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Dopamine (DA) plays a vital role in the brain and central nervous system. Therefore, 
there is a great need to develop a sensitive and selective sensor to monitor and determine 
DA concentrations for diagnostic purposes and diseases prevention. Up to now, 
employing surface plasmon resonance (SPR) sensors in DA determination is very 
limited, and its utilization to detect analytes with low concentrations still needs 
sensitivity enhancement. In this work, the SPR gold chips were modified using carbon 
quantum dots (CQDs), graphene quantum dots (GQDs), graphene oxide (GO), chitosan 
(CS), (CS-CQDs), and (CS-GQDs) thin films. The sensor performance for all layers was 
analyzed in terms of two aspects, sensitivity and accuracy. The surface morphology and 
roughness of all films were analyzed using AFM, and the existence of the functional 
groups in the samples was confirmed using FTIR spectroscopy. Experimental data were 
fitted to theoretical data formula to characterize the optical properties and thickness of 
the films. SPR sensor showed sensitivity of 0.138°/pM, 0.332°/nM, 0.215°/pM, 
0.195°/nM, 0.169°/pM, and 0.195°/fM using Au/CQDs, Au/GQDs, Au/GO, Au/CS, 
Au/CS-CQDs, and Au/CS-GQDs bilayer films, respectively. The changes in the spectral 
bands and peaks intensity of FTIR spectra for all sensing films following DA injection 
verified DA binding to the sensor surface. AFM analysis showed that the surface 
morphology and roughness of all films changed as well.  The thickness changed by 4.42, 
2.59, 2.53, 1.25, 1.63, and 2.28 nm for CQDs, GQDs, GO, CS, CS-CQDs, CS-GQDs 
layers, respectively.  By comparing the performance of all sensor films, SPR sensor 
based on Au/CS-GQDs exhibited excellent performance with ultra-sensitivity 0.195°/fM, 
lowest detection limit down to 1 fM of DA was obtained for the first time, RI sensitivity 
of 10.186°/RIU and the strongest binding affinity of 0.430 × 1015 M-1. Interestingly, 
Au/GO based sensor exhibited competitive performance to Au/CS-GQDs based sensor 
with high sensitivity 0.215°/pM, RI sensitivity of 12.402°/RIU, strong binding affinity of 
3.279 × 1012 M-1. In addition to high sensitivity, good repeatability, reproducibility, and 
stability demonstrated for these two sensors, they showed good selectivity to low 
concentration of DA in the presence of higher concentrations of epinephrin, ascorbic 
acid, and uric acid. This nanomaterials-based SPR sensor represents an advantageous 
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possibility for diagnosing DA deficiency rapidly, inexpensively with high selectivity and 
sensitivity. Its utilization as a reliable and economic biomedical diagnostic tool of DA-
related brain disorders still be a major goal of research in the field of DA sensors. 
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Januari 2023 
 
 

