
© C
OPYRIG

HT U
PMMETAMODEL CRITICS APPROACH FOR DESIGNING METAMODELS IN

MODEL-DRIVEN SOFTWARE ENGINEERING

By

MOHAMMAD ALIF BIN MOHAMMAD ALLAUDIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra
Malaysia, in Fulfilment of the Requirements for the Degree of Master of

Science

July 2021

FSKTM 2021 14

© C
OPYRIG

HT U
PM

All material contained within the thesis, including without limitation text, logos,
icons, photographs and all other artwork, is copyright material of Universiti Putra
Malaysia unless otherwise stated. Use may be made of any material contained
within the thesis for non-commercial purposes from the copyright holder.
Commercial use of material may only be made with the express, prior, written
permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

© C
OPYRIG

HT U
PM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of Master of Science

METAMODEL CRITICS APPROACH FOR DESIGNING METAMODELS IN
MODEL- DRIVEN SOFTWARE ENGINEERING

By

MOHAMMAD ALIF BIN MOHAMMAD ALLAUDIN

July 2021

Chair : Norhayati Mohd Ali, PhD
Faculty : Computer Science and Information Technology

The advances of Model-Driven Engineering (MDE) or Model-Driven Software
Engineering (MDSE) have motivated the use of metamodeling approach in the
development of software systems. Metamodeling is the key concept in MDSE
approach that describes how domain models are organized: their ontology,
syntax and semantic. The model’s abstraction levels, and relations of levels are
also defined via metamodeling approach. Many software developers applied the
MDSE via metamodel-based approach for software development in various
domains. However, one of the challenges in MDSE is the quality of the
metamodels. A study reported that metamodels possibly have quality defects
because metamodel design is related to the cognitive ability of metamodel
designers. Hence, the research problems in metamodel design includes syntax
errors, poor-constructs, over complex-constructs, semantic defects, and poor
quality of the design. Some of the problems in metamodel design includes syntax
errors, poor-constructs, over complex-constructs and semantic defects. Many
researchers have proposed several guidelines and rules to assist the software
developers on how to design a quality metamodel. However, an automated
approach to check and detect the errors in metamodel design is still lacking.
Thus, in this research, a critic-based approach is proposed to detect metamodel
design errors in an automated way and provide suggestions to improve the
metamodel design. The research scope is focused on designing a metamodel
design using Unified Modeling Language (UML) Class Diagram notation. The
aim of this research is to integrate a critic-based approach within modelling tool
to assist the software developers in designing a quality metamodel design in
MDSE.

The research consists of several phases to achieve the research aim. The early
phase of this research was initiated by identifying the requirements of a quality
metamodel design via literature review analysis. Several rules and guidelines in
designing quality metamodel as proposed by previous researchers are obtained

© C
OPYRIG

HT U
PM

ii

in the initial phase. In the intermediate phase, metamodel critics are created
based on the rules and guidelines of a quality metamodel. A prototype to
demonstrate the proof of concept for metamodel critics was developed. Several
exemplars of metamodels are used to demonstrate the application of metamodel
critics. The final phase of this research is to perform a user evaluation to assess
the usability and effectiveness of metamodel critic approach in designing a
quality metamodel.

The main contribution of this research is the mechanism to detect metamodel
design errors and provide suggestions for improvement of metamodel design in
MDSE via critic-based approach. Another important contribution is the
development of a metamodel critic tool that can be applied to assist software
developers in designing a quality metamodel using the Unified Modelling
Language (UML) notations.

© C
OPYRIG

HT U
PM

iii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk Ijazah Sarjana Sains

PENDEKATAN KRITIS METAMODEL UNTUK MEREKA BENTUK
METAMODEL DALAM KEJURUTERAAN PERISIAN BERPANDUKAN

MODEL

Oleh

MOHAMMAD ALIF BIN MOHAMMAD ALLAUDIN

Julai 2021

Pengerusi : Norhayati Mohd Ali, PhD
Fakulti : Sains Komputer dan Teknologi Maklumat

