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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Master of Science 

INFLUENCE OF BiFeO3 NANOPARTICLE ON THE PROPERTIES OF 
YBa2Cu3O7-δ SUPERCONDUCTOR FOR POSSIBLE ENHANCEMENT OF 

CURRENT DENSITY 

By 

NUR ATHIRAH BINTI CHE DZUL-KIFLI 

December 2021 

Chair : Mohd Mustafa Awang Kechik, PhD 
Faculty  : Science 

Superconductivity is a phenomenon where the superconductor’s resistance 
abruptly turns zero ohm as the material meets the superconductor properties. In 
this work, the bulk superconductor of YBa2Cu3O7-δ (Y-123) added with BiFeO3 
(BFO) nanoparticle in different weight percentage (x = 0.0 wt.%, 0.2 wt.%, 1.0 
wt.%, 1.5 wt.% and 2.0 wt.%), is synthesized by using thermal treatment method. 
Further studies were made upon the bulk sample in order to determine the 
characteristics and properties of the samples. The samples were characterized 
by using X-Ray Diffraction (XRD), Alternating Current Susceptibility (ACS), Field 
emission scanning electron microscopy (FESEM) and Energy Dispersive X-ray 
spectroscopy (EDX). 

For the first part, the effect of oxygen flow during the sintering process of Y-123 
bulk superconductor is studied. This part found that the results obtained for the 
sample with the oxygen flow are much better than the Y-123 with no oxygen flow. 
Further study was made regarding the addition of Y-123 (with oxygen flow) with 
BFO nanoparticle. Based on XRD results, all samples with BFO addition show a 
Pmmm space group with orthorhombic crystal structure. The weight percentage 
for x = 1.0 wt.% gives the highest value of Y-123, and the value is decreasing as 
higher amount of BFO is added. The higher amount of BFO added had degrades 
the samples' crystallite size, which shows that the addition does not promote the 
grain growth of Y-123, while the lattice strain increases with higher addition of 
BFO. As for the ACS, the value of the Tc-onset is enhanced with the addition of 
BFO nanoparticle, where the x = 1.5 wt.% give the highest Tc value with 91.91 
K. The sample with 1.5 wt.% also shows a high value of Tp with the value of
89.15 K. In terms of microstructure properties, the FESEM analysis shows that
the average grain size of the samples is decreases as BFO is introduced. This
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result is as expected as the crystallite size value mentioned in XRD also shows 
the same trend. However, the small grain size is expected to fill in the boundary 
and thus can help in enhancing the grains connectivity. All in all, the addition of 
BFO nanoparticle in Y-123 does help to improve the superconducting properties 
mainly for x = 1.5 wt.%. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Master Sains 

 

PENGARUH NANOPARTIKEL BiFeO3 TERHADAP SIFAT-SIFAT 
SUPERKONDUKTOR YBa2Cu3O7-δ UNTUK MEMUNGKINKAN 

PENINGKATAN KETUMPATAN ARUS 
 

Oleh 
 

NUR ATHIRAH BINTI CHE DZUL-KIFLI 
 

Disember 2021 
 
 

Pengerusi : Mohd Mustafa Awang Kechik, PhD 
Fakulti  : Sains 
 
 
Superkonduktor pukal YBa2Cu3O7-δ (Y-123) dengan penambahan nanopartikel 
BiFeO3 (BFO) dalam peratusan berat yang berbeza (x = 0.0 wt.%, 0.2 wt.%, 1.0 
wt.%, 1.5 wt.% dan 2.0 wt.%) telah dihasilkan dengan menggunakan kaedah 
rawatan termal. Kajian lebih lanjut telah dibuat bagi menentukan ciri-ciri dan sifat 
sampel. Sampel dicirikan dengan menggunakan pembelauan sinar-X (XRD), 
kerentanan arus bergantian (ACS), mikroskop elektron imbasan pancaran 
medan (FESEM) dan spektroskopi serakan tenaga sinar-X (EDX). Terdahulu, 
kajian mengenai superkonduktor pukal Y-123 mengenai kesan aliran oksigen 
semasa proses pensinteran telah dikaji. Hasil dari bahagian ini, didapati bahawa 
hasil yang diperoleh untuk sampel dengan aliran oksigen jauh lebih baik 
daripada sampel Y-123 tanpa aliran oksigen. Kajian selanjutnya mengenai 
penambahan nanopartikel BFO pada superkonduktor Y-123 (dengan aliran 
oksigen) telah dilaksanakan. Berdasarkan hasil XRD, semua sampel dengan 
penambahan BFO menunjukkan kumpulan ruang Pmmm dengan struktur kristal 
ortorombik. Peratusan berat untuk x = 1.0 wt.% memberikan nilai tertinggi Y-123, 
dan nilainya menurun apabila jumlah BFO yang lebih tinggi ditambahkan. 
Penampbahan BFO pada superkonduktor Y-123 telah menurunkan nilai ukuran 
kristal, yang menunjukkan bahawa penambahan tersebut tidak mendorong 
pertumbuhan ukuran kristal Y-123. Bagi ACS, nilai Tc-onset meningkatkan dengan 
penambahan nanopartikel BFO, di mana x = 1.5 wt.% memberikan nilai Tc 
tertinggi dengan 91.91 K. Sampel dengan 1.5 wt.% juga menunjukkan nilai Tp 
yang tinggi dengan nilai 89.15 K. Dari segi sifat struktur mikro, analisis FESEM 
menunjukkan bahawa ukuran butiran purata sampel semakin berkurang ketika 
BFO diperkenalkan. Hasil ini adalah seperti yang dijangkakan kerana nilai 
ukuran kristal yang disebutkan dalam XRD juga menunjukkan tren yang sama. 
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Walau bagaimanapun, ukuran butiran kecil diharapkan dapat memenuhi ruang 
dan dengan demikian dapat membantu merapatkan ruang-ruang antara bijirin. 
Secara keseluruhan, penambahan nanopartikel BFO dalam Y-123 membantu 
meningkatkan sifat superkonduktor terutamanya untuk x = 1.5 wt.%.  
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CHAPTER 1 
 