Pengerusi : Prof. Madya Yap Wing Fen, PhD 
Fakulti  : Sains 
 
 
Dopamine (DA) memainkan peranan penting dalam otak dan sistem saraf pusat. Oleh 
itu, terdapat keperluan yang besar untuk membangunkan penderia yang sensitif dan 
selektif untuk memantau dan menentukan kepekatan DA untuk tujuan diagnostik dan 
pencegahan penyakit. Sehingga kini, penggunaan penderia resonans plasmon permukaan 
(SPR) dalam penentuan DA adalah sangat terhad, dan penggunaannya untuk mengesan 
analit dengan kepekatan rendah masih memerlukan penambahbaikkan sensitiviti. Dalam 
kerja ini, cip emas SPR telah diubah suai menggunakan titik kuantum karbon (CQDs), 
titik kuantum grafin (GQDs), grafin oxide (GO), kitosan (CS), (CS-CQDs), dan (CS-
GQDs) filem nipis. Prestasi penderia untuk semua lapisan dianalisis dari segi dua aspek, 
kepekaan dan ketepatan. Morfologi permukaan dan kekasaran semua filem dianalisis 
menggunakan AFM, dan kewujudan kumpulan berfungsi dalam sampel disahkan 
menggunakan spektroskopi FTIR. Data eksperimen telah dipadankan pada formula data 
teori untuk mencirikan sifat optik dan ketebalan filem. Penderia SPR menunjukkan 
kepekaan 0.138°/pM, 0.332°/nM, 0.215°/pM, 0.195°/nM, 0.169°/pM dan 0.195°/fM 
menggunakan Au/CQDs, Au/GQDs, Au/GO, Au/CS, Au/CS-CQDs dan Au/CS-GQDs 
dwilapisan filem, masing-masing. Perubahan dalam jalur spektrum dan keamatan puncak 
spektrum FTIR untuk semua filem penderiaan selepas menginjeksi DA telah 
mengesahkan pengikatan DA pada permukaan penderia. Analisis AFM menunjukkan 
bahawa morfologi permukaan dan kekasaran semua filem turut berubah. Ketebalan 
berubah sebanyak 4.42, 2.59, 2.53, 1.25, 1.63, dan 2.28 nm untuk lapisan CQDs, GQDs, 
GO, CS, CS-CQDs, CS-GQDs, masing-masing. Dengan membandingkan prestasi semua 
filem penderia, penderia SPR berdasarkan Au/CS-GQDs telah mempamerkan prestasi 
cemerlang dengan kepekaan ultra 0.195°/fM, had pengesanan terendah hingga 1 fM DA 
diperolehi buat kali pertama, kepekaan RI 10.186°/RIU dan pertalian ikatan terkuat   
0.430 × 1015 M-1. Menariknya, penderia berasaskan Au/GO mempamerkan prestasi 
kompetitif kepada penderia berasaskan Au/CS-GQDs dengan kepekaan tinggi 
0.215°/pM, kepekaan RI 12.402°/RIU, pertalian pengikatan kuat 3.279 × 1012 M-1. 
Sebagai tambahan kepada kepekaan yang tinggi, kebolehulangan yang baik, 
kebolehulangan dan kestabilan yang ditunjukkan untuk kedua-dua penderia ini, mereka 
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menunjukkan selektiviti yang baik kepada kepekatan DA yang rendah dengan kehadiran 
kepekatan epinefrin, asid askorbik dan asid urik yang lebih tinggi. Penderia SPR 
berasaskan bahan nano ini mewakili kemungkinan berfaedah untuk mendiagnosis 
kekurangan DA dengan cepat, murah dengan selektiviti dan sensitiviti yang tinggi. 
Penggunaannya sebagai alat diagnostik bioperubatan yang boleh dipercayai dan ekonomi 
untuk gangguan otak berkaitan DA masih menjadi matlamat utama penyelidikan dalam 
bidang penderiaan DA. 
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CHAPTER 1 
 

INTRODUCTION 

 
1.1 Dopamine and Its Critical Role in Human Body 

The brain is the most complex organ in mammalian. It is responsible of our actions and 
interactions; our personality and emotions, regulation of our movements by processing 
all information received from our sensory organs. Through neurotransmission, the 
communication between nerve cells occurs where an electrical signal is converted to a 
chemical signal by the release of neurotransmitters (NTs) as shown in Figure 1.1. 
 
 

 
 

Figure 1.1: Neuron communication process. 
 
 
Dopamine (DA), with the chemical formula 3,4-dihydroxyphenethylamine, is well 
known as one of the most essential catecholamine NTs in the central and the peripheral 
neural systems of mammals, since it conveys brain messages in the form of nerve 
impulses. This monoamine NT is produced in very specific regions in the brain (Yusoff 
et al., 2015).  The normal concentration of DA in the body affects the function of the 
central nervous system, supports blood pressure and regulates the physiological 
processes such as; fine motor activity, stress, mental cognition, attention, inspiration, 
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intuition, learning, motivation, emotions, and memory formation (Leng et al., 2015; 
Elayappan et al., 2020). It also has a significant influence on the function of hormonal, 
renal, and cardiovascular systems of the body. The physiological concentrations of DA 
vary in various body fluids. The concentration of DA in the blood is less than 130 pM 
according to the Human Metabolome Database, whereas its concentration in human 
cerebrospinal samples and urine is around 5 nM (Cao & McDermott, 2018). Given the 
wide range of physiological and pathophysiological effects of DA, it is believed that 
abnormality of DA concentrations in human blood and brain systems are associated with 
various diseases. High concentrations of DA may lead to cardiotoxicity and abnormally 
high pulse and hypertension, as well as heart failure (J. Liu et al., 2013; D. Yuan et al., 
2014). Whereas the deficiency of DA is correlated with serious neurodegenerative 
diseases which including Parkinson’s disease (PD) (Kim 2002; Hsu et al., 2012), 
Alzheimer’s disease (Hyman et al., 1984; Zhu et al., 2016), schizophrenia (Jagadeesh. J 
& Natarajan, 2013; Kesby et al., 2018), and depression (Vázquez-guardado et al., 2019; 
Fan et al., 2021).  As a consequence, simple, sensitive, rapid and accurate analytical 
methods to determine DA concentrations precisely would be useful for physiological 
studies and a critical marker for timely diagnostics and therapeutics. 
  