Kemajuan dalam Kejuruteraan Berpandukan Model (KBM) atau Kejuruteraan
Perisian Berpandukan Model (KPBM) telah memberi motivasi dalam
penggunaan pendekatan metamodel di dalam pembangunan sistem perisian.
Metamodel ialah konsep utama dalam pendekatan KPBM yang menerangkan
bagaimana model domain disusun: ontologi, sintaks, dan semantik. Tahap
pengabstrakan model dan tahap hubungan model juga telah ditakrifkan melalui
pendekatan metamodel. Kebanyakan pembangun perisian menggunakan
KPBM melalui pendekatan berasaskan metamodel untuk pembangunan perisian
dalam pelbagai domain. Walau bagaimanapun, salah satu cabaran dalam KPBM
ialah kualiti bagi metamodel. Oleh itu, masalah kajian dalam reka bentuk
metamodel termasuk ralat sintaks, binaan yang lemah, binaan yang lebih
kompleks, kecacatan semantik dan kualiti reka bentuk yang rendah. Satu kajian
melaporkan bahawa metamodel mungkin mempunyai kecacatan kualiti kerana
reka bentuk metamodel berkait dengan keupayaan kognitif pereka bentuk
metamodel. Beberapa masalah reka bentuk metamodel termasuk kesalahan
sintaks, binaan tidak memuaskan, binaan terlampau kompleks dan kesalahan
semantik. Ramai penyelidik telah mencadangkan beberapa garis panduan dan
peraturan untuk membantu pembangun perisian tentang cara untuk mereka
bentuk satu metamodel yang berkualiti. Walau bagaimanapun, pendekatan
automatik yang menyemak dan mengesan kesalahan pada reka bentuk
metamodel masih lagi kekurangan. Oleh itu, dalam kajian ini, pendekatan
berasaskan kritik telah dicadangkan bagi mengesan kesalahan reka bentuk
metamodel secara automatik dan menyediakan cadangan untuk memperbaiki
reka bentuk metamodel. Skop penyelidikan tertumpu kepada mereka bentuk
reka bentuk metamodel menggunakan tatatanda Rajah Kelas Bahasa
Permodelan Bersepadu (UML). Matlamat penyelidikan ini ialah untuk
mengintegrasikan pendekatan berasaskan kritik dalam alat pemodelan untuk
membantu pembangun perisian mereka bentuk metamodel yang berkualiti
dalam KPBM.

© C
OPYRIG

HT U
PM

iv

Penyelidikan ini merangkumi beberapa fasa bagi mencapai matlamat
penyelidikan. Fasa awal penyelidikan ini dimulakan dengan mengenalpasti
keperluan bagi kualiti reka bentuk metamodel melalui analisis kajian literatur.
Beberapa peraturan dan garis panduan dalam mereka bentuk metamodel
berkualiti yang telah dicadangkan oleh penyelidik yang lalu telah diperolehi
dalam fasa awal. Di fasa pertengahan, kritik metamodel telah dibina
berdasarkan peraturan dan garis panduan kualiti bagi satu metamodel. Satu
prototaip untuk membuktikan konsep kritik metamodel telah dibangunkan.
Beberapa contoh metamodel telah digunakan untuk menunjukkan penggunaan
kritik metamodel. Fasa terakhir penyelidikan ini ialah melakukan penilaian
pengguna untuk menilai kebolehgunaan dan keberkesanan pendekatan kritik
metamodel dalam mereka bentuk satu metamodel yang berkualiti.

Sumbangan utama penyelidikan ini ialah pembangunan mekanisma untuk
mengesan kesalahan reka bentuk metamodel dan memberikan cadangan bagi
memperbaiki reka bentuk metamodel dalam KPBM melalui pendekatan
berasaskan kritik. Sumbangan penting yang lain ialah pembangunan alat kritik
metamodel yang boleh diaplikasikan untuk membantu pembangun perisian
mereka bentuk metamodel yang berkualiti menggunakan notasi Unified
Modelling Language (UML).

© C
OPYRIG

HT U
PM

v

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Gracious and the Most Merciful
All the praises and thanks be to Allah,

and His blessings are for the righteous deeds.
Humblest gratitude to the Prophet Muhammad صلى الله عليه وسلم, his family and companions,

for their way of life has been a continuous guidance for me.

First and foremost, I would like to sincerely thank my supervisor, Associate
Professor Dr. Norhayati Mohd Ali for her continuous guidance, understanding,
patience and most of all, encouragement for me throughout the years to
complete this thesis. It has been such an experience to have her as my
supervisor. I would also like to extend that gratitude to my supervisory
committee, Associate Professor Ts. Dr. Novia Indriaty Admodisastro and
Associate Professor Ts. Dr. Rodziah Atan for their advice and supports for the
completion of this thesis.

I’d like to thank my parents, Naterah and Allaudin, without whom I would have
never given a thought to continue my study up to this level. I wish to give thanks
to the rest of my family members who has been supportive as well.

Lastly, I like to give special thanks to my friends and colleagues who never given
up on me and encourage me with their wisdoms and advice. Thank you all for
helping me to finish this thesis.

Mohammad Alif Bin Mohammad Allaudin
March 2023

© C
OPYRIG

HT U
PM

vii

This thesis was submitted to the Senate of Universiti Putra Malaysia and has
been accepted as fulfilment of the requirement for the degree of Master of
Science. The members of the Supervisory Committee were as follows:

Norhayati Mohd Ali, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Chairman)

Novia Indriaty Admodisastro, PhD
Associate Professor Ts.
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

Rodziah Atan, PhD
Associate Professor Ts.
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

ZALILAH MOHD SHARIFF, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 09 March 2023

© C
OPYRIG

HT U
PM

viii

Declaration by the Graduate Student

I hereby confirm that:

• this thesis is my original work;

• quotations, illustrations and citations have been duly referenced;

• this thesis has not been submitted previously or concurrently for any other
degree at any institutions;

• intellectual property from the thesis and the copyright of the thesis are fully-
owned by Universiti Putra Malaysia, as stipulated in the Universiti Putra
Malaysia (Research) Rules 2012;

