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A study was undertaken to develop and validate Sawit, an oil palm growth and 
yield model that considers weather variables, planting densities and soil 
textures. Sawit consists of five components: meteorology, photosynthesis, 
energy balance, water balance, and crop growth. The meteorology component 
was parameterized using daily weather data recorded in oil palm plantations. 
The photosynthesis component was parameterized through leaf measurement 
on young to mature palms, where photosynthetic parameters were measured. 
Measurements of trunk and canopy heights, as well as the relationship between 
oil palm leaf stomatal conductance with photosynthetically active radiation and 
air vapour pressure deficit, were taken to parameterize the energy balance 
component using the Shuttleworth-Wallace model. These measurements were 
used to model evapotranspiration and leaf temperature. Water flow in the soil 
was modelled following the 'tipping bucket' system using Darcy's law. The crop 
growth component was parameterized based on the OPSIM model. Different 
ages of oil palms were destructively sampled to determine the dry matter 
partitioning and respiration coefficients. Sawit was validated by oil palm 
planting-density experiments in six different sites: Rengam, Merlimau, 
Kerayong, Sungai Buloh, Sabrang, and Seri Intan. The model showed good 
agreement in predicting oil palm growth and yield parameters. However, the 
accuracy of the simulation varied considerably between sites and parameters. 
The yield simulation was considered sufficiently accurate for Merlimau and 
Sungai Buloh, with the refined index of agreement (dr) equal to 0.76 and 0.74, 
respectively, and the normalized mean absolute error (NMAE) equal to 0.19 and 
0.20, respectively. However, the yield was simulated as less than satisfactory for 
Rengam, Kerayong, Sabrang and Seri Intan. Their dr values were small (0.52-
0.56), but NMAE (0.13-0.25) were comparable to Merlimau and Sungai Buloh. 
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The simulation of vegetative dry matter production was good for Rengam (dr = 
0.78, NMAE = 0.20), Kerayong (dr = 0.71, NMAE = 0.14) and Sabrang (dr = 0.76, 
NMAE = 0.11), but satisfactory for Merlimau (dr = 0.62, NMAE = 0.23) and 
Sungai Buloh (dr = 0.64, NMAE = 0.21). Total dry matter production was 
simulated sufficiently accurate with dr ranging from 0.71-0.78 and NMAE 
ranging from 0.07-0.17 across all sites and planting densities. Rachis (dr = 0.68-
0.86, NMAE = 0.11-0.19), fronds (dr = 0.65-0.83, NMAE = 0.11-0.20) and trunk (dr 
= 0.69-0.82, NMAE = 0.24-0.39) were simulated more accurately than pinnae (dr 
= 0.43-0.73, NMAE = 0.18-0.30) across all sites and planting densities except for 
the simulation of trunk biomass in Sungai Buloh (dr = 0.38, NMAE = 0.77). The 
leaf area index was simulated sufficiently accurate for Merlimau, Rengam, and 
Seri Intan, with dr ranging from 0.78-0.84 and NMAE ranging from 0.03-0.16. In 
contrast, the leaf area index was simulated as less than satisfactory for Kerayong, 
Sungai Buloh, and Sabrang, with dr ranging from 0.57-0.62 and NMAE ranging 
from 0.13-0.17. The simulation of trunk height was especially good for 
Merlimau, Kerayong, Seri Intan and Sabrang, with large dr values (0.87-0.93) and 
small NMAE values (0.06-0.12). However, trunk height was simulated 
satisfactory for Rengam (dr = 0.67, NMAE = 0.39) and Sungai Buloh (dr = 0.69, 
NMAE = 0.32). In addition, Sawit effectively simulated the impacts of El Niño 
event on oil palm yield. It also accounted for the influence of soil textures, 
rainfall, planting densities, and meteorological factors on water deficits. 
However, the simulation errors increased with increasing planting density due 
to insufficient characterization of microclimate conditions and plant water 
uptake under dense oil palm canopies, and higher variability of measurements 
for higher planting densities. In conclusion, an oil palm model called Sawit was 
developed and has been parameterized to simulate the growth and yield of oil 
palms under the influence of weather conditions, planting densities and soil 
textures. Improving the representation of oil palm microclimate and plant water 
uptake under dense canopies, incorporating fruiting activity, and refining the 
trunk's dry matter partitioning mechanism could enhance Sawit's accuracy. 
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Satu kajian telah dijalankan untuk membangunkan dan mengesahkan Sawit, 