 
1.2 Methods and Challenges of Dopamine Detection 

Up to now, huge efforts deployed and many strategies have been reported for DA 
detection in biofluids such as high performance liquid chromatography (HPLC) 
(Yoshitake et al., 2004; Carrera et al., 2007; Muzzi et al., 2008), capillary electrophoresis 
(Thabano et al., 2009; Zhao et al., 2011; X. Wang et al., 2013), mass spectroscopy (Hows 
et al., 2004; Syslová et al., 2011), microdialysis techniques (Jamal et al., 2016), Fourier 
transform infrared (FTIR) spectroscopy (X. Wang et al., 2002), flow injection (Wabaidur 
et al., 2012), enzymatic methods (Fritzen-Garcia et al., 2013), electrochemical (EC) 
methods (X. Liu et al., 2012; Sajid et al., 2016; Shin et al., 2017) and other methods. 
Although these effective strategies are accurate and have their own features, they suffer 
some drawbacks and limitations. Most of them take time, have limited sensitivity and 
need expensive equipment, and are not long-term stable. Furthermore, the sensor's 
surface functionalization is challenging.  
 
 
DA is an easily oxidizable compound. Due to its electroactive nature, DA detection has 
been generally developed by EC methods which has received increasing attention 
because of its several notable characteristics such like fast response, good sensitivity, 
repeatability and reproducibility, stability, and cheap costing. However, there are some 
challenges that hinder DA determination under physiological conditions using EC 
technique. These challenges include the extremely low DA concentrations and the 
interfering species such as the electroactive ascorbic acid (AA), uric acid (UA), and 
epinephrine (EP). As an antioxidant, AA is essential in human metabolism. It mostly 
coexists with DA in relatively high concentrations in the central nervous system, 
resulting in poor selectivity during DA detection. Furthermore, because AA oxidizes at 
almost the same potential as DA, the oxidation peaks of a combination of DA and AA 
overlap (Atta et al., 2010). UA is an antioxidant found in significant amounts in the blood 
and brain tissue. It can prevent DNA damage results from free radical. It also controls 
and inhibits iron-mediated oxidation processes that are harmful to biological systems by 
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forming strong complexes with iron ions (Church & Ward, 1994). EP, commonly known 
as adrenaline, is a hormone as well as a NT found at nanomolar concentrations in brain 
fluids, urine, and human blood (Dong et al., 2018). Thus, it still remains a great challenge 
to develop an inexpensive, reliable, and effective electrode with improved characteristics 
to distinguish DA from AA, UA and EP, reduce the signal noise and overcome low 
selectivity and sensor fouling and degradation over time during the determination of DA 
trace amount in biofluid.  
 