• written permission must be obtained from the supervisor and the office of the
Deputy Vice-Chancellor (Research and innovation) before the thesis is
published in any written, printed or electronic form (including books, journals,
modules, proceedings, popular writings, seminar papers, manuscripts,
posters, reports, lecture notes, learning modules or any other materials) as
stated in the Universiti Putra Malaysia (Research) Rules 2012;

• there is no plagiarism or data falsification/fabrication in the thesis, and
scholarly integrity is upheld in accordance with the Universiti Putra Malaysia
(Graduate Studies) Rules 2003 (Revision 2015-2016) and the Universiti
Putra Malaysia (Research) Rules 2012. The thesis has undergone
plagiarism detection software

Signature: ________________________ Date: __________________

Name and Matric No.: MOHAMMAD ALIF BIN MOHAMMAD ALLAUDIN

© C
OPYRIG

HT U
PM

ix

Declaration by Members of the Supervisory Committee

This is to confirm that:

• the research and the writing of this thesis were done under our supervision;

• supervisory responsibilities as stated in the Universiti Putra Malaysia
(Graduate Studies) Rules 2003 (Revision 2015-2016) are adhered to.

Signature:

Name of Chairman
of Supervisory
Committee: Norhayati Mohd Ali, PhD

Signature:

Name of Member of
Supervisory
Committee: Novia Indriaty Admodisastro, PhD

Signature:

Name of Member of
Supervisory
Committee: Rodziah Atan, PhD

© C
OPYRIG

HT U
PM

x

TABLE OF CONTENTS

 Page
ABSTRACT i
ABSTRAK iii
ACKNOWLEDGEMENTS v
APPROVAL vi
DECLARATION viii
LIST OF TABLES xii
LIST OF FIGURES xiii
LIST OF ABBREVIATIONS xv

CHAPTER

1 INTRODUCTION 1
 1.1 Research Background and Motivation 1
 1.2 Problem Statements 2
 1.3 Research Objectives 3
 1.4 Research Questions 3
 1.5 Research Scope 3
 1.6 Research Contributions 4
 1.7 Thesis Organization 5

2 LITERATURE REVIEW 6
 2.1 Introduction 6
 2.2 Model-Driven Software Engineering 6
 2.3 Metamodeling in Model-Driven Software

Engineering
8

 2.4 Critiquing in Software Engineering 14
 2.5 Related Works in Metamodeling 17
 2.6 Summary 21

3 RESEARCH METHODOLOGY 22
 3.1 Introduction 22
 3.2 Research Phases 23
 3.2.1 Literature Review of Model-Driven

Software Engineering, Metamodeling
Approach, and Critic-Based Approach in
Software Engineering

23

 3.2.2 Identify the Requirements for
Metamodel Critic Approach

24

 3.2.3 Formulate Metamodel Critic
Specification and Develop Metamodel
Critics for Metamodel Design

28

 3.2.4 Proof of Concept for Metamodel Critics
via Metamodel Design Exemplars

28

 3.2.5 Evaluate the Metamodel Critic Approach
for Metamodel Design via User
Evaluation

29

 3.3 Summary 29

© C
OPYRIG

HT U
PM

xi

4 METAMODEL CRITICS FOR METAMODEL DESIGN 30
 4.1 Introduction 30
 4.2 Quality Attributes of Metamodel Design 30
 4.3 Overview of Metamodel Critic Approach 31
 4.3.1 Critic Rules and Guidelines for

Metamodel Design
32

 4.3.2 Metamodel Critics 35
 4.3.3 Parsing Process of Metamodel Design 41
 4.3.4 Critics and Feedback of Metamodel

Design
42

 4.4 Summary 42

5 RESULT AND DISCUSSION 44
 5.1 Introduction 44
 5.2 Procedures for the Evaluation 44
 5.3 Evaluation of Metamodel Critic Using Exemplars

of Metamodel
45

 5.4 Questionnaire Design 48
 5.5 Evaluation Criteria 48
 5.5.1 Usability Evaluation 49
 5.5.2 Effectiveness Evaluation 49
 5.6 User Evaluation Results 50
 5.6.1 Evaluation Results from Software

Developers
50

 5.6.2 Evaluation Results from Postgraduate
Students

53

 5.7 Summary 59

6 CONCLUSION 60
 6.1 Introduction 60
 6.2 Significance of the Research 60
 6.3 Limitation of the Research 60
 6.4 Future Works 61
 6.5 Summary 62