sebuah model pertumbuhan dan hasil kelapa sawit yang mengambil kira 
pembolehubah cuaca, kepadatan penanaman, dan tekstur tanah. Pembangunan 
model ini terdiri daripada lima komponen: kesan meteorologi, kadar 
fotosintesis, kadar keseimbangan tenaga, kadar keseimbangan air, dan kadar 
pertumbuhan tanaman. Kesan meteorologi berparameterkan data cuaca harian 
yang direkodkan di ladang kelapa sawit. Kadar fotosintesis diukur pada daun 
muda dan matang di pokok sawit. Kadar keseimbangan tenaga dikira dengan 
menggunakan model Shuttleworth-Wallace, yang mana ketinggian batang serta 
kanopi sawit dan hubungan antara konduktiviti stomata daun yang aktif dalam 
julat spektrum cahaya untuk fotosintesis (photosynthetically active radiation) 
dengan defisit air akibat pengewapan diambilkira untuk menilai kadar 
evapotranspirasi dan suhu daun. Pergerakan air dalam tanah dinilai 
menggunakan sistem 'tipping bucket' yang berasaskan Darcy law. Kadar 
pertumbuhan tanaman diukur dengan menggunakan model OPSIM. Pokok 
sawit yang berlainan umur telah disampel secara destruktif untuk penentuan 
berat bahagian-bahagian pokok dan pekali kadar respirasi. Sawit telah disahkan 
oleh eksperimen kepadatan penanaman kelapa sawit di enam lokasi berbeza: 
Rengam, Merlimau, Kerayong, Sungai Buloh, Sabrang dan Seri Intan. Sawit 
menunjukkan persetujuan yang baik dalam meramalkan parameter 
pertumbuhan dan hasil kelapa sawit. Walau bagaimanapun, ketepatan simulasi 
berbeza dengan ketara antara lokasi dan parameter. Hasil telah disimulasikan 
dengan cukup tepat untuk Merlimau dan Sungai Buloh, dengan indeks 
persetujuan yang ditapis (dr) bersamaan dengan 0.76 dan 0.74, masing-masing, 
dan ralat min mutlak ternormal (NMAE) bersamaan dengan 0.19 dan 0.20, 
masing-masing. Bagaimanapun, hasil disimulasikan sebagai kurang 
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memuaskan bagi Rengam, Kerayong, Sabrang dan Seri Intan. Nilai dr mereka 
adalah kecil (0.52-0.56), tetapi NMAE (0.13-0.25) adalah setanding dengan 
Merlimau dan Sungai Buloh. Simulasi pengeluaran bahan kering vegetatif 
adalah baik untuk Rengam (dr = 0.78, NMAE = 0.20), Kerayong (dr = 0.71, NMAE 
= 0.14) dan Sabrang (dr = 0.76, NMAE = 0.11), tetapi memuaskan untuk 
Merlimau (dr = 0.62, NMAE = 0.23) dan Sungai Buloh (dr = 0.64, NMAE = 0.21). 
Jumlah pengeluaran bahan kering telah disimulasikan dengan cukup tepat 
dengan dr antara 0.71-0.78 dan NMAE antara 0.07-0.17 merentasi semua lokasi 
dan kepadatan penanaman. Rachis (dr = 0.68-0.86, NMAE = 0.11-0.19), pelepah 
(dr = 0.65-0.83, NMAE = 0.11-0.20) dan batang (dr = 0.69-0.82, NMAE = 0.24-0.39) 
lebih tepat daripada yang disimulasikan (dr = 0.43-0.73, NMAE = 0.18-0.30) 
merentasi semua lokasi dan kepadatan tanaman kecuali simulasi biojisim 
batang di Sungai Buloh (dr = 0.38, NMAE = 0.77). Indeks luas daun telah 
disimulasikan dengan cukup tepat untuk Merlimau, Rengam, dan Seri Intan, 
dengan dr antara 0.78-0.84 dan NMAE antara 0.03-0.16. Sebaliknya, indeks luas 
daun disimulasikan sebagai kurang memuaskan untuk Kerayong, Sungai Buloh, 
dan Sabrang, dengan dr antara 0.57-0.62 dan NMAE antara 0.13-0.17. Simulasi 
ketinggian batang sangat baik untuk Merlimau, Kerayong, Seri Intan dan 
Sabrang, dengan nilai dr besar (0.87-0.93) dan nilai NMAE kecil (0.06-0.12). 
Walau bagaimanapun, ketinggian batang telah disimulasikan memuaskan 
untuk Rengam (dr = 0.67, NMAE = 0.39) dan Sungai Buloh (dr = 0.69, NMAE = 
0.32). Selain itu, Sawit berjaya mensimulasikan kesan kejadian El Niño terhadap 
hasil kelapa sawit. Sawit juga memperhitungkan pengaruh tekstur tanah, 
taburan hujan, kepadatan penanaman, dan faktor-faktor meteorologi terhadap 
defisit air. Walau bagaimanapun, kesilapan simulasi meningkat dengan 
peningkatan kepadatan penanaman disebabkan kurangnya pencirian keadaan 
mikroiklim dan penyerapan air tumbuhan di bawah kanopi kelapa sawit yang 
padat, serta keragaman pengukuran yang lebih tinggi untuk kepadatan 
penanaman yang lebih tinggi. Secara kesimpulannya, model kelapa sawit yang 
bernama Sawit telah dibangunkan dan diparameterkan untuk mensimulasikan 
pertumbuhan dan hasil kelapa sawit di bawah pengaruh keadaan cuaca, 
kepadatan penanaman, dan tekstur tanah. Peningkatan dalam representasi 
mikroiklim kelapa sawit dan penyerapan air tumbuhan di bawah kanopi kelapa 
sawit yang padat, penyertaan aktiviti pembungaan, dan penyempurnaan 
mekanisme pemartitionan bahan kering batang boleh meningkatkan ketepatan 
Sawit. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1 Research Background 
 

