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The low energy density of supercapacitor and low power density of lithium-ion 
batteries limits its real-life application. Supercapattery is an innovative hybrid 
energy storage device, which combines the merits of rechargeable batteries and 
supercapacitors into a single device. Spinel-structured lithium-manganese oxide 
(LMO) cathode material is one of the intriguing energy storage material due to 
its low cost and low toxicity. Besides, it has been successful commercialized for 
large scale energy storage, but its low conductivity and stability resulting in fast 
capacity fading. Composites of LMO nanoparticles in a graphene matrix can be 
used to compensate their low conductivity. In addition, synthesis methodology of 
LMO plays an important duty to improve the power and energy density of a 
supercapattery as it affects the electrochemical properties of the LMO cathode. 
Herein, lithium manganese oxide/graphene nanoplatelets (LMO/GNPs) 
composite was synthesized by both hydrothermal (HT) and solid-state reaction 
(SSR) methods to investigate the effect of preparation methods on the 
physicochemical properties and electrochemical behavior of the composite as 
the cathode for supercapattery applications. This cathode is characterized by 
different physicochemical techniques to analyze the structure of crystalline 
materials, surface area, and morphology of the composites such as FE-SEM, N2 
absorption and desorption, XRD, and Raman spectroscopy. Meanwhile, the 
electrochemical performance of the fabricated cathode is evaluated within a 
Swagelok cell with GNPs as an anode, in an eco-friendly and safer aqueous 
electrolyte of 1 M Li2SO4. Nylon membranes were soaked in the aqueous 
electrolyte to act as the separator to separate the anode and cathode physically 
and facilitate the lithium-ion transportation in the cell. LMO/GNPs prepared via 
the HT approach are found to provide a well-distribution of nanometer-size 
particles and enhance the specific surface area, which led to an improvement in 
electrochemical properties compared to the SSR method. The assembled 
supercapattery of h-LMO has achieved the specific capacity and capacitance of 
26.2 mA h g-1 and 191.98 F g-1. Interestingly, the incorporation of 1 mg GNPs on 
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the surface of LMO by the HT method led to a 70% increase in specific 
capacitance and initial discharge capacity. H-LMO/GNPs1 exhibits a high energy 
density and power density of 39.07 W h kg-1 at 925.40 W kg-1, respectively. This 
is due to the high conductive properties of GNPs that promote faster electron 
transfer kinetics for efficient Li+ diffusion. Improved cycle stability of 82% capacity 
retention for over 1000 consecutive cycles is obtained for h-LMO/GNPs1 based 
cathode. Ultimately, the method of preparing LMO/GNPs composites showed 
great influence on the surface chemistry, surface area, and the resulting 
supercapattery performance. 
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Tenaga ketumpatan yang rendah dari superkapasitor dan ketumpatan kuasa 
rendah dari litium ion menghadkan aplikasi dalam kehidupan sebenar. 
Superkapateri merupakan satu peranti hibrid penyimpanan tenaga yang 
berinovatif dengan menggabungkan kelebihan bateri dan superkapasitor. Bahan 
katod struktur-spinel litium mangan oksida (LMO) adalah salah satu bahan 
tenaga simpanan yang menarik disebabkan kos dan toksiksiti yang rendah. 
Selain itu, konduktiviti dan kestabilan litium mangan oksida yang rendah 
menyebabkan kepudaran kapasiti dengan cepat walaupun ia telah berjaya 
dikomersialkan untuk simpanan tenaga berskala besar. Komposisi LMO 
nanozarah yang mengandungi matrik grafin boleh digunakan untuk 
mengimbangi kekonduksiannya yang rendah. Tambahan pula, kaedah untuk 
mengsintesis LMO memainkan peranan yang penting untuk meningkatkan 
ketumpatan kuasa dan tenaga superkapateri kerana ia akan memberi kesan 
kepada sifat elektrokimia kepada katod LMO. Di sini, komposit litium mangan 
oksida/grafin nanoplatelet (LMO/GNPs) telah dihasilkan melalui dua kaedah iaitu 
hidroterma (HT) dan tindak balas keadaan pepejal (SSR) untuk mengkaji kesan 
kaedah penyediaan ke atas sifat-sifat fizikokimia dan kelakuan elektrokimia 
terhadap komposit tersebut yang berperanan sebagai katod untuk aplikasi 
superkapateri. Katod ini diuji oleh teknik fizikokimia yang berbeza seperti FE-
SEM, penyerapan N2, XRD dan spektroskopi raman untuk menganalisis struktur 
bahan kristal, luas permukaan dan morfologi komposit. Prestasi elektrokimia 
katod yang telah disintesis akan dinilai dalam sel Swagelok dengan GNP 
sebagai anod dengan kehadiran elektrolit berasakan akueus yang mesra alam 
dan lebih selamat seperti 1 M Li2SO4. Membran nilon akan direndamkan dalam 
elektrolit dan bertindak sebagai pemisah untuk memisahkan katod dengan anod. 
Selain itu, pemisah ini juga akan memudahkan pengangkutan ion dalam sel. 
Komposit LMO/GNPs yang disediakan melalui pendekatan HT telah dibuktikan 
bahawa ia dapat meningkatkan taburan zarah bersaiz nanometer dengan cekap 
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dan meningkatkan luas permukaan spesifik. Maka, komposit ini mampu 
meningkatkan sifat elektrokimia berbanding dengan kaedah SSR. Superkapateri 
yang dipasangkan dengan h-LMO sebagai katod telah mencapai kapasiti dan 
kapasitan spesifik yang tinggi iaitu 26.2 mA h g-1 dan 191.98 F g-1. Malah, 
penambahan 1 mg GNP pada LMO membawa kepada peningkatan sebanyak 
70% untuk kapasitan spesifik dan kapasiti nyahcas awal. Di samping itu, h-
LMO/GNPs1 telah mendapatkan ketumpatan tenaga dan kuasa yang tinggi 
sehingga 39.07 W h kg-1 dan 925.40 W kg-1. Hal ini disebabkan oleh sifat GNP 
yang berkonduktif tinggi telah menggalakkan kinetik pemindahan elektron 
dengan lebih pantas untuk mendapatkan resapan Li+ yang efisien. Selain itu, 
peningkatan kestabilan kitaran sebanyak 82% pengekalan kapasiti bagi lebih 
1000 kitaran secara berturut-turut diperoleh katod yang berasaskan h-
LMO/GNPs1. Justeru itu, kaedah penyediaan komposit LMO/GNPs 
menunjukkan pengaruh yang besar terhadap kimia permukaan, luas permukaan 
serta prestasi superkapateri yang terhasil.  
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CHAPTER 1 
 

