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The aim of this study was to investigate the carbon flux through lipid biosynthesis 

pathways in the oil palm (Elaeis guineensis Jacq. tenera) using metabolic control 

analysis (MCA). Three types of tissue from oil palm, namely liquid culture, plastid and 

mesocarp were used. The results showed mesocarp tissue was the most suitable tissue 

for carbon flux analysis because it incorporated the radioactive precursors mainly into 

triacylglycerol (TAG). Further analysis on different stages of fruit development was 

carried out using mesocarp tissue at 12, 1 5  and 20 weeks after anthesis (JV AA). It was 

confirmed that 20-W AA mesocarp tissue was the best stage of fruit development for 

metabolic flux studies because it reflected biosynthesis of storage lipid. Three modes of 

radiolabel introduction into the oil palm fruits were investigated, namely injecting the 

radiolabel into the fruits still attached to the palm, injecting the radiolabel into the loose 

fruit and injecting the radio label into incubation mixture containing meso carp tissue 

slices. The level of radioactivity in fruits attached to the palm was lower than the other 

two modes of radiolabel introduction. Carbon flux of lipid b iosynthesis pathways was 

modulated by temperature and the inhibitor 2-bromooctanoate. Radiolabels [ 1_14C] 
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acetate and [U_1-lC] glycerol were used to monitor the carbon flux through the lipid 

biosynthesis pathways. Temperature caused a constraint in the distribution of 

radioactivity at the level of diacylglycerol acyltransferase (DAGAT). Therefore, 

DAGAT may be a regulatory enzyme. 2-Bromooctanoate inhibited the carbon flux of 

lipid biosynthesis pathways . The overall results of MCA suggested that the control of 

carbon flux in the oil palm may be distributed over two blocks of the lipid metabolic 

pathway, namely the fatty acid biosynthesis block and TAG formation block. Acetyl­

CoA carboxylase (ACCase) plays an important role in fatty acid biosynthesis block 

while DAGAT plays an important role in the TAG formation block. The molecular 

structure of ACCase was investigated using immunoblotting with streptavidin and 

screening of ACCase gene in 1 5-W AA oil palm meso carp cDNA library. Immunoblots 

with streptavidin showed the presence of large molecular weight (approximately 180 

kDa) multifunctional ACCase and smaller molecular weight (approximately 58 kDa) 

multisubunit ACCase in oil palm mesocarp. Screening for ACCase gene in 1 5 -W AA 

oil palm mesocarp cDNA library showed several strong signals corresponding to the 

putative �-carboxyl transferase subunit of ACCase. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Master Sains 

ANALISIS FLUKS KARBON TAP AK JALAN BIOSINTESIS LIPID DI 

DALAM POKOK SAWIT (ELAEIS GUINEENSIS JACQ. TENERA) 

Oleh 

EMIL Y QUEK MING POH 

Mac 2002 

Pengerusi: Profesor Madya Ong King Kok, Ph.D. 

Fakulti: Perubatan dan Sains Kesihatan 

Matlamat kajian ini adalah untuk mengkaji fluks karbon melalui tapak jalan biosintesis 

lipid di dalam pokok sawit (Elaeis guineensis Jacq. tenera) dengan menggunakan 

analisis kawalan metabolik (MeA). Tiga jenis tisu daripada pokok sawit iaitu kultur 

cecair, p lastid dan mesokarpa telah digunakan. Hasil menunjukkan bahawa tisu 

mesokarpa merupakan tisu yang sangat sesuai untuk analisis fluks karbon kerana ia 

menukarkan prekursor radioaktif kebanyakannya ke dalam triasilgliserol (TAG). 

Analisis lanjutan ke atas peringkat perkembangan buah yang berlainan telah dilakukan 

dengan menggunakan tisu mesokarpa pada 1 2, 1 5  dan 20 minggu selepas 

pendebungaan (W AA). Tisu mesokarpa pada 20 W AA telah disahkan sebagai 

peringkat perkembangan buah yang terbaik untuk kajian fluks metabolik kerana ia 

mengimbas biosintesis penyimpanan lipid. Tiga cara kemasukan penanda radioaktif ke 

dalam buah sawit iaitu menyuntik penanda radioaktif ke dalam buah yang masih di 

pokok, menyuntik penanda radioaktif ke dalam buah yang dipetik dan menyuntik 

penanda radioaktif ke dalam larutan eraman yang mengandungi hirisan tisu mesokarpa 

telah dikaj i. Aras aktiviti radioaktif dalam buah yang masih di pokok adalah lebih 
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rendah berbanding dengan dua cara kemasukan penanda radioaktif yang lain. Fluks 

karbon dalam tapak jalan biosintesis lipid telah dimodulasikan o leh suhu dan perencat 

2-bromooktanoat. Penanda radioaktif [1 _14C] asetat dan [U_14C] gliserol telah 

digunakan di dalam kajian ini untuk memantau fluks karbon melalui tapak jalan 

biosintesis lipid. Suhu menyebabkan rencatan dalam penyebaran aktiviti radioaktif 

pada peringkat diasilgliserol asiltransferase (DAGAT). Oleh itu, DAGAT mungkin 

merupakan enzim pengawalatur. 2-Bromooktanoat mereneat fluks karbon dalam tapak 

jalan biosintesis lipid. Hasil keseluruhan MCA mencadangkan kawalan fluks karbon 

dalam buah sawit disebarkan melalui dua blok dalam tapak jalan metabolik lipid iaitu 