Oil palm (Elaeis guineensis Jacq.) is one of the world's major vegetable oil crops. 
Global consumption of palm oil over the last two decades has tripled, and 
annual consumption increased from 24.99 million tonnes in 2001 (USDA, 2006) 
to 74.90 million tonnes in 2020 (USDA, 2021) due to the extensive use of palm oil 
in a wide range of consumer products, and production of biofuel (Koh and 
Ghazoul, 2008). Malaysia, the second largest producer and exporter of palm oil 
in the world (USDA, 2021), has benefited considerably from the worldwide 
growing demand for palm oil. The area planted with oil palm had expanded 
from 540,000 hectares in 1960 to 5.87 million hectares in 2020 (MPOB, 2021), with 
Sarawak having the largest planted area and closely followed by Sabah (Figure 
1.1). Peninsular Malaysia has the largest oil palm planted area in Malaysia, with 
2.74 million hectares or 46.7% of the total planted area. In 2021, Malaysia 
exported 15.56 million metric tonnes of palm oil from a total production of 18.12 
million. Together with other palm-based products, the Malaysian palm oil 
industry brought in RM108.52 billion of export earnings to the country (MPOB, 
2022), signifying the economic importance of oil palm to the Malaysian 
economy. 
 

 
 
Figure 1.1: Distribution (%) of oil palm planted area in Malaysia, based on the 
total planted area of 5.87 million hectares recorded in 2020 (MPOB, 2021). 
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Oil palm requires an optimum mean temperature of 24‒33 °C (Corley and 
Tinker, 2016; Paterson et al., 2015). Furthermore, it grows well with at least 5 
hours of sunshine hours per day or equivalent solar radiation of 15‒17 MJ m-2 
day-1 (Corley and Tinker, 2016; Rhebergen et al., 2016) and requires an evenly 
distributed annual rainfall of 2000‒2500 mm (Corley and Tinker, 2016; 
Bakoumé et al., 2013). Oil palm is, however, sensitive to water stress, and the 
production of palm oil is affected by the length and severity of drought (Oettli et 
al., 2018; Caliman and Southwood, 1998). Therefore, extreme weather events 
such as El Niño, which brings much lower rainfall, could significantly impact 
palm oil production through lower fruit bunch formation. This was most notable 
in 2015/2016, when an extreme El Niño event blanketed Malaysia and Indonesia 
(Lim et al., 2017), causing severe water stress to oil palms (Oettli et al., 2018; 
Azlan et al., 2016). As a result, palm oil production in Malaysia reduced as much 
as 11% in 2015 and 5% in 2016 compared to production in 2014, the year 
preceding the onset of El Niño (USDA‒FAS, 2021). Such adverse impact of El 
Niño on palm oil yield underpinned the vulnerability of oil palm to the vagaries 
of climatic changes. 
 

