IMPACT OF NOISE AND HEARING ON TASK AND ACADEMIC PERFORMANCE OF PRIMARY SCHOOL CHILDREN IN KUALA LUMPUR

CHUA SWEE KIM

FPSK (M) 2001 4
IMPACT OF NOISE AND HEARING ON TASK AND ACADEMIC PERFORMANCE OF PRIMARY SCHOOL CHILDREN IN KUALA LUMPUR

By

CHUA SWEE KIM

Thesis Submitted in Fulfilment of the Requirement for the Degree of Master of Science in the Faculty of Medicine and Health Sciences Universiti Putra Malaysia

September 2001
This work is especially dedicated to

My loving and caring grandmother, father and family members

My love

All the children
Noise poses a serious threat to children’s hearing, health, learning and behavior. This study was done to determine the effects of noise and hearing on task and academic performance of primary school children in Kuala Lumpur. A total of 110 Standard One Malay children aged from 6 ½ to 7 ½ years were recruited in this study according to stratified random sampling. Environmental noise levels and personal noise exposures were measured by using sound level meter and noise dosimeter, respectively. A personal questionnaire and audiometric tests was administered on all the respondents. Seven tests in the McCarthy Scales of Children’s Abilities constituted the tests in the Task Performance. Task Performance was carried out twice on the same respondents in quiet and noise condition. The child’s academic performance was determined by his latest examination result in the school.

Environmental noise measurement indicated that a mean equivalent continuous sound level (LEQ), maximum level (LMAX) and minimum level (LMIN) of at least 60 dB (A) was found inside and outside the classrooms irrespective of school days or holidays. The respondents were exposed to an average sound level of 85.6 dB (A), a
maximum level of 109.6 dB (A) and a minimum level of 51.7 dB (A). Audiometric
test results showed that 45.2% respondents experienced high frequency hearing loss
(HFHL) and 61.5% had low frequency hearing loss (LFHL). A typical noise dip was
found at 6000 Hz.

There was a significant difference in Verbal Memory 2 ($t = 2.236, p = 0.027$). At high
pure tone average (HPTA), significant differences were found in Tapping Sequence
and Verbal Memory 2 for normal hearing ($t = 3.173, p = 0.002$) and hearing impaired
respondents ($t = 2.012, p = 0.050$), respectively. At low pure tone average (LPTA),
there was also a significant difference in total scores ($t = 2.380, p = 0.022$) and Verbal
Memory 2 ($t = 2.748, p = 0.009$) for normal respondents. Respondents with LFHL
performed significantly poorer than their normal hearing peers in all subjects ($t =
2.347, p = 0.021$), Malay Language ($t = 2.042, p = 0.044$) and English Language ($t =
2.642, p = 0.010$).

By using Pearson’s Correlation, personal LMAX was found to have significant
correlation with left ear thresholds at HPTA ($r = 0.309, p = 0.002$) and LPTA ($r =
0.213, p = 0.032$). Results from Multiple Regression showed that there were
significant relationships between right ear thresholds at HPTA with house
environment scores ($\beta = 0.647, t = 2.479, p = 0.015$). As for the left ear, personal
LMAX ($\beta = 0.600, t = 2.690, p = 0.008$) was found to have significant relationship
with HPTA thresholds. At LPTA, significant relationships were found between left
ear thresholds with clinical history scores ($\beta = -1.302, t = -2.292, p = 0.024$). There
was a significant relationship between academic performance with personal LMAX ($F =
5.935, p = 0.017$) and hearing category at HPTA ($F = 4.560, p = 0.036$). In
conclusion, noise exerts variable effects on task performance. Exposure to LMAX of over 100 dB (A) tended to have some effects on hearing thresholds and academic performance.
KESAN BUNYI BISING AND PENDENGARAN KE ATAS PRESTASI TUGASAN AND AKADEMIK DI KALANGAN MURID-MURID SEKOLAH RENDAH DI KUALA LUMPUR

Oleh

CHUA SWEE KIM

September 2001

Pengerusi: Profesor Madya Dr. Zailina Hashim

Fakulti: Perubatan dan Sains Kesihatan

Pengukuran bunyi bising persekitaran mendapati tahap bunyi berterusan equivalen (LEQ), tahap maksimum (LMAX) dan tahap minimum (LMIN) mencapai sekurang-kurangnya 60 dB (A) di dalam dan di luar bilik darjah pada hari bersekolah atau hari
cuti. Responden terdedah kepada 85.6 dB (A) purata tahap bunyi, tahap maksimum 109.6 dB (A) dan tahap minimum 51.7 dB (A). Ujian pendengaran menunjukkan bahawa terdapat 45.2% responden mengalami hilang pendengaran pada frekuensi tinggi (HFHL) dan 61.5% mempunyai hilang pendengaran pada frekuensi rendah (LFHL). Terdapat satu lurah bunyi bising yang tipikal pada 6000 Hz.

