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The use of homogeneous catalysts in glycerol acetylation have been associated with 

several shortcomings hence the growing interest in the use of heterogeneous catalysts 

such as metal oxide. Carbon supported yttrium oxide (Y2O3) catalysts were synthesized 

via carbonization of palm kernel shell (PKS) and subsequent functionalization with 

5wt%, 10wt% and 15wt% yttrium oxide (Y2O3), respectively. The catalysts were also 

characterized by N2 physisorption analysis (BET surface area), X-ray diffraction (XRD), 

thermogravimetric analysis (TGA), scanning electron microscopy coupled with energy 

dispersive X-ray spectroscopy (SEM-EDX), Fourier transform infra-red (FTIR), and 

temperature programmed desorption-ammonia (TPD-NH3) and tested in glycerol 

acetylation. The 15wt% Y2O3/PKS-T700 catalyst with the highest potential was used for 

the optimization reaction using four-factor, two-level face-centred central composite 

design (24 CCD) of the response surface methodology. The optimized conditions were 

found to be temperature 130 ℃, glycerol-to-acetic acid molar ratio 1:11 and catalyst 

loading 0.5 g in 5 h reaction time. Glycerol acetylation reaction revealed optimal results 

of 99.8% glycerol conversion (GC) and product selectivity of 15.7% monoacetin (MA), 

58.8% diacetin (DA), and 29.4% triacetin (TA), respectively. The model terms were 

found to be significant (p<0.05) with coefficient of determination (R2) close to unity 

(>0.99) while the predicted R2 and the adjusted R2 were in agreement with each other. 

The characteristics of the catalyst revealed carbon, hydrogen and yttrium were 71.33%, 

15.66% and 13.01%, acid site density of 339.9 µmol/g, while the BET surface area, pore 

volume and the average pore size were 503 m2/g, 0.452 cm3/g and 2.5 nm. On subjecting 

the catalyst to reusability study in three (3) reaction cycles under the optimal conditions, 

the catalyst was found to maintain good reaction with little degradation as observed in 

the small decline in performance attributed to slight leaching of the active site.
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PENGASETILAN GLISEROL KE ATAS MANGKIN KARBON TERSOKONG 

ITRIUM OKSIDA DAN ANALISIS PENGOPTIMUMAN MENGGUNAKAN 

KAEDAH GERAK BALAS PERMUKAAN 

Oleh 

AMADI UCHENNA FIDELIS 

September 2022 

Pengerusi : Profesor Madya Irmawati Binti Ramli, PhD 

Fakulti : Sains 

Penggunaan mangkin homogen dalam asetilasi gliserol telah dikaitkan dengan beberapa 

kelemahan, justeru minat yang semakin meningkat dalam penggunaan mangkin 

heterogen seperti oksida logam. Pemangkin itrium oksida (Y2O3) yang disokong karbon 

telah disintesis melalui pengkarbonan tempurung isirong sawit (PKS) di ikuti dengan 

kefungsian masing-masing  5 bt%, 10 bt% dan 15 bt% itrium oksida (Y2O3). Pemangkin 

juga dicirikan oleh analisis fizijerapan N2 (luas permukan BET), pembelauan sinar-X 

(XRD), analisis termogravimetrik (TGA), mikroskop elektron pengimbasan ditambah 

dengan spektroskopi sinar-X penyebaran tenaga (SEM-EDX), infra-merah transformasi 

Fourier (FTIR), dan suhu terprogram nyahjerapan-ammonia (TPD-NH3) dan diuji dalam 

pengasetilan gliserol. Pemangkin 15bt% Y2O3/PKS-T700 dengan potensi tertinggi 

digunakan untuk tindak balas pengoptimuman menggunakan reka bentuk komposit 

berpusat dua peringkat (24 CCD) bagi kaedah gerak balas permukaan empat faktor. 

Keadaan optimum di dapati ialah suhu 130 ℃, nisbah molar gliserol/asid asetik 1:11 dan 

muatan mangkin 0.5 g dalam masa tindak balas 5 jam. Tindak balas pengasetilan gliserol 

menunjukkan keputusan optimum 99.8% penukaran gliserol (GC) dan selektiviti produk 

masing-masing 15.7% monoasetin (MA), 58.8% diasetin (DA), dan 29.4% triasetin 

(TA). Terma model di dapati signifikan (p<0.05) dengan pekali penentuan (R2) 

menghampiri perpaduan (>0.99) manakala R2 yang diramalkan dan R2 terlaras adalah 

selaras antara satu sama lain. Ciri-ciri pemangkin mendedahkan karbon, hidrogen dan 

itrium ialah 71.33%, 15.66% dan 13.01%, ketumpatan tapak asid 339.9 µmol/g, 

manakala luas permukaan BET, isipadu liang dan saiz liang purata ialah 503 m2/g, 0.452 

cm3/g dan 2.5 nm. Semasa menyasarkan mangkin kepada kajian kebolehgunaan semula 

dalam tiga (3) kitaran tindak balas di bawah keadaan optimum, mangkin didapati 

mengekalkan tindak balas yang baik dengan sedikit degradasi seperti yang diperhatikan 

dalam penurunan kecil dalam prestasi disebabkan oleh sedikit larut lesap tapak aktif. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Research background 