REFERENCES 63
APPENDICES 68
BIODATA OF STUDENT 83
LIST OF PUBLICATIONS 84

© C
OPYRIG

HT U
PM

xii

LIST OF TABLES

Table Page

2.1 Library of Metamodel Quality Properties 12

2.2 Quality Attributes for Metamodels 13

2.3 Related Work on Critic-Based Approach in Software
Engineering

16

2.4 List of Related Work in Metamodel in Different Domain 21

3.1 Requirements of Metamodel Critic Approach 25

4.1 The Mapping of Metamodel Critics with Quality Attributes 33

4.2 Metamodel Critique 34

5.1 Demographic Result from Software Developers 50

5.2 Demographic Result Percentage for Software Developers 51

5.3 SUS Result from Software Developers 51

5.4 General Questions Result Part 1 52

5.5 General Questions Result Part 2 52

5.6 Level of Importance Result from Software Developers 53

5.7 Demographic Result for Postgraduate Students 54

5.8 Demographic Result Percentage for Postgraduate

Students
55

5.9 SUS Result from Postgraduate Students 56

5.10 General Questions Result Part 1 (Postgraduate Students) 57

5.11 General Questions Result Part 2 (Postgraduate Students) 57

5.12 Level of Importance Result from Postgraduate Students 58

© C
OPYRIG

HT U
PM

xiii

LIST OF FIGURES

Figure Page

2.1 Metamodeling Layers in MOF adapted from
Metamodeling and Model Transformations in Modeling
and Simulation

8

2.2 Base Metamodel adapted from Design Patterns for

Metamodel
9

2.3 The GuestBook Model in UML adapted from Template

Programming for Model-Driven Code Generation
10

2.4 Very Simple Metamodel for the Java Language adapted

from Template Programming for Model-Driven Code
Generation

10

2.5 Language Use Solution to the Linguistic / Ontological

Paradox adapted from Ontological and Linguistic
Metamodelling Revisited: A Language Use Approach

11

2.6 Assessing the Quality of Metamodels adapted from

Assessing the Quality of Metamodels
14

2.7 Hypertension Management Workflow (Overall) adapted

from A Flexible Metamodeling Approach for Healthcare
System

18

2.8 Multiple Metamodeling Hierarchy adapted from A Flexible

Metamodeling Approach for Healthcare System
19

2.9 HL7 Metamodel Element adapted from Working with the

HL7 Metamodel in a Model-Driven Engineering Context
20

3.1 Research Methodology 23

3.2 The Mapping of Metamodel Critic Approach to the Critic

Taxonomy adapted from A Taxonomy and Mapping of
Computer-Based Critiquing Tools

27

4.1 Overview of Metamodel Critic Approach 32

4.2 Critique for MC1 36

4.3 Critique for MC2 36

4.4 Critique for MC3 37

4.5 Critique for MC4 37

© C
OPYRIG

HT U
PM

xiv

4.6 Critique for MC5 38

4.7 Critique for MC6 38

4.8 Critique for MC7 39

4.9 Critique for MC8 39

4.10 Critique for MC9 40

4.11 Critique for MC10 40

4.12 Critiquing Component of Metamodel Critic Approach 42

5.1 Library Element Metamodel 45

5.2 Library Element Metamodel Critic Output 46

5.3 ALMA-C Metamodel 46

5.4 ALMA-C Metamodel Critic Output 47

5.5 SmartCity DSL Metamodel 47

5.6 SmartCity DSL Metamodel Critic Output 48

© C
OPYRIG

HT U
PM

xv

LIST OF ABBREVIATIONS

ALMA-C Agent-based Land Market for Coast

AUTOSAR AUTomotive Opens Systems ARchitecture

CASE Computer Aided Software Engineering

DECS Diagram Editor Constraints System

DSL Domain Specific Language

DSML Domain Specific Modelling Language

GDPR General Data Protection Regulation

GPL General Purpose Language

IDE Integrated Development Environment

MBSD Model-Based Software Development

MCID Model and Code Inconsistency Detection

MDE Model-Driven Engineering

MDSE Model-Driven Software Engineering

MOF Meta-Object Facility

OCA Orthogonal Classification Architecture

OMG Object Management Group

QM4MM Quality Model for Metamodel

SecTro Secure Tropos

SUS System Usability Scale

UML Unified Modelling Language

ViDI Visual Design Inspection

XMI XML Metadata Interchange

XML eXtensible Markup Language

© C
OPYRIG

HT U
PM

1

CHAPTER 1

INTRODUCTION

1.1 Research Background and Motivation

Model-Driven Software Engineering (MDSE) includes different model-driven
approaches to software development that includes domain-specific modelling,
model-driven architecture, and model-integrated computing. The MDSE
approach has been seen to manage the increasing of software complexity
according to (Hutchinson, Rouncefield, and Whittle 2011; Gascueña, Navarro,
and Fernández-Caballero 2012; Hinkel and Strittmatter 2017; Madni and Sievers
2018; Bettini et al. 2019). The key concept from MDSE is the metamodels which
are essential to define the modeling primitives used in modeling activities
(Basciani et al. 2019).

Most of the metamodeling tools employ a constraint specification approach for
governing the syntax and semantics of model elements and the values of their
attributes. Thus, the process of specifying constraints for metamodeling tools is
more complex as it uses formal approaches and requires deep cognitive load.
Hence, the need to have a systematic construction and use of models as main
artifacts in MDSE process is essential. Therefore, the focus of this research is to
propose a mechanism to detect potential problems at metamodel elements using
a critic-based approach between model and metamodel.

The critic-based approach concept is mainly to identify potential problems;
provide suggestion and possibly offer automated or semi-automated artefacts
improvements to metamodel designers (Ali, Hosking, and Grundy 2013).
Previous studies show that critiquing-based approach supports the human-
computer collaborative problem solving. Hence, the objective of this research is
to formulate a critic specification mechanism for metamodel elements in a
modelling tool to help assist metamodel designers in creating a good quality
metamodel. The critic specification mechanism for the metamodel will be
validated against metamodel quality attributes based on the metamodel design
guidelines from previous studies.