Terdapat perbezaan yang signifikan di Memori Verbal 2 (t = 2.236, p = 0.027). Pada purata frekuensi tinggi (HPTA), terdapat perbezaan yang signifikan di Urutan Ketukan dan Memori Verbal 2 di kalangan responden normal (t = 3.173, p = 0.002) dan responden yang hilang pendengaran (t = 2.012, p = 0.050) masing-masing. Perbezaan yang signifikan juga didapati di jumlah skor (t = 2.380, p = 0.022) dan Memori Angka 2 (t = 2.748, p = 0.009) bagi responden normal pada purata frekuensi rendah (LPTA). Pencapaian akademik bagi responden yang mempunyai LFHL adalah lebih teruk daripada responden normal dalam semua matapelajaran (t = 2.347, p = 0.021), Bahasa Melayu (t = 2.042, p = 0.044) dan Bahasa Inggeris (t = 2.642, p = 0.010).

Dengan menggunakan Korelasi Pearson, LMAX individu didapati mempunyai korelasi yang signifikan dengan ambang pendengaran telinga kiri pada HPTA (r = 0.309, p = 0.002) dan LPTA (r = 0.213, p = 0.032). Keputusan dari Multiple Regression menunjukkan bahawa terdapat hubungan yang signifikan antara ambang pendengaran telinga kanan pada HPTA dengan skor persekitaran rumah (β = 0.647, t = 2.479, p = 0.015). Manakala untuk telinga kiri pula, LMAX individu (β = 0.600, t = 2.690, p = 0.008) didapati mempunyai hubungan yang signifikan dengan ambang pendengaran HPTA. Pada LPTA, hubungan yang signifikan didapati antara ambang
pendengaran telinga kiri dengan skor sejarah klinikal ($\beta = -1.302$, $t = -2.292$, $p = 0.024$). Terdapat hubungan yang signifikan antara prestasi akademik dengan LMAX individu ($F = 5.935$, $p = 0.017$) dan kategori pendengaran pada HPTA ($F = 4.560$, $p = 0.036$). Secara kesimpulan, bunyi bising mendatangkan kesan yang berlainan ke atas prestasi tugas. Pendedahan kepada LMAX yang melebihi 100 dB (A) dapat menjelas pendengaran dan prestasi akademik.
ACKNOWLEDGEMENTS

Without exception, each of the illustrations was specially selected and prepared for the project paper. Whilst accepting full responsibility for the entire contents, the researcher is indebted to many individuals who have made invaluable contributions in their specialized fields.

The researcher would like to express her deepest thanks to Associate Professor Dr. Zailina Hashim of Environmental and Occupational Health Unit, Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia who performed the role of project supervisor and editor with seemingly limitless dedication, insights and enthusiasm. Her valuable advice, unfailing patience and encouragement helped the researcher so much in completing this project.

In addition, the researcher’s heartfelt thanks to Associate Professor Dr. Siti Zamratol Mai-Sarah of Audiology and Speech Science Department, Faculty of Allied Health Sciences, Universiti Kebangsaan Malaysia who totally dedicated to teach her using the audiometer and interpreting audiogram. Besides, she was extremely grateful to Dr. Iylen Benedict of Pfizer Malaysia Pte. Ltd. for her guidance in noise measurement. Both of the committee members also gave their valuable advices and recommendations in accomplishing this project. Not to forget Dr. Rohani Abdullah of Faculty of Human Ecology, Professor Peter Pook Chuen Keat, ex-Deputy Dean of Faculty of Medicine and Health Sciences, Dr. Long Seh Chin, Head of Department of Community Health, Faculty of Medicine and Health.
The researcher would like to forward her appreciation to the members of the Environmental and Occupational Health Unit, Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia especially Encik Shamsul Bahari and Puan Juliana Jalaludin for their co-operation and guidance. Not forgetting the supports, advices and encouragements given by the researcher’s fellow colleagues and friends who have given their precious support and assistance, especially Cik Saliza Mohd. Elias and Puan Junidah Raib. Puan Junidah Raib also guided the researcher on how to perform the tests in McCarthy Scales of Children’s Abilities.