Glycerol (propane-1,2,3-triol) is a sweet tasting oily liquid with three hydrophilic 

hydroxyl groups each attached to carbon responsible for its stable, versatile reactions and 

applications (Ayoub and Abdullah, 2012). Prior to the advent of biodiesel production, 

glycerol has a relatively good market value due to the fact that their production was not 

commensurate with its demand. However, with the upsurge in biodiesel production, the 

glycerol availability increased tremendously because for every production of biodiesel, 

10% by weight of it is glycerol (Quispe et al., 2013; Anitha et al., 2016). Available 

statistics shows that in the past years Europe and United States were the largest producers 

of glycerol with about 65% combined capacity but recent market research shows that the 

Asia-Pacific region has taken the lead to be the largest glycerol producer in the world 

with Malaysia and Indonesia been largest producer from palm oil (Christoph et al., 2012; 

Quispe et al., 2013).     

 

 

With above scenario, the industrial accumulation of glycerol becomes a menace that 

needs to be addressed (Ahmad et al., 2021). Hence, researchers' attention have shifted to 

the conversion of glycerol to high value products or chemicals, otherwise known as 

repurposing (Karnjanakom et al., 2018). For a sustainable circular economy, it is 

important to consider repurposing glycerol obtained as a by-product of biodiesel 

production, to overcome the production cost and to also encourage biodiesel production 

in a wide range (Checa et al., 2020). 

 

 

One of the promising means of repurposing glycerol into a valuable product is through 

transformation of glycerol via catalytic acetylation with acetic acid to yield mono-acetin 

(MA), diacetin (DA), and triacetin (TA) as illustrated in Figure 1.1 (Chong et al., 2020; 

Manríquez-Ramírez et al., 2020). These products of acetylation reaction have versatile 

applications in cosmetics, pharmaceuticals and fuel industry. 
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Figure 1.1: Illustration of glycerol conversion to monoacetin, diacetin, and triacetin 

 

 

The need for a catalyst in a chemical reaction cannot be overemphasized, since it lowers 

the activation energy required to commence a reaction (Dhakshinamoorthy et al., 2021). 

This reason equips catalyst materials as a sustainable resource that can lower the 

temperature and time that will normally be taken to accomplish the desired reaction 

processes. Catalysts play a significant role in the chemical industry by promoting 

chemical reactions and also enhancing active selectivity of products and by-products, 

thereby minimizing reagent waste and undesired outcomes, eliminating or transforming 

pollutants into products that are considered non-toxic (Kumar et al., 2020a). Catalysts 

have gained much industrial prominence such that the global catalyst market was 

estimated to be worth $15 billion with about 95% of the industrial products produced via 

catalytic processes (O'Neill et al., 2015). Therefore, the deployment of appropriate 

catalyst (homogeneous or heterogeneous), in glycerol acetylation to yield the desired 

product(s) is necessary. 

   

 

The application of homogeneous catalyst such as hydrochloric acid, hydrofluoric acid, 

sulphuric acid, or acidic ionic liquids in glycerol acetylation, though highly active, have 

since been limited due to some technical and environmental considerations, such as 

product purity, product separation, corrosion of reactor, non-recyclability, production of 

large amount of waste, adverse environmental impact, etc. Therefore, the task of 

developing efficient heterogeneous solid catalysts have become necessary to overcome 

the above disadvantages and provide better selectivity for the desired products. The use 

of so many heterogeneous acid catalysts such as heteropolyacids, amberlysts and zeolites 

are also characterized by certain defects such as thermal instability and poor regeneration 

ability hence the use of metal oxide catalysts in this study. The metal oxide catalysts are 

inexpensive and stable over a wide temperature range and easily regenerable 

(Sudarsanam et al., 2019). However, they have low surface areas and low pore size 

distribution hence the need to provide a good supporting material. 

