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Controlled environment systems such as glasshouses regularly utilise elevated 
CO2 (eCO2) to boost yield and quality in the production of high-value crops. 
Although this approach is quite commonly practised in commercial horticulture, 
its implementation on major crops such as rice is technically not feasible, 
especially elevating CO2 throughout the production field for the entire life cycle 
of the crop. During the early stage of rice plant development, the structure of the 
leaf is sensitive to environmental factors, including responses to CO2 levels. In 
this project, the response of rice seedlings exposed to eCO2 only during the initial 
nursery phase before field transplant can have a lasting impact until the harvest 
period was investigated. The study aims include understanding the effects of 
early-stage eCO2 treatment on rice growth, leaf stomatal properties, 
photosynthetic performance and yield components at the rice seedling stage and 
mature stage. This experiment used two local rice varieties, namely MR219 and 
MR263. Rice plants were grown in a two-stage procedure. First, seedlings were 
grown in DIY ambient CO2 (400 ppm) and elevated CO2 (~800 ppm) chambers 
for 24 days and then transplanted to a rain shelter structure where the plants 
were grown to harvest. The eCO2 source came from the fermentation of a 
mixture of sugar, distilled water, and baker’s yeast (Saccharomyces cerevisiae) 
granules. The first experiment showed that eCO2 priming had significantly 
increased the seedling height (38-42%), the number of leaves (26-30%), leaf 
thickness (22-38%), leaf length (8-32%) and dry weight (58-69%) for MR219 and 
MR263 varieties. In general, eCO2 treatment resulted in a larger stomatal 
complex (14-46%) and stomatal pore area dimensions (62-64%) with reduced 
stomatal density (11-19%) than aCO2-grown leaves also in both varieties. 
Moreover, the intrinsic water use efficiency (iWUE) of eCO2 leaves was also 38-
68% higher in both MR219 and MR263. In terms of photosynthetic performance, 
the maximum assimilation rate (Amax), maximum Rubisco carboxylation rate 
(Vcmax), maximum electron transport rate (Jmax), the quantum yield of PSII 
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(ΦPSII), and quantum yield of CO2 assimilation (ΦCO2) were significantly higher 
for eCO2 rice seedlings than aCO2 for both rice varieties. In the second 
experiment, significant photosynthetic parametres enhancement (Amax, Jmax, 
ΦPSII, ETR, ΦCO2) were quantified in eCO2 MR263 flag leaves but not in 
MR219. Interestingly, both rice varieties' seedlings when exposed to eCO2 
maintained a significantly higher Vcmax (> 10%) during the mature phase of plant 
development than plants grown continuously under aCO2. In terms of yield 
components, both varieties exposed to early-stage eCO2 treatment showed a 
significantly 14-27% higher filled spikelet number per panicle, 3% higher 1000-
grain weight, 11.5-12.5% increase in tillers and 10-12% panicles numbers per 
plant with significantly 5-6% lower plant height. The yield potential shows an 
increase of 4-7% for MR219 and MR263 eCO2-treated seedlings compared to 
aCO2. In conclusion, brief and targeted eCO2 enhancement during the seedlings 
phase demonstrates a promising way of improving plant growth development, 
photosynthetic properties and rice yield performance. CO2 priming has been 
suggested as a potential strategy for improving the productivity of rice crops, 
especially in regions where maintaining elevated CO2 levels throughout the 
entire crop life cycle is not feasible or practical. By exposing rice plants to 
elevated CO2 levels during their early growth stages, farmers may be able to 
take advantage of the benefits of CO2 priming without having to maintain 
elevated CO2 levels throughout the entire crop life cycle and, in turn, increase 
farmers' income. This study can contribute to the development of more 
sustainable and efficient agricultural practices that can meet the growing 
demand for food. 
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Sistem persekitaran terkawal seperti rumah kaca kerap menggunakan CO2 