INTRODUCTION 
 

1.1  Introduction 
 

In recent years, the development of a technology has start to incline into a more 
environmentally friendly technology. The green technology refers to the 
technology that involve the energy efficiency, recycling, renewable resources 
and health. Green technology and renewable energy come together with the 
same mission: to conserve energy and improve the energy efficiency for the 
future human race. For instance, the solar cell is the best-known example in this 
technology. The solar cell helps to generate electricity by converting light energy 
into electrical energy through photovoltaic cells. This technology helps in 
minimizing the consumption of fossil fuels and hence reduces pollution and 
greenhouse emissions.    
 

Despite of the great energy conversion, the electrical resistance issue that 
comes together with the heat waste problem has become a massive issue in this 
technology. As a consequence, this complication of the electrical resistivity may 
have distorted the idea to have a more conserving energy, mainly in energy 
efficiency. In this aspect, superconductivity comes as the best solution to tackle 
these issues.   
 

Superconductivity is a phenomenon where a superconductor material's 
resistance drops abruptly to zero ohm without releasing any other form of energy. 
To become superconductive, the materials need to possess two important 
requirements. First and foremost, the superconductor materials need to be 
cooled down below its critical temperature (Tc). The critical temperature or 
transition temperature is a temperature where the superconductor starts to lose 
its resistance. The material becomes superconductive once it reaches its critical 
temperature, Tc (Van & Kes, 2010). Secondly, the magnetic flux's repulsion took 
placed inside the superconductor, resulting in the zero magnetic induction, B = 
0. A superconductor which placed in a magnetic field and cooled down through 
the critical temperature expels magnetic flux. This phenomenon is called as the 
Meissner effect (Geim et al., 1998). 
 

1.2 History of Superconductivity   
 

Superconductivity was discovered by a Dutch physicist, Heike Kamerling Onnes 
in the year of 1911. The superconductivity was first discovered in mercury wire 
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in his laboratory in Leiden University, Holland. Onnes was the first person to 
discover and find the right method to liquefy helium gas. Onnes managed to do 
the experiment on materials immersed in liquid helium, which the experiment has 
never done by other researchers before. Onnes carried out an experiment to 
measure the electrical resistance on mercury and found a nobility when the 
mercury's resistance disappeared as it is cooled to the liquid helium of 
temperature lower than 4.2 K. The current even continues to flow in months and 
years. This unusual behavior gave a big attraction to other researchers on giving 
hypothesis on the reasons of the behavior. Unfortunately, the discoveries did not 
make any clear results until Walther Meissner and Robert Ochsenfeld 
discovered about the Meissner effect in the year of 1933. This is the 
phenomenon where the superconductor expels the magnetic flux in the 
superconducting material and it is actually one of the superconductor properties. 
This exclusion of the magnetic flux in a superconductor can give a better 
understanding in superconductivity. Later in the year of 1957, the American 
physicist John Bardeen, Leon Cooper and John Schrieffer introduced the theory 
on the superconductivity phenomenon in which this theory are currently being 
widely accepted as Bardenn, Cooper and Scrieffer Theory (BCS Theory). This 
theory won the Nobel Prize in 1972. The BCS theory explained how the vibrating 
atoms in a lattice caused the electrons to form bound pairs called as Copper 
pairs (Frank & Charles, 2002).  

