex of the deformity. The goals of this study were to document the natural history of congenital kyphosis and kyphoscoliosis and to determine the stage at which the natural history should be interrupted by treatment. This was done by reviewing the medical records and radiographs of the spine of 112 consecutive patients. Sixty eight patients had a type-I kyphosis due to anterior failure of vertebral-body formation, twenty-four had a type-II kyphosis due to anterior failure of vertebral-body segmentation, and twelve had a type-III kyphosis due to a combination of anomalies. The deformities of the remaining eight patients could not be classified. The apex of kyphosis was seen at all UPM iii levels but was most frequent between the tenth thoracic and the first lumbar level (seventy-four patients; 66%). Progression of the curve was most rapid during the adolescent growth spurt and only stopped at skeletal maturity. Progression was most rapid and the magnitude of the curve was the greatest in the type-III kyphosis (twelve patients) followed by type-I kyphosis due to posterolateral quadrant vertebra (thirty-nine patients), a posterior hemivertebra (eight patients), a butterfly vertebra (fifteen patients), and a wedge vertebra (six patients). A kyphosis due to two adjacent type-I vertebral anomalies progressed more rapidly and produced a more severe deformity than a single similar anomaly. The prognosis for type-II kyphosis was variable and was much more severe when an anterolateral unsegmented bar had produced a kyphoscoliosis (nine patients) than when a midline anterior bar had produced a pure kyphosis (fifteen patients), which usually progressed slowly. Sixty-five patients had surgical treatment. The stability of the sagittal curve at maturity was dependent on vertebral anomaly causing sagittal deformity, type of arthrodesis procedure performed, age of patient at arthrodesis and size of sagittal curve at arthrodesis, however only the first two were statistically significant. Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah KYPHOSIS DAN KYPHOSCOLIOSIS KONGENITAL: RIWAYAT SEMULAJADI DAN KESIMPULAN SURGERI Oleh **HARWANT SINGH** Oktober 2000 Pengerusi: Professor Dr Leslie Lai Chin Loy Fakulti: Perubatan dan Sains Kesihatan Kyphosis dan kyphoscoliosis kongenital adalah disebabkan oleh malformasi vertebra yang wujud dari lahir. Malformasi ini menyebabkan deformiti spina di plana sagital. Jika deformiti ini berterusan, saraf tunjang boleh dikepil oleh apex deformiti menyebabkan kehilangan fungi neural. Tujuan kajian ini adalah untuk meneliti kejadian deformiti ini, dan mengesyorkan rumusan untuk rawatan penyakit ini. Kajian telah dijalankan dengan penelitian nota-nota perubatan dan radiograf-radiograf spina 112 pesakit konsekutif. Enam puluh lapan pesakit mengalami kyphosis Jenis 1, dua puluh empat mengalami kyphosis Jenis 2, dan dua belas mengalami kyphosis Jenis 3. Baki lapan pesakit tidak dapat diklassifikasikan. UPM # Apeks kyphosis di lihat di semua tahap, tetapi didapati sering diantara vertebra thorasik kesepuluh dan vertebra lumbar pertama (tujuh puluh empat peaskit; 66%). Kepecutan deformiti ini adalah terlaju semasa waktu baligh dan hanya berhenti selepas kebalighan rangka tercapai. Kepecutan deformiti ini adalah terlaju dan magnitud deformiti adalah terbesar di kyphosis Jenis 3. Kyphosis yang disebabkan oleh dua anomali vertebra bersampingan mempunyai kepecutan deformiti yang lebih laju; dan menyebabkan deformiti yang lebih besar magnitud berbanding