 
The limitations of EC sensors prompted continued development to increase the 
sensitivity, selectivity, and biocompatibility of these sensors. Also, considerable efforts 
have been devoted to develop optical based methods to detect and quantitate DA and 
cover its whole physiological concentrations. These optical methods include colorimetry 
and spectrophotometry (Chen et al., 2015; Palanisamy et al., 2016), fluorescence 
spectrometry (H. Wang et al., 2002; Khattar & Mathur, 2013; Kruss et al., 2014; Zhao et 
al., 2016; Kruss et al., 2017), ultraviolet-visible (UV-vis) spectrophotometry (Barreto et 
al., 2008), electrochemiluminescence (ECL) (Qi et al., 2009; Yu et al., 2011), surface-
enhanced Raman spectroscopy (SERS) (Bu et al., 2013; Ranc et al., 2014; An et al., 
2015; Pu et al., 2015; Lu et al., 2016), chemiluminescence (CL) (Deftereos et al., 1993), 
photoelectrochemical (PEC) (Yan et al., 2015), photoluminescence (PL) (Sun & Wang, 
2012), solid phase spectrophotometry (SPS) (Taghdiri & Mohamadipour-taziyan, 2012), 
resonance Rayleigh scattering (RRS) (Dong et al., 2013), and surface plasmon resonance 
(SPR) spectroscopy (Matsui et al., 2005; Kumbhat et al., 2007; Sebok et al., 2013; 
Kamali et al., 2015; Raj et al., 2016; Jiang et al., 2017; Manaf et al., 2017; Cao & 
Mcdermott, 2018; Sharma & Gupta, 2018; Sun et al., 2019; Yuan et al., 2019).  
Spectroscopic methods are advantageous because they are cheap and their repeatability 
is good. Add to that, the sensitivity of most of them is better or comparable with EC 
methods. However, complicated procedures still required to develop colorimetric and 
fluorescent probes for DA sensing. Although SERS-based DA sensors exhibit higher 
sensitivity and selectivity towards DA when compared to other techniques, they need 
expensive equipment for analysis, which limits their application to assess DA. Therefore, 
significant and growing efforts have lately been directed toward overcoming these 
limitations and developing label-free optical biosensors. 
 
 
1.3 SPR Based Sensor 
 
SPR is a quantum electromagnetic phenomenon that happens whenever light interacts 
with free electrons at the metal-dielectric interface (Ishimaru et al., 2005; Pitarke et al., 
2006). When light-matter interaction occurs, photons of the incoming p-polarized light 
cause free electrons on the noble metal usually gold (Au) surface of the SPR chip to 
collectively oscillate, resulting in surface plasmon polariton (SPP). Once the incoming 
light's wave vector matches that of the SPP mode, the resonance takes place and the 
incoming light's energy is coupled into the SPP mode, causing energy loss at the 
resonance angle and reducing the intensity of the reflected light, resulting in an SPR dip 
(Pitarke et al., 2006; Phillips & Cheng, 2008; Wang et al., 2012; Zainudin et al., 2018; 
Daniyal et al., 2019).  
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SPR sensor is an optical sensor that works by exciting the surface plasmons. This light-
based SPR sensor is a type of refractometric sensing device that monitors changes in the 
refractive index of the sensing medium that occur in response to binding events (Homola, 
2008). SPR sensors have showed remarkable progress in terms of both technological 
development and applications to detect different analytes. Today, SPR based optical 
biosensor is considered among the most advanced technologies for studying 
biomolecular interactions (Kan & Li, 2016). This label-free sensor offers accurate and 
fast detection of biological and chemical analytes with good sensitivity. It has proven its 
potential for the application in different important fields such as clinical and medical 
diagnostics (Chung et al., 2005; Uludag & Tothill, 2012; Yanase et al., 2014;                
Omar et al., 2019), food-safety analysis (Situ et al., 2010; Zainuddin et al., 2018), 
environmental protection (Fen et al., 2012; Fen et al., 2013; Sadrolhosseini et al., 2017; 
Roshidi et al., 2019; Daniyal et al., 2019) and others. Over the last two decades, this 
powerful analytical technique has received extensive attention and has been developed 
in different configurations to detect a diversity of analytes.  
 

1.4 Sensing Layers and Sensitivity Enhancement 

SPR biosensors have demonstrated their effectiveness compared to other techniques due 
to their substantial features including high specificity, good sensitivity, low cost, real-
time sensing capabilities, no labelling required, and ease of preparation. However, 
employing these sensors to detect analytes with low molecular weights or at low 
concentrations necessitates surface modification to improve their sensitivity.  Because of 
their exceptional optical, magnetic, and electrical characteristics, nanomaterials have 
shown significant promise in sensing field (Zeng et al., 2014), batteries (Khan et al., 
2019; Kang et al., 2021), electronics, medicine, and other domains. Incorporating 
nanomaterials into SPR biosensors was a viable and potentially effective approach of 
enhancing sensitivity. As a result, a variety of materials are expected to function well as 
active layers on the SPR chip for DA detection, and the material selection controls the 
performance of the developed sensor. 
 