After the first finding of the superconductor material back in 1911, the progress 
in developing the superconductor materials moved up very slowly. However, in 
the year of 1986, the number of new superconductor materials found started to 
arise progressively. As of 1986, BaxLa5–xCu5O9 was found with the Tc of 30 – 35 
K. Later in February 1987, a scientist in University of Houston, Paul Chu together
with Wu made an announcement of their great discovery in finding a high
temperature superconductor (HTS) material above 90 K. Paul Chu found that the
resistivity of YBa2Cu3O7~δ material started to drop at 93 K and went to zero at 80
K (Chu, 1988). The extensive research on the YBCO is being proceeds up until
now. Back in 1964, Bill Little from Stanford University has also made some
research on the superconductivity. In his research, he manages to set a theory
about the possibility of organic superconductors which is also part of the organic
conductor family. The organic conductor is included the molecular salts, polymer
and pure carbon systems. The molecular salts have large organic molecules that
exhibit superconductive properties at a very low temperature (Burchell, 2018).
The first organic superconductor which is (TMTSF)2PF6 where TMTSF denotes
tetramethyl-tetraselenafulvalene, is synthesized in 1980 by a Danish researcher,
Klaus Bechgaard from University of Copenhagen together with the French team
members Jerome, Mazaud and  Ribalut. (TMTSF)2PF6 needs to be cooled down
to 0.9 K and subjected to high pressure of 12 kbar to exhibit as a superconductor
(Jeremy, 2007). This organic superconductor received subsequent innovation
and development which led to higher critical temperature materials, resulting to
an assortment of novel electronic and superconducting properties (Jérome et al.,
1980).
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1.3 Application of Superconductor  
  

The advancement and revolution is taking place in the superconductivity field 
since 1911 and since then many possible applications have been explored 
primarily such as in medical and transportation. The applications of the 
superconductor are as discussed below:   
 

1.3.1 Superconducting Magnetic Energy Storage, SMES  
 

A superconductor is well established and are applied in many fields including in 
the energy storage system. The Superconductor Magnetic Energy Storage 
(SMES) is among the best applications of the superconductor as it has an ability 
to store large amount of energy and is well-known for its efficient energy storage 
device. In 1969, the SMES was being introduced by Ferrier in effort to tackle the 
power demands issue (Ferrier, 1970). The earliest SMES devices used was 
commissioned by US Bonneville Power Administration in 1980s, with storage 
capacity of 30 MJ and a power rating of 10 MW. Nowadays, the small commercial 
of SMES which known as micro-SMES system was commercialize with the 
capacities of 100 kW to 100 MW to be established (Breeze, 2018). Basically, the 
SMES store the energy in a magnetic field, which is generated by a direct current 
through a superconducting coil. The wire in SMES is made of a superconducting 
material that has been cooled down below its critical temperature, Tc. As a 
consequence, the electric current can pass through the superconducting wire 
with almost zero resistance and achieve higher efficiency. As compared to 
normal wire, some energy is lost to heat because of the electric resistance 
(Johnson et al., 2019). The energy stored in the device however can be 
discharged in a short time, making it suitable to be used in power quality 
applications. Figure 1.1 below shows the schematic diagram of SMES, which 
consists of three components comprise of superconducting coil (SC), power 
conditioning system (PCS) and cryogenic system (CS). The energy stored in the 
system is determined by the size of the coils and the properties of the conductor. 
The size of the coils influence the inductance of the coil whereas the property of 
the conductor controls the maximum current applied (Abdin & Khalilpour, 2019). 
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Figure 1.1: The schematic diagram of the SMES 
(Chen et al., 2009) 
 

1.3.2 Magnetic Resonance Imaging, MRI  
 

The technology of a superconductor is well established and continues to evolve 
even in medical field. The best application of the superconductor is Magnetic 
Resonance Imaging, MRI. This technology took placed and became one of the 
best medical technologies in scanning human structures. Magnetic Resonance 
Imaging is a medical imaging technique used in radiology in forming human 
anatomy and physiological process in the body. In 2003, Paul Christian 
Lauterbur and Peter Mansfield shared the Nobel Prize in Physiology or Medicine. 
These two researchers are the one who made the MRI becomes possible. The 
first human to be scanned using this technology is John Francis Bovell in 
Southampton General Hospital, United Kingdom. Superconductor is said to be 
the heart of this powerful technology. The superconducting electromagnets used 
in MRI could align the weak magnetic moment of the protons in the human body 
with magnetic field of 0.5 to 1.5 Tesla (Aarnink & Overweg, 2012). The protons 
then absorbs the energy from the magnetic field and flip the spin. The protons' 
return process to the normal spin once the field is turned off produce a radio 
signal and received in the scanner as an image (Lewis, 2017). The image results 
help the doctors identify the patients’ conditions in a huge range of clinical 

applications such as in clinical neurology, cardiology, and cancer. This powerful 
process can only be achieved using superconducting electromagnets. 