dengan anomali satu vertebra sahaja. Prognosis kyphosis Jenis 2 adalah lebih baik dengan kepecutan deformiti yang kurang dari Jenis 1 atau 3. Enam puluh lima pesakit telah menjalankan rawatan pembedahan. Stabiliti deformiti pada waktu baligh adalah bergantung kepada jenis anomali vertebra yang menyebabkan deformiti sagital, jenis artrodesis yang dijalankan, umur pesakit pada waktu pembedahan dijalankan dan saiz deformiti pada masa pembedahan; tetapi hanya faktor pertama dan kedua adalah signifikan. #### **ACKNOWLEDGEMENTS** The work presented in this thesis would not have been possible without the help of a number of people whom I would like to thank. Mr. Michael J. McMaster, Consultant Orthopaedic Surgeon, Edinburgh Spine Deformity Centre, for giving me the opportunity to undertake this work, and guiding me throughout; and for his continued support and invaluable advice in the 4 years that this work took. Professor Leslie Charles Lai, Deputy Dean, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, my supervisor, for valuable advice in the preparation of this thesis. Professor Datuk Mohammad Sham Kassim, Director, Postgraduate Medical Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, my co-supervisor, for valuable advice in the preparation of this thesis. Dr. Ali Noor Ghani, Senior Consultant Orthopaedic and Spine Surgeon, Ampang Putri Specialist Hospital, Kuala Lumpur, formerly Professor of Orthopaedics, Universiti Kebangsaan Malaysia; for valuable guidance in the preparation of the thesis Dr. Joginder Singh, Senior Consultant Radiologist, Pantai Hospital, Kuala Lumpur, formerly Professor of Radiology, University of Malaya; for valuable guidance in the preparation of this thesis. Mr. Law Tiek-Hua, Senior Research Officer (Statistics) and Lecturer, Faculty of Engineering, Universiti Putra Malaysia for advice on statistical methods and analysis used in this study. Dr A.C. Nicols, Bioengineering Department, University of Strathclyde; for his valuable criticism of the Biomechanics of spinal deformities. Professor William Gillespie, formerly of the Department of Orthopaedic Surgery, University of Edinburgh; for the use of the Orthopaedic Library. Professor Edwards P Schwentker, of Paediatric Orthopaedics and Orthopaedic Rehabilitation, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; for the valuable gift of an original copy of the 1888 edition of 'Lectures on Curvatures of The Spine' by Adams. Medical Illustration Department, Princess Margaret Rose Hospital, Edinburgh, and Medical Illustration Department, Royal College of Surgeons of Edinburgh. Library of The Royal College of Surgeons of Edinburgh, for help in accessing the historical medical texts. Professor Gardiner, Conservator, Museum of the Royal College of Surgeons of Edinburgh, for allowing me to study the kyphosis skeletal specimens in the College Collection. The President and Fellows of The Royal College of Surgeons of Edinburgh, for permission to reproduce the illustrations in Figures 1, 2, 4, 5, 6, 7, 8 and 9. ## TABLE OF CONTENTS | DEDICATION | 11 | |-------------------|------| | ABSTRACT | iii | | ABSTRAK | v | | ACKNOWLEDGEMENTS | vii | | APPROVAL SHEETS | ix | | DECLARATION FORM | xi | | LIST OF TABLES . | xvi | | LIST OF FIGURES | xvii | | GLOSSARY OF TERMS | XX | ## **CHAPTER** ## 1 INTRODUCTION | 1.1 | General | 1 | |-----|---------------------------------------|----| | 1.2 | Historical Perspective | 3 | | 1.3 | Prevalence of Congenital Kyphosis and | | | | Kyphoscoliosis