 

 

Among the catalyst supporting materials, carbon standout due to its unique 

physicochemical properties which include large surface area, tuneable pore structure, 
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chemical inertness, high electrical, thermal and mechanical stabilities (Goscianska and 

Malaika, 2020). Therefore, this study involves the derivation of carbon from a palm 

kernel shell (PKS) biomass and in turn use as a supporting material for a metal oxide 

(yttrium oxide) to serve as catalyst for glycerol acetylation.  The application of PKS 

biomass as a component of a catalysts is an advantage towards its sustainable disposal 

route in the environment. In addition, its biodegradability and biocompatibility features 

offer wide arrays of opportunities for the development of functional and functional 

hybrid solids catalysts. The dawn of the new decade, encourages the scientific 

community towards studies that are focused on utilization of agro-wastes with a view to 

attaining efficiency and sustainability of resources. One of such utilization is biomass-

derived catalyst or catalyst support for industrial applications. 

 

1.2  Problem statement 

Researchers have sought to continuously improve on the properties of heterogeneous 

catalysts that are suitable for an effective glycerol conversion into valuable products. The 

information on the use of metal oxide catalysts is still evolving and are therefore scanty 

but indicates their potentials in glycerol acetylation. However, they are limited by their 

low surface areas and low pore size distribution hence the need to provide them with 

adequate support materials. Therefore, this research was conceived in view of the earlier 

studies indicative of carbon as a good supporting material due to its excellent 

physicochemical properties, while yttrium oxide is thought of to be a good acid material. 

Since acetylation reaction strife under acidic catalyst with moderate surface area and 

adequate pore size distribution, a carbon support was generated from the abundant PKS 

and impregnated (functionalized) with yttrium oxide to provide the active sites, improve 

the surface area and pore size distribution of the resultant catalyst with a view to 

improving glycerol acetylation. 

 

1.3  Significance of the study 

The environment is becoming increasingly polluted in the 21st century. Both glycerol and 

palm kernel shells (PKS) are example of such major sources of pollution. Glycerol is a 

product of biodiesel which is increasingly being produced in Malaysia, while the palm 

kernel shells (PKS) constitute large scale biomass waste during palm oil production. 

They both constitute environmental nuisance due to large production and therefore, the 

need to repurpose them into value-added products for other uses. This can be achieved 

by utilizing the PKS as a carbon source while the glycerol can be converted to acetin, a 

very important and versatile industrial chemical. As such this research, is aim at 

converting waste to wealth thereby repurposing waste materials for value addition.   
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 1.4   Research objectives 

The objective of the study includes:  

1. to generate carbon from palm kernel shell (PKS) and use it as a support material 

in the synthesis of carbon supported yttrium oxide catalyst.  

2. to characterise the synthesized catalyst and test its activity in glycerol 

acetylation reaction. 

3. to optimize the reaction conditions using response surface methodology. 

4. to evaluate the reusability of the synthesized catalyst. 

 

 1.5   Scope of the study  

In this study, carbon material was generated from palm kernel shell (PKS) using template 

carbonization method with the sodium silicate (Na2SiO3) as the templating agent. The 

generated carbon was used as support for the yttrium oxide (Y2O3) resulting in carbon 

supported yttrium oxide catalyst. 

 

 

The synthesized catalysts and the precursor materials were characterized using Brunauer-

Emmett-Teller (BET) technique, X-ray diffraction (XRD) technique, thermogravimetric 

analysis (TGA), temperature programme desorption of ammonia (TPD-NH3), Fourier 

transform infrared spectroscopy (FTIR) and scanning electron microscopy coupled with 

energy dispersive X-ray spectroscopy (SEM-EDX). The synthesized catalysts were 

evaluated in glycerol acetylation reaction with acetic acid. The glycerol conversion and 

the selectivity of the products were determined and used as the yardstick for the 

performance of the synthesized catalyst.  

 

 

The reaction was optimized using the four-factor, two-level face-centred central 

composite design of the response surface methodology (RSM) with reaction temperature, 

reaction time, acetic acid mole ratio, and catalyst loading as the variables.   

The reusability test of the catalyst was also studied by conducting acetylation reaction 

using the same catalyst in three reaction cycles. This also ascertained the catalyst 

degradation or otherwise of the catalyst.  
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1.6   Thesis outline 

Chapter 1, dwells upon the research background, problem statement, the significance of 

the study, research objectives, and the scope of the research work. 

 

 

Chapter 2, gives detail background about glycerol and biomass as a source of carbon 

material. It also delved into past and recent studies on the synthesis and application of 

various catalysts in glycerol acetylation and the influencing factors. It also discusses 

optimization principles and the types. 

 

 

Chapter 3, deals with the materials and methods used for the research work. It also deals 

with the acetylation reaction and optimization methods used for the reaction as well as 

the various characterization methods used.  

 

 

Chapter 4 is all about the results of the experiments and their discussions, while chapter 

5, summarizes the study and provides future trends in the field of glycerol acetylation 

and other recommendations.  
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