 
Carbon-based nanomaterials have piqued the scientific community's interest due to their 
unusual electrical, mechanical, chemical, thermal, and optical capabilities among other 
types of nanomaterials. They have been employed as a plasmonic layer in the 
construction of SPR based sensors to improve the sensor sensitivity, and to offer a large 
surface area and good compatibility for the immobilization of diverse biomolecules such 
as enzymes, DNA, antibodies, and antigens (Zeng et al., 2014; Gupta et al., 2019). 
Carbon quantum dots (CQDs) are nanoparticles (NPs) with extremely small sizes, 
usually less than 10 nm, that have lately sparked the interest due to their unique 
physicochemical properties, ease of synthesis, low-cost, high-water solubility, 
environmental friendliness, low concentrations of toxicity, good biocompatibility, and 
chemical stability (Hu et al., 2017; Wu et al., 2022; Dong et al., 2022). Graphene is a 
single layer of graphite with extraordinary physicochemical characteristics (Du et al., 
2014; Dai et al., 2021). Graphene quantum dots (GQDs) have recently emerged as a 
distinct class of carbon-based nanomaterials, exhibiting various appealing qualities such 
as low toxicity, biocompatibility, photostability, and a comparatively high quantum yield 
when compared to other carbon nanomaterials. Amongst various carbonaceous 
materials, graphene oxide (GO) has demonstrated significant potential in biosensing. It 
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has piqued the curiosity of many people because to the extraordinary properties derived 
from its electronic arrangement, namely the sp2/sp3 coexisting structure (Chen et al., 
2011; Teymourian et al., 2013; D. Yuan et al., 2014). 
 
 
Chitosan (CS) is a nontoxic biodegradable biopolymer with a high molecular weight 
found abundantly in nature. CS is derived from chitin, a natural organic molecule that 
may be taken from the exoskeletons of crustaceans and insects. This polymer has a lot 
of amino (–NH2) and hydroxyl (–OH) functional groups (Sonsin et al., 2021). CS 
biopolymer and its derivatives were selectively utilized to stabilize plasmonic NPs, 
semiconductor NPs, luminescent NPs, and photoluminescent complexes in the field of 
optically active materials (Marpu & Benton, 2018). Because of the distinct properties of 
the carbon-based nanomaterials and the biopolymer chitosan, they were effectively 
employed in the preparation of SPR sensor chips as active layers to improve SPR sensor 
sensitivity towards DA and enhance the sensor performance. 
 
 
1.5 Problem Statement 

Dopamine (DA) insufficiency in the human body causes major neurological disorders 
such as Parkinson’s disease (PD) (Hsu et al., 2012), and Alzheimer’s disease (Zhu et al., 
2016). As a result, there is an urgent need for extremely sensitive and selective sensors 
capable of monitoring DA concentrations and making relevant measurements accurately 
in real time. To date, several techniques have been developed for DA detection, including 
electrochemical (EC) methods (Shin et al., 2017), and various types of optical methods 
such as colorimetry and spectrophotometry (Palanisamy et al., 2016), fluorescence 
(Kruss et al., 2017), surface-enhanced Raman spectroscopy (SERS) (Lu et al., 2016) and 
surface plasmon resonance (SPR). The detection of DA employing SPR sensors is still 
limited and in its early stages (Matsui et al., 2005; Kumbhat et al., 2007; Sebok et al., 
2013; Kamali et al., 2015; Raj et al., 2016; Jiang et al., 2017; Manaf et al., 2017; Cao & 
Mcdermott, 2018; Sharma & Gupta, 2018; Sun et al., 2019; Yuan et al., 2019). SPR 
sensors are currently among the most advanced technologies that have satisfied the 
requirement for more relevant details on biomolecular interactions (Omar & Fen, 2018), 
and have shown efficient in the detection of various biological analytes and medical 
diagnostics (Yanase et al., 2014; Omar et al., 2019). Despite the significant benefits of 
high specificity, cheap cost, sensing capabilities in real-time, and ease of preparation of 
SPR sensor, its sensitivity necessities improvements to detect analytes in extremely low 
concentrations. Because of their unique optical, magnetic, and electrical characteristics, 
nanomaterials have shown promising potential in sensing and other domains (Zeng et al., 
2014). The use of nanomaterials with SPR sensor provides exceptional prospects and a 
feasible approach to boost its sensitivity. Therefore, in this work, SPR sensor was 
developed by modifying the gold chips with different thin films prepared using carbon- 
based nanomaterials and the biopolymer chitosan for highly sensitive detection of DA.  
 