The expected result of this project is a new mechanism for specifying critics at a
metamodel level that will assist metamodel designers in designing quality
metamodel and checking consistency of model and metamodel in MDSE.

© C
OPYRIG

HT U
PM

2

1.2 Problem Statements

MDSE includes various model-driven approaches to software development,
including domain-specific modelling, model-driven architecture, and model-
integrated computation. The MDSE approach has been seen to manage the
increasing of software complexity according to (Hutchinson, Rouncefield, and
Whittle 2011; Gascueña, Navarro, and Fernández-Caballero 2012; Hinkel and
Strittmatter 2017; Madni and Sievers 2018; Bettini et al. 2019). There are some
proposed design patterns by (Cho and Gray 2011) and by (van Emde Boas
2004) that designers can follow in designing a metamodel. The construction of
metamodeling tools is complex as it requires solid skills in software modelling
and programming. (Williams et al. 2013) claimed that there is little support to
assist metamodel developers on the required properties of metamodels. A study
by (López-Fernández, Guerra, and de Lara 2014) has provided a set of rules,
constraints, and specifications for designers to use them to design a quality
metamodel. (Bettini et al. 2019) emphasized that metamodel design must be
accurate and need to consider essential quality factors, such as maintainability,
reusability, and understandability.

In addition, most of the metamodeling tools employ a constraint definition /
specification approach (e.g., DECS by (Qattous 2009), Marama by (Grundy et
al. 2013)) for governing the syntax and semantics of model elements and the
values of their attributes. Thus, the process of specifying constraints for
metamodeling tools is more complex as it uses formal approach, and it involves
deep cognitive load. (Ma, He, & Liu, 2013) also reported that “it is unavoidable
that metamodels have quality defects because their design is related to the
cognitive ability of designers”. Similarly, (Cho and Gray 2011) also stated that
the quality of a metamodel design may also vary according to the designer’s
domain knowledge and modelling language expertise. Some of the problems in
metamodeling design include syntax errors, poor constructs, over-complex
constructs, and semantic defects (Ma, He, and Liu 2013). (Ali, Hosking, &
Grundy, 2013) stated that the use of critic concept has not to date been applied
within metamodeling tools. Thus, the need to have a systematic construction and
use of metamodels as main artifacts in MDSE process is essential.

Several studies emphasized on the quality attributes of metamodel design. Thus,
(Bertoa and Vallecillo 2010; Ma, He, and Liu 2013; López-Fernández, Guerra,
and de Lara 2014; Bettini et al. 2019; Basciani et al. 2019) have suggested
several quality attributes to be applied in designing a quality metamodel design.
In this research, three quality attributes from the literatures have been selected
to assess the metamodel design. The three quality attributes are well-
structuredness, correctness, and completeness. These three quality attributes
are selected based on the metamodel design guidelines and rules from (López-
Fernández, Guerra, and de Lara 2014; van Emde Boas 2004) that we adopted
for this research.

© C
OPYRIG

HT U
PM

3

Realizing the existing problems of metamodeling design and critics to detect
potential problems / errors for metamodel elements do not exist yet, thus we are
proposing a new mechanism / method to specify critics for metamodel elements.
However, as designer may complete the task of designing the metamodel, there
are concerns regarding its evolution which discusses several stages to improve
the design to be better in its quality as changes to the software may affect its
documents. Such documents must have the design in which consists of the
model and metamodel for future designer and developer’s references.

1.3 Research Objectives

The main objective of this research is to utilise critique-based approach to
enhance a metamodel design by utilising the critique rules and design guidelines
that has been proposed by previous researchers. To achieve this, the research
objectives are as follow:

1. To propose a metamodel critic approach in designing a quality metamodel.
2. To formulate a critic specification mechanism for metamodel elements in a

modelling tool. (i.e., Metamodel Critics)
3. To embed the critic specification mechanism with the metamodel

specifications.
4. To validate the critic specification mechanism (i.e., Metamodel Critics)

against the metamodel quality attributes; namely well-structuredness,
completeness, and correctness attributes using the critiquing approach for
metamodel critic approach usability.

1.4 Research Questions

Based on the mentioned research objectives of this study, the research
questions that was formulated are as follow:

1. What is the mechanism to specify critics for metamodel elements?
2. How to specify critics for a metamodel using the identified mechanism?
3. How can the metamodeling critics (i.e., Metamodel Critics) enhance the

quality of metamodel design against the specified metamodel quality
attributes from previous research?

1.5 Research Scope

This research work focuses on the implementation of metamodel critique in the
same environment as the application that can be used to design a metamodel.
In this implementation, the critique is use as an output to gives the metamodel
designer on how to improve the metamodel design by showing the critique type,
critique description, designing guideline and recommendation on how to improve
the design of metamodel that designer has created. Based on the critique,

© C
OPYRIG

HT U
PM

4

designer follow the recommendation of the critique to mend the design and re-
check the metamodel design again until it produces either no or minimum
number of the critique for the metamodel that has been created.