and its Significance | 5 | | 1.4 | Hypothesis and Research Objectives | 11 | ## 2 LITERATURE REVIEW | 2.1 | Embryology and Classification of the | | |-----|---------------------------------------------------|----| | | Vertebral Defect Causing Kyphosis and | | | | Kyphoscoliosis | 13 | | 2.2 | Previous Natural History Studies | 17 | | 2.3 | Previous Treatment Studies | 19 | | 2.4 | The Problem of Respiratory Capacity in Severe | | | | Spinal Deformity | 21 | | 2.5 | Neurological Deficit in Congenital Kyphosis and | | | | the Relationship of Sagittal Plane Deformity to | | | | Neural Structures | 25 | | 2.6 | Methods of Quantifying Sagittal Plane Deformities | | | | and their Inadequacies | 30 | | 2.7 | Animal Models in Congenital Kyphosis | 31 | | 2.8 | Other Anomalies Associated with Congenital | | | | Kyphosis | 32 | | 2.9 | Genetics of Congenital Kyphosis | 34 | | | - · · · · · · · · · · · · · · · · · · · | | ## 3 MATERIALS AND METHODS | 3.1 | Overview of Methodology | 35 | |-----|-----------------------------------------|----| | 3.2 | Measuring Technique for Cobb and | | | | Modified Cobb Method | 38 | | 3.3 | The Radius of Curvature Method | 39 | | 3.4 | Data Recording and Statistical Analysis | 42 | | 3 5 | Validation of the Methodology | 43 | ## 4 RESULTS #### A: NATURAL HISTORY | 4.1 | Epidemiology | 44 | |------|--------------------------------------------------|----| | 4.2 | Classification of Vertebral Anomalies | 47 | | 4.3 | Rib Patterns . | 51 | | 4.4 | Neurology | 53 | | 4.5 | Ventilatory Capacity | 57 | | 4.6 | Cardiovascular Abnormalities | 59 | | 4.7 | Renal Abnormalities | 60 | | 4.8 | Skin and Subcutaneous Stigmata | 61 | | 4.9 | Other Vertebral and Axial Skeletal Abnormalities | 62 | | 4.10 | Appendicular Skeletal and Other Visceral | | | | Abnormalities | 64 | | 4.11 | Influence of Family History | 66 | ## **B:** CURVE CHARACTERISTICS AND PROGRESSION | 4.12 | Anatomical Description in Relation to Curve | | |------|---------------------------------------------|-----| | | Characteristics | 67 | | 4.13 | The Apical Qualities in Congenital Kyphosis | | | | and Kyphoscoliosis | 84 | | 4.14 | Progression of Untreated Curves | 87 | | 4.15 | Neurological Deficit During Natural | | | | Progression of Curve | 117 | | 4.16 | Comparison between Cobb Method and | | | | Radius of Curvature Method in Severe | | | | Sagittal Plane Deformities | 118 | ## C: SURGERY | 4.18 Types of Surgery Performed and Results 130 4.19 The Effect of Vertebral Type Undergoing Arthrodesis and Stability at Maturity 144 4.20 The Effect of Type of Arthrodesis Procedure and Stability at Maturity 146 4.21 The Effect of Age at Arthrodesis and Stability at Maturity 148 4.22 The Effect of Size at Arthrodesis and Stability at Maturity 150 4.23 The Results of Surgery in Neurologically Compromised Patients 152 4.24 Level of Fusion Performed 154 4.25 Complications of Surgery 154 4.26 Biomechanics of Surgical Procedures. 155 5 DISCUSSION 5.1 Natural history 164 5.2 Neurological Symptoms 173 5.3 Intraspinal Anomalies 175 5.4 Surgery for Congenital Kyphosis and Kyphoscoliosis 177 6 CONCLUSIONS AND RECOMMENDATIONS 185 BIBLIOGRAPHY 190 BIODATA OF AUTHOR 226 | | 4.17 | Introduction | 127 | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|------------------------------------------|-----| | 4.19 The Effect of Vertebral Type Undergoing Arthrodesis and Stability at Maturity 4.20 The Effect of Type of Arthrodesis Procedure and Stability at Maturity 4.21 The Effect of Age at Arthrodesis and Stability at Maturity 4.22 The Effect of Size at Arthrodesis and Stability at Maturity 4.23 The Results of Surgery in Neurologically Compromised Patients 4.24 Level of Fusion Performed 4.25 Complications of Surgery 4.26 Biomechanics of Surgical Procedures. 