biok biosintesis asid Iemak dan biok pembentukan TAG. AsetiI-CoA karboksilase 

(ACCase) memainkan peranan penting dalam biok biosintesis asid Iemak manakaia 

DAGAT memainkan peranan penting dalam b lok pembentukan TAG. Stuktur 

molekular ACCase telah dikaji dengan menggunakan pembiotan Imuno dengan 

streptavidin dan penyaringan gen ACCase dalam koleksi eDNA 1 5-W AA mesokarpa 

sawit. Pemblotan imuno dengan streptavidin menunjukkan kehadiran protein berberat 

molekul besar (kira-kira 1 80 kDa) iaitu ACCase pelbagai-fungsi dan protein berberat 

molekul keeil (kira-kira 58 kDa) iaitu ACCase pelbagai-subunit di dalam mesokarpa 

sawit. Penyaringan gen ACCase dalam koleksi eDNA 1 5 -WAA mesokarpa sawit telah 

menunjukkan beberapa signal yang menyamai subunit p-karboksil transferase ACCase. 
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CHAPTER 1 

INTRODUCTION 

Recent advances in biotechnology, such as in genomics, proteomics, DNA microarray 

and bioinformatics, have enabled plants to be modified to produce novel products. 

These novel products include biodegradable plastics (Poirier et aI. , 1 992), antibodies 

(Hiatt et aI. , 1 989; Ma and Hein, 1 995) and interferon (De Zoeten et aI., 1 989). 

Palm oil has become an important edible oil over the last few decades with a 

production of about 1 8 .2  million tonnes in 1 996-2000 from 3 .7 million tonnes in 1 976-

1 980 when it supplied a mere 7 . 1 % of the world's oils and fats (Basiron, 2000). It now 

contributes 23 % to the world's oils and fats production, making it the second-most 

produced oil after soybean oil (Gunstone, 200 1 ). The oil palm is the highest-yielding 

oil crop in the world, surpassing the coconut (the next highest-yielding o il crop) by 

about 50-1 00% and other oil crops by even more (Basiron, 2000). 

Malaysia is the largest producer of palm oil with 60% of the world production (Chow, 

1 997). Palm oil is predicted to become the major oil in the world by 201 2  (Oil World, 

1 999), but the stiff competition from other oils has made it necessary to diversify its 

use. In addition, novel higher value-added products can be made producible by the oil 

palm by employing biotechnology methods such as recombinant DNA technology and 

genomics (Cheah, 1 999). However, this requires a detailed understanding of the basic 

plant metabolism. 



Plant lipid biosynthesis has been much studied in recent years (Browse and SomelVille, 

1 99 1 ;  Harwood, 1 999 ; Ohlrogge and Jaworski, 1 997; Slabas and Fawcett, 1 992) but 

there remains much more to be learnt. To manipulate the oil palm for novel oils such as 

high oleate (Cheah, 1 997) would require substantially more information on the 

regulation of lipid biosynthesis. 

As metabolic pathways are under multi-step control, unraveling a single step or an 

individual enzyme is insufficient to understand the entire metabolism. Indeed, the 

converse is needed - to have an overall picture of the metabolic pathway before the 

particular steps can be understood. This can be achieved by applying the metabolic 

control analysis (MCA). 

In most plants , including the oil palm, the storage lipids are mainly triacylglycerols 

(TAGs) (Harwood, 1980; Murphy, 1 993). The metabolic pathways to TAG involve 

acetyl-CoA as the immediate carbon source, and information on the metabolic flux will 

be useful in modeling the carbon flux through pathways . This work was therefore to 

investigate the carbon flux in lipid biosynthesis by the oil palm using a radiolabel. It is 

hoped that the information gained may be useful in diverting the carbon to the 

formation of higher-value products by genetic manipulation. 

To increase the production of a metabolite(s), it is necessary to manipulate a reaction, 

or a set of reactions, over another. However, the manipulation may still not result in 

production of the metabolite(s) if the necessary control mechanisms are not in place. 

Therefore, a comprehensive understanding of the entire cellular metabolism is needed. 
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Currently, attempts are being made to design cellular metabolism in order to maximize 

output of the desired metabolites . But the requisite prelude to this is quantification of 

the metabolite flux by MCA. 

The objectives of this research were to : 

1 )  Investigate carbon flux through the oil palm lipid biosynthesis pathway(s). 

2) Apply MCA for a better understanding of the overall quantitative control structure 

of the lipid biosynthesis pathway(s). 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Oil Palm 

Oil palm is a perennial oil-bearing crop that has an economic life of about 25 years 

(Gascon et aI., 1 989; Basiron, 200 1 ). It begins to bear fruit two to three years after 

planting (Basiron, 200 1 ). It is a unique crop that yields two types of oil, crude palm oil 

(CPO) from the mesocarp of the fruit and palm kernel oil (PKO) from the seed or 

kernel. These two oils have different physical and chemical properties. CPO contains 

mainly palmitic acid (C1 6 :0) and oleic acid (C1 8 : 1 ), the two most common fatty acids 

in nature while PKO contains mainly lauric acid (C1 2 :0). 

The oil palm fruit is a sessible drupe which is usually oval in shape. The length of the 

fruit is 2 .5  to 5.0 cm and 2 .5 cm in diameter. It may weigh from 3 to 30 g (Godin and 

Spensley, 1 971 ; Gascon et aI., 1 989). 

The oil palm fruit consists of the mesocarp, the shell or endocarp and the kernel as 

shown in Figure 2 . 1 .  The mesocarp or pulp of the ripe oil palm fruit is yellowish­

orange in colour. It is oily and fibrous (Vaughan, 1 970). The outer layer of oil palm is 

called exocarp or epicarp. It shows variation in colour through yellow, orange, red, 

brown and black according to the variety (Cobley and Steele, 1 976). 