INTRODUCTION 
 
 
1.1  Background  
 
 
Foremost among the drivers of change is technology, spearheaded by the 
portable electronic technologies transformation which inevitably give rise to the 
rising demand for electrochemical energy storage (EES) devices. Therefore, a 
supercapattery was introduced as the latest energy storage device to combine 
the characteristic of a high energy lithium-ion batteries and a high-power 
supercapacitor (Yu & Chen, 2020b). However, there are still many challenges in 
developing supercapattery, including the method to incorporate of the cathodic 
and anodic materials to generate a high-performance EES device and the 
practical application of electrolytes with environmentally friendly and safer 
characteristics (Zhuang et al., 2019). The first goal of development a superior 
supercapattery systems is to ameliorate the electrochemical properties of the 
cathodic material.  
 
 
In supercapattery, carbonaceous material from capacitive or pseudocapacitive 
materials is used as an anode, while battery-type materials such as LiFePO4 
(LFP) (Shellikeri et al., 2018), LiCoO2 (LCO) (Lin et al., 2020), LiNiO2 (LNO) 
(Karuppiah et al., 2020), and LiMn2O4 (LMO) (Chen et al., 2018) as a cathode. 
Spinel LMO is a feasible and a greener cathodic material for supercapattery, 
which offer the benefit of low cost, eco-friendliness, good thermal stability, 
abundance reserves, and safer than the commercialized LCO (Lyu et al., 2021).  
In addition, the robust crystal structure of spinel LMO provides a stable 
framework, that fosters the lithium-ion diffusion channels and enables a low 
coulomb repulsion force and good thermal stability, thus resulting in high-rate 
capability (Marincaş & Ilea, 2021). Despite its advantages, LMO faced several 
challenges including poor electronic conductivity and low power density. 
Incorporation of LMO as cathodic material with carbon-based materials is one of 
an improvement approach to compensate for the low conductivity and improve 
the power and the energy density of LMO (Chen et al., 2019a). Several literature 
reported to fabricate a composite by integrated of LMO with graphene to 
ameliorate the power and energy density. Carbonaceous material such as 
graphene possesses the features of high specific surface area (SSA), electronic 
conductivity, and excellent mechanical flexibility is a promising carbon additives 
to generate a high efficiency supercapattery (Jia et al., 2011; Jung et al., 2013; 
Xu et al., 2012). 
 