tinggi (eCO2) untuk meningkatkan hasil dan kualiti dalam pengeluaran tanaman 
bernilai tinggi. Walaupun pendekatan ini agak biasa diamalkan dalam hortikultur 
komersial, pelaksanaannya pada tanaman utama seperti padi secara 
teknikalnya tidak boleh dilaksanakan, terutamanya meningkatkan CO2 di seluruh 
ladang pengeluaran untuk sepanjang kitaran hayat tanaman. Semasa peringkat 
awal perkembangan pokok padi, struktur daun adalah sensitif terhadap faktor 
persekitaran, termasuk tindak balas terhadap paras CO2. Dalam projek ini, 
tindak balas anak benih padi yang terdedah kepada eCO2 hanya semasa fasa 
awal sebelum pemindahan ladang boleh memberi impak yang berpanjangan 
sehingga ke dalam tempoh penuaian telah dikaji. Kajian ini bertujuan untuk 
memahami kesan rawatan eCO2 di peringkat awal terhadap pertumbuhan padi, 
sifat stomata daun, prestasi fotosintesis dan komponen hasil pada peringkat 
anak benih padi dan peringkat matang. Eksperimen ini menggunakan dua jenis 
padi tempatan iaitu MR219 dan MR263. Pokok padi ditanam dalam dua 
peringkat prosedur. Pertama, anak benih ditanam dalam ruang ambien DIY 
(aCO2) dan CO2 tinggi (~800 ppm) selama 24 hari dan kemudian dipindahkan 
ke struktur perlindungan hujan di mana tumbuhan ditanam sehingga penuaian. 
Sumber eCO2 yang digunakan berasal daripada penapaian campuran gula, air 
suling, dan butiran yis pembakar (Saccharomyces cerevisiae). Eksperimen 
pertama menunjukkan bahawa rawatan eCO2 telah meningkatkan ketinggian 
anak benih dengan ketara (38-42%), bilangan daun (26-30%), ketebalan daun 
(22-38%), panjang daun (8-32%) dan berat kering (58-69%) untuk varieti MR219 
dan MR263. Secara amnya, rawatan eCO2 menyebabkan stomata kompleks 
yang lebih besar (14-46%) dan dimensi kawasan liang stomata (62-64%) 
dengan ketumpatan stomata yang berkurangan (11-19%) daripada daun aCO2 
juga untuk kedua-dua varieti. Selain itu, kecekapan penggunaan air intrinsik 
(iWUE) daun eCO2 juga adalah 38-68% lebih tinggi untuk MR219 dan MR263. 
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Dari segi prestasi fotosintesis, kadar asimilasi maksimum (Amax), kadar 
karboksilasi Rubisco maksimum (Vcmax), kadar pengangkutan elektron 
maksimum (Jmax), hasil kuantum PSII (ΦPSII), dan hasil kuantum asimilasi CO2 
(ΦCO2) adalah ketara lebih tinggi untuk anak benih padi eCO2 daripada aCO2 
untuk kedua-dua varieti padi. Dalam eksperimen kedua, peningkatan parameter 
fotosintesis yang ketara (Amax, Jmax, ΦPSII, ETR, ΦCO2) diperoleh dalam daun 
pengasuh eCO2 MR263 tetapi tidak pada MR219. Menariknya, kedua-dua anak 
benih varieti padi apabila terdedah kepada eCO2 mengekalkan Vcmax yang jauh 
lebih tinggi (> 10%) semasa fasa matang berbanding tanaman yang ditanam 
secara berterusan dengan aCO2. Dari segi komponen hasil, kedua-dua varieti 
yang terdedah kepada rawatan eCO2 peringkat awal menunjukkan bilangan bulir 
biji padi terisi yang ketara 14-27% lebih tinggi bagi setiap tangkai, berat 1000 biji 
3% lebih tinggi, peningkatan 11.5-12.5% dalam bilangan anak pokok dan 
peningkatan 10-12% bilangan tangkai bagi setiap rumpun dengan ketinggian 
pokok 5-6% lebih rendah dengan ketara berbanding aCO2. Potensi hasil 
menunjukkan peningkatan sebanyak 4-7% untuk anak benih MR219 dan 
MR263 yang dirawat eCO2 berbanding dengan aCO2. Secara kesimpulannya, 
rawatan peningkatan CO2 yang disasarkan semasa fasa awal anak benih padi 
mampu menjanjikan peningkatan pertumbuhan tanaman padi, tambahbaik ciri-
ciri fotosintetik dan prestasi hasil padi. Rawatan eCO2 pada peringkat awal ini 
dicadangkan sebagai strategi yang berpotensi untuk meningkatkan produktiviti 
tanaman padi, ini memandangkan mengekalkan tahap CO2 yang tinggi 
sepanjang kitaran hidup tanaman padi adalah tidak praktikal. Petani mungkin 
dapat mengambil keuntungan dari manfaat dengan kaedah ini tanpa perlu 
mengekalkan tahap CO2 yang tinggi sepanjang kitaran hidup tanaman padi dan 
pada masa yang sama dapat meningkatkan pendapatan petani. Kajian ini dapat 
menyumbang kepada pembangunan amalan pertanian yang lebih mampan dan 
efisyen yang dapat memenuhi permintaan makanan yang semakin meningkat. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