Besides, the researcher would like to acknowledge the excellent cooperation given by the Ministry of Education of Malaysia, Kuala Lumpur Department of Education, and especially the authorities, staffs and primary schoolchildren in Kuala Lumpur. Not forgetting their respective parents and family members for their cooperation to the researcher.

Appreciation is also due to the researcher’s friends Mr. Lee Ming Enn and Mr. Chan Chew Meng for their guidance and advices. Last but not least, the researcher dedicate this work to family members and loved ones especially the researcher’s dearest father, Mr. Chua Lip Chee and Mr. Lim Kok Ann for their support and encouragement throughout the years of her studies. Also to all whom have in one way or another contributed or helped the researcher in completing this project, the researcher wish to forward her gratitude.
I certify that an Examination Committee met on 3rd September 2001 to conduct the final examination of Chua Swee Kim on her Master of Science thesis entitled “Impact of Noise and Hearing on Task and Academic Performance of Primary School Children” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Mohd. Yunus Abdullah, Ph.D.
Associate Professor
Faculty of Graduate Studies
Universiti Putra Malaysia
(Chairman)

Zailina Hashim, Ph.D.
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Siti Zamratol Mai-Sarah, MD, M.Sc.
Associate Professor
Faculty of Allied Health Sciences
Universiti Kebangsaan Malaysia
(Member)

Rohani Abdullah, Ph.D.
Lecturer
Faculty of Human Ecology
Universiti Putra Malaysia
(Member)

Iylen Benedict, MD, M. Occup. Health
Product Physician
Pfizer (Malaysia) Sdn. Bhd.
(Member)

MOHD. GHAZALI MOHAYIDIN, Ph.D.
Professor/Deputy Dean of Graduate School
Universiti Putra Malaysia

Date: 23 Nov 2001
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirement for the degree of Master of Science.

AINI IDRIS, Ph.D.
Professor
Dean of Graduate School
Universiti Putra Malaysia

Date: 1 n 1 n 2007
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

CHUA SWEE KIM

Date: 21 Nov 2001
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK vi
ACKNOWLEDGEMENTS ix
APPROVAL SHEETS xi
DECLARATION FORM xiii
LIST OF TABLES xvii
LIST OF FIGURES xix
LIST OF ABBREVIATIONS/NOTATIONS xxii

CHAPTER
1 INTRODUCTION 1
 Introduction 1
 Problem Statement 3
 Study Justification 4
 Terms Definition 7
 Conceptual Definition 7
 Operational Definition 8
 Objective 8
 General Objective 8
 Specific Objectives 9
 Study Hypotheses 9
 Conceptual Framework 10

2 LITERATURE REVIEW 12
 Characterization of Sound 12
 Definition of Sound 12
 Frequency 12
 Amplitude 13
 Time Pattern 14
 The Human Ear and Hearing 14
 The Anatomy of the Ear 14
 How We Hear Sounds 16
 The Outer Ear 17
 The Middle Ear 17
 The Inner Ear 18
 The Pathway to the Brain 19
 Feedback Mechanisms 20
 Sources of Noise 20
 Recreational Noise 21
 Community Noise 24
 Noise and Hearing 27
 Types of Hearing Loss 28
 Individual Susceptibility 31
Prevalence of Hearing Loss 33
The Significance of Hearing Impairment 35
Noise and Performance 42
Perceptual-Motor Performance 42
Selective and Sustained Attention Tasks 45
Verbal Learning and Memory 49
Intellectual Tasks 51
Effects in the Classroom 53

3 METHODOLOGY 55
Background Information of the Study 55
Location 55
Sampling 56
Data Collection and Measurement 62
 Background Information 62
 Environmental Noise Exposure 65
 Personal Noise Dose Exposure 71
 Hearing Ability 72
 Task Performance 79
 Academic Performance 85
 Data Collection Framework 85
Data Analysis 87
 Statistical Analysis 87
Study Limitations 87