5 DISCUSSION 5.1 Natural history 5.2 Neurological Symptoms 5.3 Intraspinal Anomalies 5.4 Surgery for Congenital Kyphosis and Kyphoscoliosis 6 CONCLUSIONS AND RECOMMENDATIONS 185 BIBLIOGRAPHY 190 | | 4.18 | Types of Surgery Performed and Results | 130 | | Arthrodesis and Stability at Maturity 4.20 The Effect of Type of Arthrodesis Procedure and Stability at Maturity 146 4.21 The Effect of Age at Arthrodesis and Stability at Maturity 148 4.22 The Effect of Size at Arthrodesis and Stability at Maturity 150 4.23 The Results of Surgery in Neurologically Compromised Patients 152 4.24 Level of Fusion Performed 154 4.25 Complications of Surgery 154 4.26 Biomechanics of Surgical Procedures. 5 DISCUSSION 5.1 Natural history 5.2 Neurological Symptoms 5.3 Intraspinal Anomalies 5.4 Surgery for Congenital Kyphosis and Kyphoscoliosis 177 6 CONCLUSIONS AND RECOMMENDATIONS 185 BIBLIOGRAPHY 190 | | 4.19 | | | | Procedure and Stability at Maturity 4.21 The Effect of Age at Arthrodesis and Stability at Maturity 4.22 The Effect of Size at Arthrodesis and Stability at Maturity 5.2 The Results of Surgery in Neurologically Compromised Patients 5.2 Complications of Surgery 6.3 Intraspinal Anomalies 5.4 Surgery for Congenital Kyphosis and Kyphoscoliosis 6 CONCLUSIONS AND RECOMMENDATIONS 148 4.21 The Refect of Size at Arthrodesis and Stability at Maturity 150 150 151 152 153 154 155 155 155 156 157 158 158 159 169 160 160 160 160 160 160 160 160 160 160 | | | | 144 | | 4.21 The Effect of Age at Arthrodesis and Stability at Maturity 4.22 The Effect of Size at Arthrodesis and Stability at Maturity 5.5 The Results of Surgery in Neurologically Compromised Patients 5.2 Complications of Surgery 5.3 Intraspinal Anomalies 5.4 Surgery for Congenital Kyphosis and Kyphoscoliosis 6 CONCLUSIONS AND RECOMMENDATIONS 148 148 148 148 148 148 148 148 148 148 | | 4.20 | The Effect of Type of Arthrodesis | | | Stability at Maturity 148 4.22 The Effect of Size at Arthrodesis and Stability at Maturity 150 4.23 The Results of Surgery in Neurologically Compromised Patients 152 4.24 Level of Fusion Performed 154 4.25 Complications of Surgery 154 4.26 Biomechanics of Surgical Procedures. 155 5 DISCUSSION 5.1 Natural history 164 5.2 Neurological Symptoms 173 5.3 Intraspinal Anomalies 175 5.4 Surgery for Congenital Kyphosis and Kyphoscoliosis 177 6 CONCLUSIONS AND RECOMMENDATIONS 185 BIBLIOGRAPHY 190 | | | Procedure and Stability at Maturity | 146 | | 4.22 The Effect of Size at Arthrodesis and Stability at Maturity 4.23 The Results of Surgery in Neurologically Compromised Patients 4.24 Level of Fusion Performed 4.25 Complications of Surgery 4.26 Biomechanics of Surgical Procedures. 5 DISCUSSION 5.1 Natural history 5.2 Neurological Symptoms 5.3 Intraspinal Anomalies 5.4 Surgery for Congenital Kyphosis and Kyphoscoliosis 6 CONCLUSIONS AND RECOMMENDATIONS 185 BIBLIOGRAPHY 190 | | 4.21 | The Effect of Age at Arthrodesis and | | | Stability at Maturity 4.23 The Results of Surgery in Neurologically Compromised Patients 5.4 Level of Fusion Performed 154 4.25 Complications of Surgery 154 4.26 Biomechanics of Surgical Procedures. 