Global warming, mainly driven by rising atmospheric CO2 concentration, is 
projected to continue in the years ahead regardless of efforts to reduce its 
emissions (IPCC, 2018). Under a warmer climate, Malaysia will experience drier 
and more extreme weather in the years ahead (Kwan et al., 2013), and weather 
anomalies such as El Niño will become more frequent and intense (Wang et al., 
2019; Cai et al., 2018, 2014; Keupp et al., 2017). El Niño coupled with land-use 
change such as converting forest to oil palm, can change the partition of surface 
energy balance and increase sensible heat fluxes, which in turn could lead to 
higher surface temperature (Ma’rufah et al., 2021). Mean air temperature in 
Malaysia has increased at a rate of 0.14–0.25 °C per decade (NRE, 2015), and it is 
expected to increase further in tandem with the projected increase in global 
mean air temperature of at least 1.7 °C by the end of the 21st century (Loh et al., 
2016). Furthermore, the rainfall patterns in Malaysia are projected to vary 
substantially in space and time, with a tendency for reduced rainfall from 
December to May by 20‒40% (Loh et al., 2016). Thus, the imminent threat of 
climate change on palm oil production in Malaysia is real. Rising air temperature 
coupled with frequent water deficit will stress oil palm (Oettli et al., 2018) and, 
in turn, reduce palm oil production. Areas under oil palm cultivation in 
Malaysia might reduce substantially under future warmer and drier climates 
(Paterson et al., 2017, 2015).  
 

However, elevated atmospheric CO2 concentration is beneficial to C3 plants like 
oil palms because photosynthesis of C3 plants will be enhanced under elevated 
atmospheric CO2 concentration (Ainsworth and Long, 2005). Thus, the adverse 
effects of heat and water stresses might be moderated by the increased rate of 
CO2 assimilation. For example, oil palm was more tolerant to drought during 
the 2015/2016 El Niño event under high solar irradiance. However, increased 
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CO2 concentration did not increase the photosynthesis rate under reduced solar 
irradiance (Stiegler et al., 2019). On the other hand, oil palm seedlings (Jaafar and 
Ibrahim, 2012; Ibrahim et al., 2010) and mature oil palm (Henson and Harun, 
2005a, b) have shown increased growth after exposure to elevated CO2 
concentration a result of increased rates of CO2 assimilation and lower 
transpiration rates. Therefore, we must understand how oil palm responds to 
weather variables so that crop management adaptation strategies can be 
developed to mitigate the detrimental impacts of weather irregularities on oil 
palm.   
 

Given the complex interactions between weather variables and crop production 
system, crop models have been increasingly used to understand how weather 
variables affect crop production and to assist in the development of crop 
management adaptation strategies such as planting densities, cultivar selection, 
irrigation, fertiliser regimes and crop rotations (Challinor et al., 2018; Asseng et 
al., 2014; Rosenzweig et al., 2014). Although the crop model is a simplified 
mathematical representation of a complex crop-soil-atmosphere system, it 
integrates essential biophysical functions that drive crop growth, such as 
meteorology, photosynthesis, respiration, transpiration, phenology, soil 
evaporation, and uptake of nutrients and water (Asseng et al., 2014; Teh, 2006). 
As such, making it an effective means to study crop performance across diverse 
environments and management practices. Rival (2017) pointed out that breeding 
oil palm for climate change will require multidisciplinary research, and 
modelling responses of oil palm to changing climate is paramount in developing 
climate-resilient oil palm genotypes and crop management practices.  
 