4 RESULTS 89
Respondents’ Background Information 89
Background Information of Respondents’ Families 89
Housing Environment 93
Hobby and Activity 95
Clinical History 96
Data Quality Control 98
 Standard Operating Procedure 98
 Reliability Analysis for Tests in Task Performance 98
Environmental Noise Exposure 101
 Outdoor Noise Level 101
 Indoor Noise Level 111
Personal Noise Exposures 121
Hearing Profiles 122
Task Performance 125
Academic Performance 130
Correlation Between Hearing Thresholds and Personal Noise Exposures 132
Correlation Between Academic Performance and Personal Noise Exposures 133
Relationship Between Hearing Thresholds and Selected Variables 134
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>DISCUSSIONS</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>Background Information of Respondents and Families</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>Risk Factors of Hearing Loss</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Environmental and Personal Noise Exposure</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>Hearing Profiles</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>Task Performance</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>Academic Performance</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Correlation Between Hearing Thresholds and Personal Noise Exposures</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>Correlation Between Academic Performance and Personal Noise Exposures</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>Relationship between Hearing Thresholds and Selected Variables</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Relationship Between Academic Performance and Selected Variables</td>
<td>157</td>
</tr>
<tr>
<td>6</td>
<td>CONCLUSIONS AND RECOMMENDATIONS</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>Conclusions</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>Recommendations</td>
<td>161</td>
</tr>
</tbody>
</table>