The scope of this research work is to implement the critiquing mechanism in the
same environment as the metamodel design application, namely Eclipse MARS2
IDE. The metamodel design environment is an extension of Eclipse MARS2 IDE,
Papyrus, which will save the metamodel design file in a Unified Modeling
Language (.uml) format using class diagram notations. The reason of limiting the
file to be save in a (.uml) allows for the metamodel design to be parse for the
process of checking the design that can produce the critique output that will
provide reason and recommendation to fix the metamodel design fault that is
detected as design error against the rules and guidelines that has been
implemented in the metamodel critic tool.

1.6 Research Contributions

The research work in this thesis contributes to the field of Model-Driven Software
Engineering, particularly on metamodel designing part with the use of critic-
based approach in software engineering. The main contribution from this
research includes:

1. The use of critic-based approach that helps metamodel designers to improve

the design of metamodel by providing feedback to them by giving
suggestions to amend the errors that was made during the checking of
metamodel design.

2. The research has produced a plugin tool that works in the same environment
of designing a metamodel to help metamodel designers do the checking for
the metamodel design. Designers may do the checking as many times as
they require until they are satisfied with the metamodel design. This saves
up the time since metamodel designers doesn’t have to switch between
windows and can do the corrections straight away based on the given
suggestions.

3. This metamodel critic tool included several components that made the
checking for metamodel properties possible. The components include XMI
parser and the critique that made up of several parts. The tool main purpose
is to prove the concept of using critic-based approach can be helpful for
designers to produce a quality metamodel design.

4. This research work contributed to the body of knowledge of MDSE
specifically in the modelling and designing activities. Thus, the development
of metamodel critic tool would support for assessing the quality of modelling
artifacts.

© C
OPYRIG

HT U
PM

5

1.7 Thesis Organization

This thesis includes five chapter in total. Chapter 1 explains a brief discussion
background, problem statement, research objectives, research questions,
research scopes and the significance of the study.

Chapter 2 explains a literature study to review the main principles of MDSE,
metamodeling in MDSE, critique-based approach in software engineering and
related subjects to the focus of the research work.

Chapter 3 explains the general research methodology used to accomplish the
objective of the research. It presents the framework of the research work and
discuss the stages in detail.

Chapter 4 discusses in detail the metamodel critic approach that has been
developed to aid in evaluation of the research. The chapter covers the design of
the critique mechanism in the prototype, implementation, and survey
parameters.

Chapter 5 presents the data analysis and the results of the survey in a controlled
group that is conducted.

Finally, the research work is presented with a conclusion and discussion for
future work in Chapter 6.

© C
OPYRIG

HT U
PM

63

REFERENCES

Abdulkareem, Soran Mahmood; Ali, Norhayati Mohd; Admodisastro, Novia;

Sultan, Abu Bakar Md. 2017. “Class Diagram Critic: A Design Critic Tool

for UML Class Diagram.” Advanced Science Letters 23 (11): 11567–11571.

doi: https://doi.org/10.1166/asl.2017.10330.

Ali, Norhayati Mohd, John Hosking, and John Grundy. 2013. “A Taxonomy and

Mapping of Computer-Based Critiquing Tools.” IEEE Transactions on

Software Engineering 39 (11): 1494–1520. doi: 10.1109/TSE.2013.32.

Ali, Norhayati Mohd, John Hosking, John Grundy, and Jun Huh. 2010. “End-User

Oriented Critic Specification for Domain-Specific Visual Language Tools,”

297–300.

Alroobaea, Roobaea, and Pam J Mayhew. 2014. “How Many Participants Are

Really Enough for Usability Studies?” In Proceedings of 2014 Science and

Information Conference, SAI 2014, 48–56. doi:

10.1109/SAI.2014.6918171.

Amjath Jamal, Nur Amirah, and Norhayati Mohd Ali. 2017. “Comparative

Critiquing and Example-Based Approach for Learning Client-Server

Design.” 2017 IEEE Conference on E-Learning, e-Management and e-

Services (IC3e). IEEE, 30–35.

Basciani, Francesco, Juri di Rocco, Davide di Ruscio, Ludovico Iovino, and

Alfonso Pierantonio. 2019. “A Tool-Supported Approach for Assessing the

Quality of Modeling Artifacts.” Journal of Computer Languages 51 (April).

Elsevier Ltd: 173–192. doi: 10.1016/j.cola.2019.02.003.

Basha, N Md Jubair, Salman Abdul Moiz, and Mohammed Rizwanullah. 2012.

“Model Based Software Development: Issues & Challenges.” International

Journal of Computer Science and Informatics (IJCSI) 2 (1,2): 226–230.

Berry, Daniel M. 1992. “Academic Legitimacy of the Software Engineering

Discipline,” no. November.

Bertoa, Manuel F, and Antonio Vallecillo. 2010. “Quality Attributes for Software

Metamodels.” 13th TOOLS Workshop on Quantitative Approaches in

Object-Oriented Software Engineering (QAOOSE 2010). doi:

10.1.1.309.8687.