5 DISCUSSION 5.1 Natural history 5.2 Neurological Symptoms 173 5.3 Intraspinal Anomalies 175 5.4 Surgery for Congenital Kyphosis and Kyphoscoliosis 177 6 CONCLUSIONS AND RECOMMENDATIONS 185 BIBLIOGRAPHY 190 | | | Stability at Maturity | 148 | | 4.23 The Results of Surgery in Neurologically Compromised Patients 152 4.24 Level of Fusion Performed 154 4.25 Complications of Surgery 154 4.26 Biomechanics of Surgical Procedures. 155 5 DISCUSSION 5.1 Natural history 164 5.2 Neurological Symptoms 173 5.3 Intraspinal Anomalies 175 5.4 Surgery for Congenital Kyphosis and Kyphoscoliosis 177 6 CONCLUSIONS AND RECOMMENDATIONS 185 BIBLIOGRAPHY 190 | | 4.22 | The Effect of Size at Arthrodesis and | | | Compromised Patients 152 4.24 Level of Fusion Performed 154 4.25 Complications of Surgery 154 4.26 Biomechanics of Surgical Procedures. 155 5 DISCUSSION 5.1 Natural history 164 5.2 Neurological Symptoms 173 5.3 Intraspinal Anomalies 175 5.4 Surgery for Congenital Kyphosis and Kyphoscoliosis 177 6 CONCLUSIONS AND RECOMMENDATIONS 185 BIBLIOGRAPHY 190 | | | Stability at Maturity | 150 | | 4.24 Level of Fusion Performed 4.25 Complications of Surgery 4.26 Biomechanics of Surgical Procedures. 5 DISCUSSION 5.1 Natural history 5.2 Neurological Symptoms 5.3 Intraspinal Anomalies 5.4 Surgery for Congenital Kyphosis and Kyphoscoliosis 6 CONCLUSIONS AND RECOMMENDATIONS 185 BIBLIOGRAPHY 190 | | 4.23 | The Results of Surgery in Neurologically | | | 4.25 Complications of Surgery 4.26 Biomechanics of Surgical Procedures. 5 DISCUSSION 5.1 Natural history 5.2 Neurological Symptoms 5.3 Intraspinal Anomalies 5.4 Surgery for Congenital Kyphosis and Kyphoscoliosis 6 CONCLUSIONS AND RECOMMENDATIONS 185 BIBLIOGRAPHY 190 | | | Compromised Patients | 152 | | 4.26 Biomechanics of Surgical Procedures. 155 5 DISCUSSION 5.1 Natural history 164 5.2 Neurological Symptoms 173 5.3 Intraspinal Anomalies 175 5.4 Surgery for Congenital Kyphosis and Kyphoscoliosis 177 6 CONCLUSIONS AND RECOMMENDATIONS 185 BIBLIOGRAPHY 190 | | 4.24 | Level of Fusion Performed | 154 | | 5 DISCUSSION 5.1 Natural history 164 5.2 Neurological Symptoms 173 5.3 Intraspinal Anomalies 175 5.4 Surgery for Congenital Kyphosis and Kyphoscoliosis 177 6 CONCLUSIONS AND RECOMMENDATIONS 185 BIBLIOGRAPHY 190 | | 4.25 | Complications of Surgery | 154 | | 5.1 Natural history 164 5.2 Neurological Symptoms 173 5.3 Intraspinal Anomalies 175 5.4 Surgery for Congenital Kyphosis and Kyphoscoliosis 177 6 CONCLUSIONS AND RECOMMENDATIONS 185 BIBLIOGRAPHY 190 | | 4.26 | Biomechanics of Surgical Procedures. | 155 | | 5.2 Neurological Symptoms 173 5.3 Intraspinal Anomalies 175 5.4 Surgery for Congenital Kyphosis and Kyphoscoliosis 177 6 CONCLUSIONS AND RECOMMENDATIONS 185 BIBLIOGRAPHY 190 | 5 | DISC | USSION | | | 5.2 Neurological Symptoms 173 5.3 Intraspinal Anomalies 175 5.4 Surgery for Congenital Kyphosis and Kyphoscoliosis 177 6 CONCLUSIONS AND RECOMMENDATIONS 185 BIBLIOGRAPHY 190 | | 5.1 | Natural history | 164 | | 5.3 Intraspinal Anomalies 175 5.4 Surgery for Congenital Kyphosis and Kyphoscoliosis 177 6 CONCLUSIONS AND RECOMMENDATIONS 185 BIBLIOGRAPHY 190 | | | · · · · · · · · · · · · · · · · · · · | | | 5.4 Surgery for Congenital Kyphosis and Kyphoscoliosis 177 6 CONCLUSIONS AND RECOMMENDATIONS 185 BIBLIOGRAPHY 190 | | 5.3 | | 175 | | Kyphoscoliosis 177 6 CONCLUSIONS AND RECOMMENDATIONS 185 BIBLIOGRAPHY 190 | | | • | | | BIBLIOGRAPHY 190 | | | | 177 | | BIBLIOGRAPHY 190 | 6 | CONG | CLUSIONS AND RECOMMENDATIONS | 185 | | BIODATA OF AUTHOR 226 | | | CLUSIONS AND RECOMMENDATIONS | | | | BIODATA OI | F AUTH | HOR | 226 | ## LIST OF TABLES | Table 1: Data on the untreated