BIBLIOGRAPHY
163

APPENDICES
175

VITA
204
<table>
<thead>
<tr>
<th>Table</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Noise levels in the classrooms (noise screening)</td>
<td>58</td>
</tr>
<tr>
<td>3.2</td>
<td>Type of questions in questionnaire according to parts</td>
<td>62</td>
</tr>
<tr>
<td>3.3</td>
<td>Scoring of house environment</td>
<td>63</td>
</tr>
<tr>
<td>3.4</td>
<td>Standard of background noise in audiometric booth</td>
<td>76</td>
</tr>
<tr>
<td>3.5</td>
<td>Category of hearing</td>
<td>79</td>
</tr>
<tr>
<td>3.6</td>
<td>Type of tests in McCarthy Scales of Children’s Abilities</td>
<td>80</td>
</tr>
<tr>
<td>4.1</td>
<td>Background information of respondents</td>
<td>90</td>
</tr>
<tr>
<td>4.2</td>
<td>Parents’ years of education</td>
<td>90</td>
</tr>
<tr>
<td>4.3</td>
<td>Parents’ occupation</td>
<td>91</td>
</tr>
<tr>
<td>4.4</td>
<td>Distribution of monthly household income</td>
<td>92</td>
</tr>
<tr>
<td>4.5</td>
<td>Characteristics of respondents’ houses</td>
<td>93</td>
</tr>
<tr>
<td>4.6</td>
<td>Distance of respondents’ houses from source of noise pollution</td>
<td>94</td>
</tr>
<tr>
<td>4.7</td>
<td>Respondents’ hobbies</td>
<td>95</td>
</tr>
<tr>
<td>4.8</td>
<td>Positive answers to questions in Clinical History</td>
<td>97</td>
</tr>
<tr>
<td>4.9</td>
<td>Reliability analysis of each test in Task Performance in quiet condition</td>
<td>99</td>
</tr>
<tr>
<td>4.10</td>
<td>Reliability analysis of each test in Task Performance in noise condition</td>
<td>100</td>
</tr>
<tr>
<td>4.11</td>
<td>Outdoor noise level of classrooms</td>
<td>103</td>
</tr>
<tr>
<td>4.12</td>
<td>Indoor noise level of classrooms</td>
<td>113</td>
</tr>
<tr>
<td>4.13</td>
<td>Respondents’ personal noise exposures</td>
<td>121</td>
</tr>
<tr>
<td>4.14</td>
<td>Hearing levels based on high pure tone average</td>
<td>123</td>
</tr>
<tr>
<td>4.15</td>
<td>Hearing levels based on low pure tone average</td>
<td>124</td>
</tr>
</tbody>
</table>
4.16 Proportion of unilaterality and bilaterality of hearing loss at each frequency range 124
4.17 Comparison of noise levels in testing condition 125
4.18 Comparison of task performance according to testing condition 126
4.19 Comparison of task performance according to testing condition among normal hearing respondents based on HPTA 127
4.20 Comparison of task performance according to testing condition among hearing impaired respondents based on HPTA 128
4.21 Comparison of task performance according to testing condition among normal hearing respondents based on LPTA 129
4.22 Comparison of task performance according to testing condition among hearing impaired respondents based on LPTA 130
4.23 Respondents’ academic performance 131
4.24 Comparison of academic performance according to HPTA category 131
4.25 Comparison of academic performance according to LPTA category 132
4.26 Correlation between hearing thresholds and personal noise exposures 133
4.27 Correlation between academic performance and personal noise exposures 134
4.28 Relationship between mean hearing thresholds at high pure tone average (3000-6000 Hz) and selected variables 135
4.29 Relationship between mean hearing thresholds at low pure tone average (500-2000 Hz) and selected variables 136
4.30 Relationship between academic performance and selected variables 137
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Malaysia: Traffic noise levels in main cities for Year 1992 and 1998 (Adapted from Department of Environment, 1999)</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Conceptual framework</td>
<td>11</td>
</tr>
<tr>
<td>2.1</td>
<td>Semi-diagrammatic drawing of the ear</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Simplified version of how we hear sounds</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Range of maximum sound levels in dBA measured from common recreational, household, hobby, and transportation noises (Adapted from Clark and Bohne, 1985)</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>School plan</td>
<td>59</td>
</tr>
<tr>
<td>3.2</td>
<td>Sampling of respondents stratified according to class and sex</td>
<td>60</td>
</tr>
<tr>
<td>3.3</td>
<td>Number of respondents according to class</td>
<td>61</td>
</tr>
<tr>
<td>3.4</td>
<td>Measurement points outside classroom</td>
<td>65</td>
</tr>
<tr>
<td>3.5</td>
<td>Measurement points inside classroom</td>
<td>66</td>
</tr>
<tr>
<td>3.6</td>
<td>Data collection framework</td>
<td>86</td>
</tr>
<tr>
<td>4.1</td>
<td>Trend of outdoor noise levels in Standard 1 Beringin classroom during school days and holidays (A) Equivalent continuous sound level (LEQ), (B) Maximum level (LMAX), (C) Minimum level (LMIN), (D) Frequency spectrum of the noise level</td>
<td>104</td>
</tr>
<tr>
<td>4.2</td>
<td>Trend of outdoor noise levels in Standard 1 Cempaka classroom during school days and holidays (A) Equivalent continuous sound level (LEQ), (B) Maximum level (LMAX), (C) Minimum level (LMIN), (D) Frequency spectrum of the noise level</td>
<td>105</td>
</tr>
<tr>
<td>4.3</td>
<td>Trend of outdoor noise levels in Standard 1 Dahlia classroom during school days and holidays (A) Equivalent continuous sound level (LEQ), (B) Maximum level (LMAX), (C) Minimum level (LMIN), (D) Frequency spectrum of the noise level</td>
<td>106</td>
</tr>
<tr>
<td>4.4</td>
<td>Trend of outdoor noise levels in Standard 1 Kenanga classroom during school days and holidays (A) Equivalent continuous sound level (LEQ), (B) Maximum level (LMAX), (C) Minimum level (LMIN), (D) Frequency spectrum of the noise level</td>
<td>107</td>
</tr>
</tbody>
</table>
4.5 Trend of outdoor noise levels in Standard 1 Mawar classroom during school days and holidays (A) Equivalent continuous sound level (LEQ), (B) Maximum level (LMAX), (C) Minimum level (LMIN), (D) Frequency spectrum of the noise level

4.6 Trend of outdoor noise levels in Standard 1 Seroja classroom during school days and holidays (A) Equivalent continuous sound level (LEQ), (B) Maximum level (LMAX), (C) Minimum level (LMIN), (D) Frequency spectrum of the noise level

4.7 Trend of outdoor noise levels in Standard 1 Tanjung classroom during school days and holidays (A) Equivalent continuous sound level (LEQ), (B) Maximum level (LMAX), (C) Minimum level (LMIN), (D) Frequency spectrum of the noise level

4.8 Trend of indoor noise levels in Standard 1 Beringin classroom during school days and holidays (A) Equivalent continuous sound level (LEQ), (B) Maximum level (LMAX), (C) Minimum level (LMIN), (D) Frequency spectrum of the noise level

4.9 Trend of indoor noise levels in Standard 1 Cempaka classroom during school days and holidays (A) Equivalent continuous sound level (LEQ), (B) Maximum level (LMAX), (C) Minimum level (LMIN), (D) Frequency spectrum of the noise level

4.10 Trend of indoor noise levels in Standard 1 Dahlia classroom during school days and holidays (A) Equivalent continuous sound level (LEQ), (B) Maximum level (LMAX), (C) Minimum level (LMIN), (D) Frequency spectrum of the noise level