Bettini, Lorenzo, Davide di Ruscio, Ludovico Iovino, and Alfonso Pierantonio.

2019. “Quality-Driven Detection and Resolution of Metamodel Smells.”

© C
OPYRIG

HT U
PM

64

IEEE Access 7. IEEE: 16364–16376. doi:

10.1109/ACCESS.2019.2891357.

Cetinkaya, Deniz, and Alexander Verbraeck. 2011. “Metamodeling And Model

Transformations In Modeling And Simulation.” Proceedings of the 2011

Winter Simulation Conference, 3043–3053.

Cho, Hyun, and Jeff Gray. 2011. “Design Patterns for Metamodels.” ACM

International Conference on Systems, Programming, Languages, and

Applications: Software for Humanity, SPLASH’11 and the Co-Located

Workshops: DSM’11, TMC’11, AGERE’11, AOOPES’11, NEAT’11, and

VMIL’11, 25–31. doi: 10.1145/2095050.2095056.

Dashofy, Eric M, André van der Hoek, and Richard N Taylor. 2002. “An

Infrastructure for the Rapid Development of XML-Based Architecture

Description Languages.”

Durisic, Darko, Miroslaw Staron, Matthias Tichy, and Jörgen Hansson. 2019.

“Assessing the Impact of Meta-Model Evolution: A Measure and Its

Automotive Application.” Software and Systems Modeling 18 (2). Springer

Berlin Heidelberg: 1419–1445. doi: 10.1007/s10270-017-0601-1.

Eriksson, Owen, Brian Henderson-Sellers, and Pär J. Agerfalk. 2013.

“Ontological and Linguistic Metamodelling Revisited: A Language Use

Approach.” Information and Software Technology 55 (12). Elsevier B.V.:

2099–2124. doi: 10.1016/j.infsof.2013.07.008.

Fatehah, Murni, Vitaliy Mezhuyev, and Mostafa Al-Emran. 2021. “A Systematic

Review of Metamodelling in Software Engineering.” Recent Advances in

Intelligent Systems and Smart Applications 295: 3–27.

Filatova, Tatiana, Anne Van Der Veen, and Alexey Voinov. 2008. “An Agent-

Based Model for Exploring Land Market Mechanisms for Coastal Zone

Management,” no. January.

Fischer, Gerhard. 2012. “Context-Aware Systems: The ‘Right’ Information, at the

‘Right’ Time, in the ‘Right’ Place, in the ‘Right’ Way, to the ‘Right’ Person,”

287–294.

Floch, Antoine, Tomofumi Yuki, Clement Guy, Steven Derrien, Benoit

Combemale, Sanjay Rajopadhye, and Robert France. 2011. “Model-Driven

Engineering and Optimizing Compilers: A Bridge Too Far?” 6981: 608–622.

doi: 10.1007/978-3-642-24485-8_45.

© C
OPYRIG

HT U
PM

65

France, Robert, and Bernhard Rumpe. 2007. “Model-Driven Development of

Complex Software: A Research Roadmap Model-Driven Development of

Complex Software: A Research Roadmap,” no. June. doi:

10.1109/FOSE.2007.14.

Gascueña, José M., Elena Navarro, and Antonio Fernández-Caballero. 2012.

“Model-Driven Engineering Techniques for the Development of Multi-Agent

Systems.” Engineering Applications of Artificial Intelligence 25 (1): 159–

173. doi: 10.1016/j.engappai.2011.08.008.

Goeken, Matthias, and Stefanie Alter. 2009. “Towards Conceptual

Metamodeling of IT Governance Frameworks Approach - Use -– Benefits,”

no. Cmmi: 1–10.

Grundy, John C., John Hosking, Karen Na Li, Norhayati Mohd Ali, Jun Huh, and

Richard Lei Li. 2013. “Generating Domain-Specific Visual Language Tools

from Abstract Visual Specifications.” IEEE Transactions on Software

Engineering 39 (4): 487–515. doi: 10.1109/TSE.2012.33.

Hegedus, Abel, Dénes Harmath, and Zoltán Ujhelyi. 2017.

“VIATRA/Query/UserDocumentation/API/BaseIndexer.”

https://wiki.eclipse.org/VIATRA/Query/UserDocumentation/API/BaseIndex

er.

Hinkel, Georg, and Misha Strittmatter. 2017. On Using Sarkar Metrics to

Evaluate the Modularity of Metamodels. doi: 10.5220/0006105502530260.

Hutchinson, John, Mark Rouncefield, and Jon Whittle. 2011. “Model-Driven

Engineering Practices in Industry.” 33rd International Conference on

Software Engineering (ICSE 2011), 633–642. doi:

10.1145/1985793.1985882.

Ii, Leo C Ureel, and Charles Wallace. 2015. “WebTA: Automated Iterative

Critique of Student Programming Assignments.”

Kessentini, Wael, and Manuel Wimmer. 2018. “Automated Metamodel / Model

Co-Evolution: A Search-Based Approach Automated Metamodel / Model

Co-Evolution: A Search-Based Approach,” no. September. doi:

10.1016/j.infsof.2018.09.003.