Many oil palm models such as OPSIM (van Kraalingen, 1989 et al.; Gerristma, 
1988), SIMPALM (Dufrêne et al., 1990), GPHOT, GPHOT2, OPLFSIM3, 
OPRODSIM (Henson, 2009, 2006b, 2000, 1989), WaNuLCAS (van Noordwijk et 
al., 2011), ECOPALM (Combres et al., 2012), PALMSIM (Hoffmann et al., 2014), 
APSIM-Oil Palm (Huth et al., 2014), CLM-Palm (Fan et al., 2015), CLIMEX-Oil 
Palm (Paterson et al., 2015) and ORCHIDEE‒MICT‒OP (Xu et al., 2020) have 
been developed especially over the last two decades to meet different objectives 
of studies. These oil palm models differ in regard to model structure, 
parameterization of biophysical processes and model outputs. Though these 
models have been applicable, there are several key features that make them less 
versatile in terms of simulating the responses of oil palm to weather 
irregularities and crop management practices.  
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1.2 Problem Statement 
 

Key features that make the current oil palm models less versatile in terms of 
simulating the responses of oil palm to weather irregularities and crop 
management practices are: 
 
First, the prevailing approach is to use daily or monthly weather data to model 
physiological processes, such as photosynthesis, transpiration, and respiration. 
Nonetheless, according to Ephrath et al. (1996), the use of daily or monthly 
weather data frequently results in deviations when modelling crop responses to 
weather variables. This is because physiological processes immediately respond 
to weather variables, and daily or monthly weather data may not suffice to 
account for these instantaneous responses compared to hourly weather data. A 
potential solution to address this issue is to simulate the hourly patterns of 
weather variables based on available daily weather data. However, this 
approach has not yet been implemented in major oil palm growing regions in 
Malaysia. 
 

Second, except for CLM-Palm (Fan et al., 2015) and ORCHIDEE‒MICT‒OP 
(Xu et al., 2020), all other oil palm models used oil palm’s radiation use efficiency 
(RUE) function to convert the intercepted radiation into gross assimilates. 
Though this RUE function is useful but is empirical and hence less robust in 
simulating photosynthesis responses to rising atmospheric CO2 concentration 
(Streck et al., 2012) and other environmental variables (Wu et al., 2016). In 
contrast, the biochemical photosynthesis model of Farquhar et al. (1980) is more 
mechanistic and has been used extensively to predict responses of 
photosynthesis to environmental variables (Xu et al., 2020; Fan et al., 2015; 
Medlyn et al., 2005; Cramer et al., 2001). However, this biochemical 
photosynthesis model requires the temperature dependency of Rubisco kinetics, 
such as maximum Rubisco carboxylation rate (Vcmax), electron transport rate (J), 
leaf day respiration rate in the light (Rd), CO2 photocompensation point in the 
absence of leaf day respiration (Г*) and mesophyll conductance to CO2 (gm) (von 
Caemmerer, 2000). These parameters and their temperature dependency are, 
however, largely unknown for oil palm, although Xu et al. (2020), Nugroho 
(2018), Meijide et al. (2017) and Fan et al. (2015) had made some measurements 
to estimate the Vcmax of oil palm. 
 

Third, simulations of evapotranspiration or transpiration of oil palm by most of 
oil palm models either use the Penman-Monteith model (Monteith, 1973) or a 
simple transpiration efficiency (TE) coefficient (Huth et al., 2014). Nevertheless, 
this approach appears inadequate to model the microclimate environment 
within and under the oil palm canopies. The transpiration efficiency coefficient 
is an empirical value which might vary seasonally and from place to place, 
depending on weather conditions and management practices (Tfwala et al., 2021; 



© C
OPYRIG

HT U
PM

5 
 

Bennie et al., 1997). Furthermore, it only accounts for water transpired from oil 
palm but ignores soil evaporation which is inadequate as soil evaporation under 
oil palm canopies can be substantial (Röll et al., 2015). On the other hand, the 
Penman-Monteith model only simulates heat fluxes from either soil or crop but 
not both simultaneously. 
 