 
1.3.3 Magnetic Levitation Train 

 

The invention of train transportation proved the critical times in history of human 
development. Steam train is the first train developed by Richard Trevithick back 
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in 19th century. In 1980, the majority steam locomotives were retired and has 
been replaced by electric and diesel locomotives. Superconductor technology 
also took a special place in this transportation expansion.  Maglev Train or 
Magnetic Levitation Train is an advanced-speed train that levitates just above 
the track by using the superconducting magnet. The superconducting magnet 
will increase the power of magnetic field once it is cooled to extreme 
temperature.  Maglev train does not use wheels just like other conventional 
trains. The train levitated and propelled from the tracks along the guide way using 
repelling magnet by using the principle of magnetic repulsion.  The acceleration 
and braking system of this train does not depend on the friction of the track. The 
train travels along the guide way without any wheels and thereby reducing the 
friction. This resulting to a very high speeds train that can run more than 500 
km/h (Lee et al., 2006). Thus, the maglev train is claimed to be a superfast train 
with a cheap travel cost. Referring to Figure 1.2, the diagram shows how the 
maglev train moves. As the direction of the current changes back and forth on 
the propulsion coils in the wall on the guide way, the north and south poles 
reverse repeatedly.  The alternating forces and attractions which produced 
between the coils and superconducting magnets on the train then propels the 
train. While in Figure 1.3, the diagram shows how the maglev train levitates. The 
electric current is induced in the coils along the guide way, as the train passes. 
The train is levitated by the attraction force, which pull up the magnet below the 
train body, as well as by repulsion, which pushes up the train (Kurokawa, 2014). 
Figure 1.4 is a prototype of a maglev train that was launched in southwest 
China’s city of Chengdu, Sichuan, in January 2021. On the same day, 165 meter 
track was launched to test the train with 21 meter long locomotive was also seen 
floating along the track. The train’s designer from Southwest Jiatong University 
said that the designed maglev train can runs up to 620 km/h. On the other hand, 
the first maglev train of that country was already put into operation in 2003 in 
Shanghai (Ho, 2021). 

 
Figure 1.2: An illustration of how the maglev train moves (Kurokawa, 2014) 
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Figure 1.3: An illustration of how the maglev train levitates (Kurokawa, 
2014) 
 
 

 
 
Figure 1.4: A prototype of maglev train was launched in Changdu, China 
on 13 January 2021 (Ho, 2021) 
 
 
 
 
 
 
 
 
 
 
 
 



© C
OPYRIG

HT U
PM

7 
 

1.4 Research Problem 
 

High temperature superconductor (HTS) of Yttrium Barium Copper Oxide 
(YBa2Cu3O7-δ) together with Bismuth Ferrite (BiFeO3) nanoparticle were 
synthesized by using the thermal treatment method. The limitations faced by the 
superconductor is that it is made from brittle materials consisted of non-
connected grains. This impacts the flow of the supercurrent among the grains 
that leads to the limitation of current-carrying capacity or the critical current 
density, Jc (Lehndorff, 2001). The thermal treatment method has been chosen 
among other methods like solid state and co-precipitation method because it was 
found that the thermal treatment can produce more homogeneous and finer 
powders besides of its low cost, quicker and simpler steps preparation (Dihom 
et al., 2017). Nanoparticles are good addition material as it will get easily 
dissolved through the high temperature processing thus helping to enhance the 
superconducting properties as it can act as strong pinning centers compared to 
micro-particles materials. Thus, the research was conducted to improve the 
properties of the superconductor without significantly decreasing the Tc. 
 

1.5  Research Objective 
 
The main objectives of this research are: 

1. To synthesize BiFeO3 nanoparticle by using thermal treatment method. 
2. To synthesize the good quality of Y-123 bulk superconductor with 

BiFeO3 nanoparticle additions via the thermal treatment method.  
3. To study the effect of BiFeO3 nanoparticle additions on YBa2Cu3O7-δ bulk 

superconductors in term of its morphology and superconducting 
properties. 

 

1.6  Thesis Overview 
 

This thesis consists of five chapters. The first chapter explains the introductions 
of the superconductor. This chapter helps the readers understand more about 
the superconductor as the superconductor's history and applications are also 
provided in this section. The research objectives and problem statement are 
stated here too. Chapter 2 will be focusing on the literature review and briefly 
explains the theory of the superconductor. While in Chapter 3 the methodology 
of the work research will be explained one by one, starting with the synthesize 
of pure superconductor YBa2Cu3O7, BiFeO3 nanoparticle, followed by the 
addition of these two materials. The explanations about the characterization 
instruments used also will be stated here in this chapter. The results from the 
research will be analyzed and discussed further in chapter 4. The last chapter 
which is Chapter 5 will conclude the results obtained from this research. The 
recommendation for future work will be given here as well for the purpose of a 
better study afterwards.   
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