Though the preliminary results of the previously developed DA SPR sensors are 
encouraging, however, their reports on the sensing performance are very limited. Just a 
few works indicated the sensor sensitivity (Manaf et al., 2017; Sharma & Gupta, 2018; 
Sun et al., 2019) and affinity constant (Cao & Mcdermott, 2018). Therefore, it is of 
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interest to evaluate the sensing performance of all sensor films in terms of sensitivity, 
binding affinity, limit of detection, and accuracy. 
 

Moreover, the reported studies did not investigate DA binding behaviour on the sensor 
surface using structural measurements. In addition, the characterization of the optical 
properties of DA and the sensor film, as well as the determination of the sensor film 
thickness were reported only by Manaf et al. (2017). Therefore, it is important to 
characterize the structural and optical properties of all sensor films and determine their 
thickness before and after interactions with DA.  
 

For more reliability of the appropriateness of the developed SPR sensor to detect DA, 
the sensing layers with the best performance towards DA were selected for a thorough 
evaluation of their efficiency in terms of selectivity, repeatability, reproducibility and 
stability. In addition, the kinetic behaviour of DA solution in contact with the chosen 
sensor films was studied. This nanomaterials-based SPR sensor represents an 
advantageous possibility to detect extremely low concentrations of DA rapidly, easily, 
inexpensively and reliably. 
 

1.6 Research Objectives 

The main objectives of this study are stated as follows: 

1. To develop an SPR optical sensor using Au/CQDs, Au/GQDs, Au/GO, Au/CS, 
Au/CS-CQDs, and Au/CS-GQDs thin films for DA detection. 

2. To investigate the performance of DA sensing for all sensor films. 
3. To characterize the structural and optical properties, as well as the thickness of 

sensor films before and after interactions with DA. 
4. To investigate the selectivity, repeatability, reproducibility, stability and kinetic 

behaviour of DA on the best-performing sensor films. 
 
 

1.7 Thesis Organization 

This thesis consists of six chapters. Chapter 1 provides an introduction on DA and its 
important role in human body, and briefly mentions the methods and challenges of DA 
detection. SPR based sensor has also been included throughout this chapter, where the 
general principle of SPR was introduced, as well as sensing layers and the necessity for 
the sensitivity enhancement. The problem statement is also involved and research 
objectives are outlined. Chapter 2 presents DA sensors including EC sensors based on 
carbon nanomaterials and chitosan, optical sensors such as colorimetric and 
spectrophotometric sensors, SERS sensor, and fluorescence sensor. It also covers SPR 
phenomenon and sensing applications in medical diagnosis. In addition, DA detection 
using SPR sensors is discussed in details. The performance characteristics of SPR sensor, 
the function of SPR technique as a refractometer, as well as the structural properties of 
carbon-based materials and chitosan are also addressed in this chapter. Chapter 3 focuses 
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on theory of surface plasmon in the aspects of the evanescent wave and surface plasmon 
dispersion, surface plasmon polaritons at a single interface, multilayer systems and 
Fresnel analysis, and SPR sensorgram. Chapter 4 describes the methodology of 
preparation the sample solutions and sensor films, the experimental procedure of 
incorporation the thin films to SPR system for target sensing, theoretical analysis 
method, and the structural characterization techniques of sensor films. Chapter 5 shows 
the results and discussion of SPR optical sensor based on Au, Au/CQDs, Au/GQDs, 
Au/GO, Au/CS, Au/CS-CQDs, and Au/CS-GQDs thin films. Finally, chapter 6 
concludes the research findings made during this study and summarizes the performance 
of all developed sensing layers. The suggestions and recommendations for future work 
have been also stated in this chapter. 
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