In contrast, the Shuttleworth-Wallace model (Shuttleworth and Wallace, 1985) 
extends the Penman-Monteith model but allows simultaneous simulation of 
heat fluxes from both soil and crop. This has the advantage of getting a more 
accurate simulation of soil evaporation, especially during wet periods when the 
soil moisture content is high (Fisher et al., 2005). The Shuttleworth-Wallace 
model has done well in many studies (Yan and Oue, 2011; Iritz et al., 1999; 
Vörösmarty et al.,1998; Farahani and Bausch, 1995). However, like its 
predecessor, the main drawback is the requirement to measure its parameters 
(Farahani and Ahuja, 1996) which has not been done for oil palm. 
 

Fourth, the first oil palm model, OPSIM (van Kraalingen et al., 1989; van 
Kraalingen, 1985), used respiration coefficients to simulate the maintenance 
respiration of oil palm. These coefficients were calculated from nitrogen and 
mineral content determined in different plant parts of oil palm. This approach is 
touted to be more mechanistic (Penning de Vries, 1975, 1972) and was adopted 
by SIMPALM (Dufrêne et al., 1990), OPRODSIM (Henson, 2009) and PALMSIM 
(Hoffmann et al., 2014). The maintenance respiration coefficients used in the 
SIMPALM (Dufrêne et al., 1990) and PALMSIM (Hoffmann et al., 2014) were 
computed from nitrogen and mineral contents determined from a single tenera 
x dura (L2T x D10D) oil palm progeny grown in Ivory Coast. On the other hand, 
OPSIM (van Kraalingen et al., 1989; van Kraalingen, 1985) and OPRODSIM 
(Henson, 2009) determined their maintenance respiration coefficients using 
nitrogen and mineral contents reported by Ng et al. (1968), which were primarily 
obtained from dura oil palm grown under good growing conditions in Malaysia. 
These maintenance respiration coefficients are rather dated and may not apply 
today for the current high-yielding tenera oil palm.  
 

Fifth, the growth of oil palm can be separated into vegetative and reproductive 
growth. Vegetative growth consists of leaf, trunk, and root growth (Corley and 
Tinker, 2016). However, the methods used to simulate vegetative growth are 
primarily empirical, based on the vegetative dry matter requirement of oil palm 
(Henson, 2009; Dufrêne et al., 1990; van Kraalingen, 1985) or phytomer 
phenology of oil palm (Xu et al., 2020; Fan et al., 2015; Combres et al., 2013). 
Therefore, to minimize errors in simulating vegetative growth, it would be 
necessary to use the updated data on phytomer phenology or dry matter 
requirement and partitioning derived from the current tenera oil palm.  
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Sixth, planting density is a crucial crop management strategy that drives palm 
oil yield (Palat et al., 2012; Nazeeb et al., 2008; Nazeeb et al., 1989; Breure, 1988; 
Corley, 1973). Although commercial oil palm plantations generally plant 
between 128 and 148 palms per hectare but planting densities higher than this 
range have been explored to increase palm oil yield (Palat et al., 2012; Breure, 
2010; Nazeeb et al., 2008; Breure et al., 1990; Nazeeb et al., 1989; Breure and 
Corley, 1983). Changes in planting density will affect interception of solar 
irradiance by oil palm canopies, microclimate within and under oil palm 
canopies and soil water balance, consequently affecting the growth and yield of 
oil palm. Having able to use a crop model to characterize the interactions 
between planting density and environmental variables will give better insight 
into how planting density can be managed to drive palm oil production. 
However, except for OPRODSIM (Henson, 2009), the present oil palm models 
cannot essentially simulate the growth and yield of oil palm grown under 
different planting densities.   
 

1.3 Objectives of Research 
 

Given the drawbacks of the current oil palm models, the present study was 
undertaken to develop and validate a versatile and more mechanistic oil palm 
model that assesses the impacts of weather irregularities and crop management 
practices on the growth and yield of oil palm specifically under Malaysian 
environment and management. To achieve this overall objective, the following 
specific objectives were undertaken: 
 
i. To parameterise the meteorological models for hourly estimations of air 

temperature, relative humidity, and solar irradiance.  
ii. To parameterise the biochemical model of C3 leaf photosynthesis through 

photosynthesis measurements on different ages of tenera oil palm in the 
fields. 

iii. To parameterise maintenance respiration and dry matter partitioning 
coefficients using nitrogen and mineral contents and dry matter production 
data from destructive measurements on different ages of current tenera oil 
palm. 