patients who had spontaneous | | |-----------------------------------------------------------------------------|-----| | neurological deficit | 56 | | Table 2: Respiratory data | 58 | | Table 3: Number of vertebrae in relation to vertebral-body anomaly | 63 | | Table 4: Rate of progression of untreated curves | 116 | | Table 5: Cobb's angle and radius of curvature in patients with no | | | neurological deficit | 123 | | Table 6: Cobb's angle and radius of curvature in patients with | | | neurological deficits | 124 | | Table 7: The level of apices and type of vertebral anomaly in patients | | | with neurology | 126 | | Table 8: Immediate correction achieved after surgery in the different | | | types of procedures | 143 | | Table 9: The effect of vertebral type undergoing arthrodesis and | | | stability at maturity | 145 | | Table 10: The effect of type of arthrodesis procedure and stability at | | | maturity | 147 | | Table 11: The effect of age at arthrodesis and stability at maturity | 149 | | Table 12: The effect of curve size at arthrodesis and stability at maturity | 151 | | Table 13: Results of surgery in neurologically compromised patients | 153 | ## LIST OF FIGURES | Figure 1: Kyphosis at thoraco-lumbar level | 2 | |-------------------------------------------------------------------|----| | Figure 2: Deformity in sagittal and coronal planes of spine, ribs | | | removed to show spinal column | 6 | | Figure 3: Deformity in axial plane viewed easily from the back | | | of a patient who is bending forwards | 7 | | Figure 4: Sagittal cut through kyphosis specimen and sagittal | | | MRI cut illustrating the apex compressing on | | | anterior spinal cord | 10 | | Figure 5: Severe curvature of spine with reduced thoracic space | | | causing restriction in lung expansion | 22 | | Figure 6: Severe spinal deformity causing restriction of lung | | | expansion | 23 | | Figure 7: Crowding of ribs in kyphoscoliosis | 24 | | Figure 8: Sagittal cut through specimen with kyphosis | 27 | | Figure 9: Ribs removed to show sharp angular kyphosis at thoraco |) | | -lumbar junction | 28 | | Figure 10: Schematic diagram of hemivertebra at apex | 29 | | Figure 11: The kyphosis template, and points of reference for | | | template | 40 | | Figure 12: The template used on the reference points on the | | | radiograph | 41 | | Figure 13: Schematic outline of study design | 46 | | Figure 14: TYPE I: Anterior failure of vertebral-body formation | 48 | | Figure 15: TYPE II: Anterior failure of vertebral-body | | | segmentation | 49 | | Figure 16: TYPE III: Mixed | 50 | | Figure 17: Rib patterns | 52 | | Figure 18: Histogram showing level of apex and number of patient | S | | who had spontaneous neurological deficit | 55 | | Figure 19: TYPE I posterolateral quadrant hemivertebra causing | | | kyphoscoliosis | 70 | | Figure 20: TYPE I: Butterfly (Sagittal cleft) vertebra | 73 | | Figure 21: TYPE I: Anterolateral wedged vertebra causing | | | kyphoscoliosis | 75 | | Figure 22: TYPE II: Anterior failure of segmentation with | | | kyphosis | 77 | | Figure 23: TYPE II: Anterior failure of segmentation. The | | |--------------------------------------------------------------------|-----| | relationship between disc space and severity of deformity | 78 | | Figure 24: TYPE III: Mixed type | 81 | | Figure 25: Graph showing the different types of vertebral defects, | | | their apical location, as well as the number of vertebral | | | levels | 83 | | Figure 26: Cord compresion in congenital