Rice (Oryza sativa L.) is indeed an important cereal for its role as the staple food 
for almost half of the world's population (Sekhar, 2018). GRiSP (2013) reported 
that over half of the world's population relies on rice for at least 20% of their daily 
caloric intake. However, rice production is not keeping pace with the demand 
stemming from the ever-rising global human population. As a result, agricultural 
productivity is in the need to improve remarkably to cater for the hungry people 
who are going to reach 9.9 billion by 2050, an increase of more than 25% from 
the current population of around 7.8 billion (PRB, 2021) .  

CO2 is one of the substrates that limits photosynthesis, particularly in the C3 
plant system living at the current CO2 level. Thus increasing CO2 levels in crop 
production has been employed as a way to enhance the carboxylation rate of 
photosynthesis while minimizing photorespiration through oxygenation reaction 
suppression of Rubisco (Bhagat et al., 2014). This simple method increases 
photosynthesis efficiency which generally results in better plant performance that 
leads to a higher yield (Sakai et al., 2019; Usui et al., 2016). In the Free-Air 
Carbon dioxide Enrichment (FACE) experiment, elevated CO2 (eCO2) will 
promote the net photosynthetic of the plant and thus plant productivity, according 
to Long et al., 2004 and Leakey et al., 2009. eCO2 also has been used widely 
for many years as a CO2 gas fertilizer to increase photosynthetic performance 
and yield in vegetables and high-value crops grown in greenhouses (Bisbis et 
al., 2018).  

1.2 Problem Statement 

The CO2 enrichment method is relatively common in commercial horticultural 
crop production, due to the massive areas involved in major food crops such as 
rice, it is technically not feasible to elevate CO2 throughout the whole rice crop 
life cycle. In addition, large-scale manipulation of atmospheric CO2 levels is not 
practical or economically feasible. Furthermore, rice is a unique crop that is 
typically grown in flooded paddies, which complicates attempts to manipulate 
CO2 levels. The flooded fields make it difficult to regulate CO2 levels within the 
rice canopy, as the water covering the fields can trap and release CO2 at different 
rates, making it difficult to maintain consistent CO2 levels. Given these 
limitations, CO2 priming is suggested as a potential alternative to continuous CO2 
elevation for rice crops. 
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Early-stage CO2 enrichment or CO2 priming is a technique that involves 
exposing crops to elevated levels of carbon dioxide (CO2) for a short period 
during their early growth stages. The idea behind this technique is that by 
subjecting plants to higher concentrations of CO2 early on, they can become 
more efficient at utilizing CO2 throughout their life cycle, even when grown under 
normal CO2 concentrations. This technique can help to increase rice yields and 
improve crop productivity more practically and sustainably. 

1.3 Objectives 

In this study, we aim to investigate the effects of early-stage CO2 enrichment on 
fundamental photosynthetic properties, growth, and yield in two rice varieties, 
MR219 and MR263. The objective of this study is: 
 

1. To evaluate how eCO2 influences rice seedling establishment before 
they could be transplanted into the field for MR219 and MR263 rice 
varieties. 

2. To assess the efficacy of growing rice in eCO2 during the seedling 
stage in improving rice harvest components in both MR219 and 
MR263 rice varieties. 

 
 
The results of this study could have significant implications for rice production 
and food security in the face of climate change. By identifying a potential method 
for enhancing the efficiency of photosynthesis and improving growth and yield in 
rice plants, this study may contribute to the development of more sustainable 
and efficient agricultural practices that can meet the growing demand for food. 
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