iv. To parameterise the Shuttleworth-Wallace model through measurements on 
stomatal conductance, trunk, and canopy height of different ages of tenera 
oil palm. 

v. To develop a new oil palm growth and yield model and validate its accuracy 
against observed data from six oil palm planting density trials conducted in 
Malaysia. 

vi. To examine the impact of weather anomalies such as El Niño on oil palm 
growth and yield through simulations. 
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1.4 Limitation of the Study 
 

The present study only focuses on developing an oil palm growth and yield 
model that is applicable to the Dura x Pisifera oil palm progeny. In addition, the 
present study does not examine the effects of La Niña and fertiliser on oil palm 
growth and yield through simulations. 
 

1.5 Structure of the PhD Thesis 
 

The thesis consists of seven chapters, with the first chapter outlining the research 
background and objectives. In Chapter 2, the growth and yield of oil palm and 
their simulation methods are reviewed. Chapters 3 through 5 have been 
published in peer-reviewed journals, while Chapter 6 appears as a book chapter. 
Chapter 7 concludes the thesis by summarizing the research findings and 
discussing how they relate to the research objectives. Additionally, 
recommendations for future research are provided.  
 

1.5.1 Chapter 3 
 

The third chapter is published by Cheah See Siang, Christopher Teh Boon Sung, 
Mohd Razi Ismail and Mohd Rafii Yusop (2020). Modelling hourly air 
temperature, relative humidity and solar irradiance over several major oil 
palm growing areas in Malaysia. Journal of Oil Palm Research Vol. 32(1): 34–49. 
In this chapter, a study was undertaken with the aim to assess the precision of 
various meteorological models in estimating hourly air temperature, relative 
humidity, and solar irradiance values across several significant oil palm 
cultivation regions in Malaysia. The validated meteorological models were used 
to generate hourly estimations of these weather variables, which were then used 
as inputs for the oil palm growth and yield model.  
 

1.5.2 Chapter 4 
 

The fourth chapter is published as S.S. Cheah and C.B.S. Teh (2020). 
Parameterization of the Farquhar-von Caemmerer-Berry C3 photosynthesis 
model for oil palm. Photosynthetica 58(3): 769-779. This research was undertaken 
to determine critical model parameters of the Farquhar-von Caemmerer-Berry 
(FvCB) C3 biochemical photosynthesis model for oil palm. The key FvCB model 
parameters such as photocompensation point (Γ*), mesophyll conductance (gm), 
maximum rates of Rubisco carboxylation (Vcmax) and electron transport (Jmax), 
triose phosphate utilization (TPU) and their temperature dependencies between 



© C
OPYRIG

HT U
PM

8 
 

25 and 40°C in oil palm were determined. The derived values of these 
parameters were then used to parameterize the photosynthesis module of the oil 
palm growth and yield model.  
 

1.5.3 Chapter 5 
 

The fifth chapter is published as Cheah See Siang, Siti Aishah Abd Wahid and 
Christopher Teh Boong Sung (2022). Standing biomass, dry matter production, 
and nutrient demand of tenera oil palm. Agronomy 12, 426. This research was 
undertaken to determine the aboveground vegetative biomass, dry matter 
production and partitioning, and nutrient contents in different plant parts of 
tenera oil palms grown under current crop management standards in Malaysia. 
The results were used to determine dry matter partitioning coefficients and 
maintenance respiration coefficients of oil palm. 
 

1.5.4 Chapter 6 
 

The sixth chapter was published as Christopher Teh Boon Sung and Cheah See 
Siang (2018). Modelling crop growth and yield in palm oil cultivation. In 
Achieving sustainable cultivation of oil palm. Volume 1: Introduction, breeding and 
cultivation techniques. Alain Rival (ed.) Burleigh Dodds Science Publishing, 
Cambridge, UK. This book chapter describes the development of a new oil palm 
growth and yield model called PySawit, and its validation using data collected 
from an oil palm planting density trial. Since the publication of PySawit in 2018, 
further improvements have been made and the oil palm growth and yield model 
has been renamed as Sawit. Additional trial data collected from six different 
locations in Malaysia were used to further validate Sawit. Further development 
of Sawit is described and additional validations are discussed in Chapter 6. 
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