4.11 Trend of indoor noise levels in Standard 1 Kenanga classroom during school days and holidays (A) Equivalent continuous sound level (LEQ), (B) Maximum level (LMAX), (C) Minimum level (LMIN), (D) Frequency spectrum of the noise level

4.12 Trend of indoor noise levels in Standard 1 Mawar classroom during school days and holidays (A) Equivalent continuous sound level (LEQ), (B) Maximum level (LMAX), (C) Minimum level (LMIN), (D) Frequency spectrum of the noise level

4.13 Trend of indoor noise levels in Standard 1 Seroja classroom during school days and holidays (A) Equivalent continuous sound level (LEQ), (B) Maximum level (LMAX), (C) Minimum level (LMIN), (D) Frequency spectrum of the noise level

4.14 Trend of indoor noise levels in Standard 1 Tanjung classroom during school days and holidays (A) Equivalent continuous sound level (LEQ), (B) Maximum level (LMAX), (C) Minimum level (LMIN), (D) Frequency spectrum of the noise level
4.15 Trend of mean hearing thresholds for left and right ear at each tested frequency
LIST OF ABBREVIATIONS/NOTATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>HPTA</td>
<td>High pure tone average</td>
</tr>
<tr>
<td>LPTA</td>
<td>Low pure tone average</td>
</tr>
<tr>
<td>HFHL</td>
<td>High frequency hearing loss</td>
</tr>
<tr>
<td>LFHL</td>
<td>Low frequency hearing loss</td>
</tr>
<tr>
<td>LEQ</td>
<td>Equivalent continuous sound level</td>
</tr>
<tr>
<td>LMAX</td>
<td>Maximum level</td>
</tr>
<tr>
<td>LMIN</td>
<td>Minimum level</td>
</tr>
<tr>
<td>MSCA</td>
<td>McCarthy Scales of Children’s Abilities</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Introduction

Noise is a normal feature of life and provides one of the most effective alarm systems in man’s physical environment. It is an accompaniment to most human activity and as such may constitute a hazard or stimulant. Noise is generally identified as any unwanted sound that may have adverse effects on man.

With increasing population and urbanization, exposure to high intensity traffic is becoming a critical environmental problem in recent years. High intensity traffic poses a threat to our physical and mental health. Road traffic noise is a frequent, unavoidable and continuously increasing environmental factor of modern life. The acoustic study implemented throughout a neighborhood of Valencia (Spain) revealed that traffic was the major source of noise, followed by noise from neighbors and factories (Aparicio et al., 1993). Noise acts as a nonspecific stressor on the human organism. Thus, the pathways of noise processing may be different with greater emphasis on either the sympathicotonic or humoral axis.

Of the many health hazards related to noise, hearing loss is the most clearly observable and measurable by health professionals. For many of us, there may be a risk that exposure to the stress of noise increases susceptibility to disease and infection. The more susceptible person may experience noise as a complicating factor in heart
problems and other diseases. Noise that causes annoyance and irritability in healthy persons may have serious consequences for those already ill in mind or body.

More than 20 million Americans are exposed to hazardous noise on a regular basis that could finally lead to hearing loss (Consensus Conference on Noise and Hearing Loss, 1990). In United States, occupational deafness is among the 10 leading occupational diseases (Hearing Institute For Children and Adults, 1998). Live or recorded high-volume music, lawn-care equipment and some household appliances are examples of non-occupational sources of potentially hazardous noise. Noise induced hearing loss (NIHL) is preventable except for certain cases of accidental exposure.

Besides that, noise can also lead to other forms of non-auditory effects. Children attending kindergartens situated in areas with traffic noise > 60 dB (A) had higher systolic blood pressure and diastolic blood pressure and lower mean heart rate than children in quiet areas (Regecova and Kellerova, 1995). Study by Nivision and Endresen (1993) showed a strong correlation between the subjective noise responses of annoyance and sensitivity and health complaints among 47 women and 35 men living beside a street with moderate to heavy traffic.

Noise affects communication, it creates a ripple of effects, with a negative impact on a person’s social, vocational and emotional well-being. Therefore, children study in schools that are located near busy and noisy road are at risk of experiencing the health effects of noise, especially hearing loss. Hearing loss can result in the loss of concentration and lowering of attention. Consequently, hearing-impaired students will