 
The studies on the effect of microstructure and surface chemistry of the LMO 
composite electrode have been researched extensively. Solid-state reaction 
method (SSR) synthesis is used extensively to synthesize LMO because of its 
process simplicity and is readily practiced on an industrial scale (Marincaş et al., 
2020). LMO obtained by simple SSR reported by Kiani et al. successfully 
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delivered an exceptional specific capacity and proved a minimum of 75% 
capacity retention after verified by 100 cycling test (Kiani et al., 2011). Besides, 
the crystalline structure, morphology, and surface area of LMO is vital to 
dominate the performance in electric application as they influenced the 
electrochemical properties of LMO cathode material. LMO nanorods composed 
by a β-MnO2 nanorods and the lithium hydroxide in an ethanol, accompanied by 
an annealing treatment provide better electrochemical characteristics, by 
retaining 86.2% of its initial capacity over 100 cycles (Chen et al., 2010). 
Nevertheless, the main disadvantages of SSR are poor electrode material 
crystallinity, uneven particle size, and high-energy utilization. This resulting in the 
determination of researchers to explore the efficient direction to synthesize LMO 
and its composite materials. Among the other investigated synthesis methods, 
the hydrothermal (HT) method is one of the most used synthesis routes which 
offers the advantages of better nucleation control, low energy consumption, high-
purity compounds, and uniform particle distribution. Lv et al. have reported to 
synthesize a LMO cathode material with a high specific capacity and outstanding 
cycling stability via a single-step HT treatment at 120–180°C (Lv et al., 2014). 
Reduction on the particle size can be scrutinized at high synthesis temperature 
in HT method. An appropriate particle size of LMO promotes the electrochemical 
performance. However, the HT method required an expensive instrument of an 
autoclave reactor to produce a sufficient yield of LMO under controlled pressure 
and temperature. 
 
 
It is crucial to develop and introduce an aqueous electrolyte in supercapattery 
application today by the reason of safety issue. The implementation of aqueous 
electrolytes in supercapattery is beneficial for the future applications in flexible, 
wearable, and portable electronic appliance. Considering the efforts taken until 
now, we took the challenge by developing an aqueous supercapattery device 
employing LMO-modified graphene nanoplatelets (LMO/GNPs) as cathode 
materials. Two synthesis methods of SSR and HT methods are chosen to 
fabricate the cathode materials. The physicochemical properties of synthesized 
materials are characterized and evaluated by different physicochemical 
techniques of X-ray diffraction (XRD), N2 physisorption, and field emission 
scanning electron microscope (FESEM). Besides, the electrochemical 
performance of LMO/GNPs prepared by different synthesis methods is also 
investigated in the Swagelok cell configuration. The loading of 1 mg of GNP on 
LMO synthesized by the one-pot HT method (h-LMO/GNPs1) is found to deliver 
an exceptional specific capacitance of 329.36 F g-1, which is 1.6 and 1.7 times 
higher than pristine h-LMO and m-LMO/GNPs1, respectively. This is attributed to 
the smaller particle size and high surface area of the composite prepared via the 
HT method, and good electronic conductivity due to the presence of GNPs. 
Moreover, improved cycle stability of 82% capacity retention for over 1000 
consecutive cycles is obtained with higher energy density and power density of 
39.07 W h kg-1 at 925.40 W kg-1, respectively, demonstrating its prospective 
electrode material for supercapattery. 
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1.2  Problem statements 
 