kyphosis and its | | | relationship to the radius of curvature | 86 | | Figure 27: TYPE Î: Posterolateral quadrant hemivertebra with | | | myelogram showing compression in anterior cord by apex | 89 | | Figure 28: TYPE I: Posterolateral quadrant hemivertebra with | | | myelogram showing high compression and paraparesis | 90 | | Figure 29: TYPE I: Posterolateral quadrant hemivertebra causing | | | kyphoscoliosis. Incarcerated hemivertebra. | 91 | | Figure 30: TYPE I: Sagittal cleft (Butterfly) vertebra | 96 | | Figure 31: TYPE I: Sagittal cleft (Butterfly) vertebra | 97 | | Figure 32: TYPE I: Sagittal cleft (Butterfly) vertebra | 98 | | Figure 33: TYPE I: Wedge Vertebra | 100 | | Figure 34: TYPE I: Wedge Vertebra | 101 | | Figure 35: TYPE I: Wedge Vertebra | 102 | | Figure 36: TYPE II: Anterior failure of segmentation | 105 | | Figure 37: TYPE II: Anterior failure of segmentation | 106 | | Figure 38: TYPE II: Anterior failure of segmentation | 107 | | Figure 39: TYPE II: Anterolateral failure of segmentation with | | | kyphoscoliosis | 109 | | Figure 40: TYPE III | 111 | | Figure 41: TYPE III. Vertebral body defect | 112 | | Figure 42: Unclassified | 114 | | Figure 43: Unclassified | 115 | | Figure 44: MRI of kyphosis showing possible vertebral anomaly | 122 | | Figure 45: Relationship of sagittal vertebral anomalies and radius | | | | 125 | | Figure 46: TYPE I: Posterior hemivertebra causing kyphosis | 136 | | ϵ | 141 | | e e | 142 | | Figure 49: Sagittal weight bearing axis of spine and the forces | | | <u>.</u> | 158 | | Figure 50: Congenital vertebral anomalies and the direction of | | | vertebral growth causing kyphosis | 159 | | Figure 51:Relationship of moments acting on grafts in front of the | | |--------------------------------------------------------------------|-----| | spinal column | 160 | | Figure 52: Relationship of levels of posterior fusions and the | | | moments acting on the apex | 161 | | Figure 53: Relationship of curve severity to moments acting | | | on the apex | 162 | | Figure 54: Summary of key biomechanical factors in kyphosis | | | correction | 163 | | Figure 55: The relationship between various vertebral anomalies | | | and the radius of curvature | 189 | #### **GLOSSARY** #### **ABBREVIATIONS** MRI – Magnetic Resonance Imaging FVC - Forced Vital Capacity FEV1 – Forced Expiration in 1 second **CT** – Computerized Axial Tomogram #### **BIOMECHANICS** Bending – Angular deformation of a structure, caused by a bending moment. **Bending Moment** – The moment that tends to bend a structure. It is usually the sum of the moments due to several forces. Centre of Gravity – The point in a body in which the body mass is centred. **Compression Force** – A force that tends to shorten a structure or material. **Compressive Stress** – A normal stress that tends to shorten material. **Force** – An action that causes a body to displace or deform (Newtons – N). **Moment** – The sum of the forces applied to a structure multiplied by their perpendicular distance from a reference point or axis (Newton meters – Nm). **Tension Force** – A force that tends to elongate a structure or material. **Tensile Stress** – A normal stress that tends to elongate material. **Viscoelasticity** – Material behaviour in which the resistance to deformation depends on the amount of deformation (elastic) and the rate of deformation (viscous). #### **CLINICAL** **Apical disc** – The disc most deviated from the vertical axis of the patient. **Apical vertebra** – The