Knauss, Eric, Daniel Lübke, and Sebastian Meyer. 2009. “Feedback-Driven

Requirements Engineering: The Heuristic Requirements Assistant.”

Proceedings - International Conference on Software Engineering, 587–

590. doi: 10.1109/ICSE.2009.5070562.

© C
OPYRIG

HT U
PM

66

Lewis, James R., and Jeff Sauro. 2009. “The Factor Structure of the System

Usability Scale.” In Lecture Notes in Computer Science (Including

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 5619 LNCS:94–103. doi: 10.1007/978-3-642-02806-9_12.

López-Fernández, Jesús J., Esther Guerra, and Juan de Lara. 2014. “Assessing

the Quality of Meta-Models.”

Ma, Zhiyi, Xiao He, and Chao Liu. 2013. “Assessing the Quality of Metamodels.”

Bmj 329 (4): 621–621. doi: 10.1136/bmj.329.7466.621-b.

Madni, Azad M., and Michael Sievers. 2018. “Model-Based Systems

Engineering: Motivation, Current Status, and Research Opportunities.”

Systems Engineering 21 (3). John Wiley and Sons Inc.: 172–190. doi:

10.1002/sys.21438.

Martínez-García, A., J. A. García-García, M J Escalona, and C. L. Parra-

Calderón. 2015. “Working with the HL7 Metamodel in a Model Driven

Engineering Context.” Journal of Biomedical Informatics 57: 415–424. doi:

10.1016/j.jbi.2015.09.001.

Mohammed, Osman, Norhayati Mohd Ali, Novia Admodisastro, and Jamilah Din.

2017. “Inconsistency Detection of Model and Code via Critic-Based

Approach,” 1–5. doi: 10.1166/asl.2011.1261.

Nicola, Matthias, and Jasmi John. 2014. “XML Parsing: A Threat to Database

Performance XML Parsing: A Threat to Database Performance,” no.

November: 1–5. doi: 10.1145/956863.956898.

Paasivaara, Maria, and Casper Lassenius. 2004. “Using Iterative and

Incremental Processes in Global Software Development.”

Qattous, Hazem Kathem. 2009. “Constraint Specification by Example in a Meta-

CASE Tool.” Proceedings of the Doctoral Symposium for ESEC/FSE on

Doctoral Symposium, 13–16. doi: 10.1145/1595782.1595787.

Rabbi, Fazle, Yngve Lamo, and Wendy Maccaull. 2014. “A Flexible

Metamodelling Approach for Healthcare Systems.”

Robbins, Jason E, and David F Redmiles. 2000. “Cognitive Support, UML

Adherence, and XMI Interchange in Argo / UML.”

Rosique, Francisca, and Fernando Losilla. 2018. “A Domain Specific Language

for Smart Cities †,” no. November 2017. doi: 10.3390/ecsa-4-04926.

© C
OPYRIG

HT U
PM

67

Salleh, Masrina A, Mahadi Bahari, and Nor Hidayati Zakaria. 2018.

“ScienceDirect An Overview of Software Functionality Service: A

Systematic Literature Review.” Procedia Computer Science 124. Elsevier

B.V.: 337–344. doi: 10.1016/j.procs.2017.12.163.

Sendall, Shane, and Wojtek Kozaczynski. 2003. “Model Transformation: The

Heart and Soul of Model-Driven Software Development.” IEEE Software 20

(5): 42–45. doi: 10.1109/MS.2003.1231150.

Trochim, William. 2006. “Qualitative Validity.” Research Methods Knowledge

Base, January.

Tymchuk, Yuriy, Mohammad Ghafari, and Oscar Nerstrasz. 2016. “When

QualityAssistant Meets Pharo Enforced Code Critiques Motivate More

Valuable Rules.” International Workshop on Smalltalk Technologies.

Tymchuk, Yuriy, Andrea Mocci, and Michele Lanza. 2015. “Code Review: Veni,

ViDI, Vici.”

van Emde Boas, Ghica. 2004. “Template Programming for Model-Driven Code

Generation Model-Driven Software Development,” 1–17.

Wachsmuth, Guido. 2007. “Metamodel Adaptation and Model Co-Adaptation.”

ECOOP 2007–Object-Oriented Programming 4609: 600–624. doi:

10.1007/978-3-540-73589-2_28.

Williams, James R, Athanasios Zolotas, Nicholas Matragkas, Louis M Rose,

Dimitios S Kolovos, Richard F Paige, and Fiona A C Polack. 2013. “What

Do Metamodels Really Look Like?” EESSMOD @ MoDELS, no. 1078: 55–

60.

Wurster, Michael, Uwe Breitenbücher, Michael Falkenthal, Christoph Krieger,

Frank Leymann, Karoline Saatkamp, and Jacopo Soldani. 2020. “The

Essential Deployment Metamodel: A Systematic Review of Deployment

Automation Technologies.” SICS Software-Intensive Cyber-Physical

Systems 35 (1). Springer Berlin Heidelberg: 63–75. doi: 10.1007/s00450-

019-00412-x.