 
Spinel LMO battery-type cathode material shows a great potential in real-life 
applications such as electric vehicles because of its low toxicity, low cost, the 
abundance of manganese elements, ease of synthesizing method, and high 
operating voltage (> 4.0V) (Huang et al., 2021b; Marincaş et al., 2020). Besides, 
it can achieve more than 90% of its theoretical capacity although it has a medium 
theoretical capacity of 148 mA h g-1 which is superior to the traditional lithium 
cobalt oxide (LCO) cathode material (Marincaş et al., 2020). However, low 
conductivity and fast capacity fading after long cycling test limits their real-life 
application in practical (Chen et al., 2019a; Ji et al., 2022; Marincaş et al., 2020; 
Zhang et al., 2021a). This limitation is associated with several factors such as 
Jahn-teller distortion and manganese dissolution. Besides, the crystal structure 
was transformed from cubic LiMn2O4 to tetragonal Li2Mn2O4 attributable to the 
intercalation of lithium-ion. The phase transition reduced the lattice volume and 
destroyed the structural integrity of the LMO framework. Jahn-teller distortion 
associated with structural transformation hindered lithium-ion diffusion resulting 
in capacity deterioration (Xu et al., 2015). Manganese dissolution of Mn2+ ions 
caused by the disproportionation reaction of Mn3+ on the surface of the electrode 
(2Mn3+ → Mn2+ + Mn4+) (Choi et al., 2015; Ji et al., 2022; Silva et al., 2022). 
Besides, polarization resistance may increase due to the deposition of dissolved 
Mn2+ onto the anode electrode as MnO or Mn metal, hence, capacity fading 
occurred by hindered Li+ diffusion and solid-electrolyte interface (SEI) film 
destruction (Chen et al., 2021a).  
 
 
Element doping, surface coating and morphology and particle size modification 
are the strategies used to alleviate the limitation of LMO cathodic material in the 
energy storage devices (Silva et al., 2022). Element doping enhanced the 
structural stability of LMO, but it usually occurred at the expense of reduced initial 
specific capacity (Mu et al., 2019). Meanwhile, although surface coating 
alleviated the detrimental effects of spinel LMO, it reduced the intercalation rate 
of lithium-ion (Chen et al., 2019b). Thus, nanoscale particle size of LMO could 
mitigate the detrimental effects by modifying the ionic diffusion kinetics, the 
magnitude of stress-strain, surface energy, and the utilization of active material 
(Silva et al., 2022; Xia et al., 2012). Reduced particle size to strengthen the Mn-
O bond and reduce the MnO6 framework improve structural stability to support 
Li+ diffusion during the continuous cycling process which restrains the Jahn-teller 
effect and Mn dissolution (Arabolla Rodríguez et al., 2021; Cai et al., 2015; 
Okubo et al., 2010). Moreover, hybridization of LMO with carbon matrix can 
compensate their low conductivity to promote electron transfer and ionic diffusion 
during the continuous charging and discharging process (Pyun & Park, 2015). 
 
 
The electrochemical performances of supercapattery improved significantly by 
increasing the SSA, which can be controlled by different synthesis routes (Chen 
et al., 2019a; Lv et al., 2014). This approach enhanced the electron transport by 
creating a short Li+ diffusion length, increasing the electrode-electrolyte contact 
area, and improved the flexibility toward volume expansion ascribed to the 
lithium-ion insertion and desertion (Feng et al., 2015; Xia et al., 2012). Therefore, 
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heat treatment plays a critical parameter in the synthesis method to control the 
particle size as elevated temperature promoted rapid nucleation reaction and 
crystal growth, which is conducted in the formation of small particles size (Lv et 
al., 2014).  The SSR was used to compare with the HT method which is widely 
used today to obtain the LMO/GNPs cathode materials with good 
electrochemical performance. The SSR was a traditional method used to 
synthesize LMO due to the ease of the synthesis process, and it applies to the 
large production scale, but it required a high heating temperature. In contrast, 
the synthesis method of HT is the facile and controllable particle size of products 
that can be obtained. Moreover, HT can be carried out at a lower temperature 
compared to SSR (Marincaş et al., 2020). Thus, two different synthesis methods 
were conducted to understand the intrinsic properties of LMO/GNPs obtained 
which affect their electrochemical performance. 
 

1.3  Objectives 
 
 
The objectives of this study are:  
 
 

1. To compare the electrochemical performance of lithium manganese 
oxide/graphene nanoplatelets composite synthesizing via the 
hydrothermal and solid-state reaction methods. 
 

2. To optimize the graphene nanoplatelet contents in lithium manganese 
oxide/graphene nanoplatelets composite material. 

 
3. To evaluate the power density and energy density of lithium manganese 

oxide/graphene nanoplatelets composite material in a two-electrode 
configuration of supercapattery device. 
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