vertebra most deviated in the vertical axis of the patient. Congenital scoliosis – Scoliosis due to congenitally anomalous vertebral development. **End vertebra** — The most cephalad vertebra of a curve, whose superior surface or transverse axis, and the most caudal vertebra, whose inferior surface of transverse axis, tilts maximally towards the concavity of the curve. Iliac apophysis – The apophysis along the crest of the ilium. **Kyphosis** – A posterior convex angulation of the spine. **Kyphoscoliosis** – A non idiopathic scoliosis associated with an area of hyperkyphosis. Neuromuscular scoliosis – A scoliosis due to either a muscular or neurologic disorder. **Risser sign** – In the frontal plane of the pelvis, the state of ossification of the iliac apopysis is used to denote the degree of skeletal maturity. **Sagittal balance** – Alignment of C7 to the posterior superior aspect of the sacrum on an upright long cassette radiograph of the spine. Scoliosis – A lateral curvature of the spine. **Skeletal age** – The age obtained by comparing PA radiographs of the left wrist and hand with standards of the Gruelich and Pyle atlas. **Vertebral tilt** – Angulation in the coronal plane, measured from the lower endplate to the horizontal. #### **CHAPTER 1** #### INTRODUCTION #### 1.1 General Congenital Kyphosis, by definition, is an anatomical vertebral anomaly which is present at birth. This anatomical vertebral anomaly forms in utero and may manifest at birth, or soon after birth. There may be other congenital abnormalities associated with it. The early occurrence of the curve results in a potentially progressive curve, as the child will have progression during the physiological growth spurts. These curves are usually rigid, resistant to correction by external bracing; and require surgery usually to arrest their progression. If the early curves are missed at birth or in early life, severe curves develop (Figure 1). It is more difficult to treat a severe rigid curve, than a minor curve. Therefore a proper and thorough understanding of the natural history of these curves is essential, to decide the appropriate time of treatment. Figure 1: Kyphosis at the thoraco-lumbar level. #### 1.2 Historical Perspective Spinal problems have been recognised in written history as far as 4500 years ago (Hughes 1988). Kyphosis, as a distinct pathological condition of the spine had been described by Hippocrates (Adams 1849, 1888), more than 2000 years ago; and surgical intervention as treatment for spinal disorders had been prescribed in early Indian surgical texts (Cumston 1926) approximately 1500 years ago. Although the clinical condition of kyphosis was recognised since early times, these descriptions could not determine the cause of the deformities. The anatomical works *De Dissectione Partium Corporis Humani* of Charles Estienne in 1539 and *De Humani Corporis Fabrica Libri Jeptum* by Andreas Versalius in 1543 contain the first modern and accurate anatomical descriptions of the human spine (Ball 1928). These works were the beginnings of serious study. However, there was no distinction between infective and non-infective causes of the kyphosis deformity of the spine. The first description of congenital kyphosis as a separate entity causing spinal kyphosis was in German by Von Rokitansky in 1844. MacEwen first reported the association of untreated spinal deformity and neurological deficit in 1888. The development of radiography in 1895 enabled spinal deformities to be