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Rapid and unprecedented developments in the information technology and 
telecommunication industry demands high-speed, light and low-cost microwave 
substrates for high-frequency applications. This work presents the preparation 
of low-cost composites using borosilicate (BRS) and soda lime silicate (SLS) 
glasses. The glasses were used as fillers in the polytetrafluoroethylene (PTFE) 
matrix as a replacement for woven fiberglass and ceramics to reduce the cost 
and improve the performance of PTFE-based composites for microwave 
substrate application. The BRS and SLS glass powders were recycled using 
glass waste through ball milling. The dependence of the complex permittivity on 
BRS and SLS grain sizes was determined. A 63 μm grain size fillers were 
selected to fill the PTFE matrix through a dry powder processing technique. 
Surface morphology and material composition were analysed using X-ray 
diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive 
X-ray (EDX). Tensile strength, coefficient of thermal expansion (CTE), density,
and moisture absorption of the composites were studied with respect to filler size
and content.

The dielectric properties were characterised from 8 GHz to 12 GHz for a 
rectangular waveguide (RWG) and from 1 GHz to 12 GHz for an open-ended 
coaxial probe (OCP). In addition, the characterisation was conducted at room 
temperature using a vector network analyser. Similarly, the RWG was used to 
measure the magnitude of reflection (|S11|) and transmission (|S21|) 
coefficients. The results of the OCP and RWG methods indicated that the 
dielectric properties of all composites increased with filler content, however, the 
RWG method exhibited higher values than the OCP method due to the presence 
of air gaps in the latter method. At 10 GHz frequency, the dielectric constant (ε'), 
loss factor (ε'') and loss tangent (tanδ) of PTFE/BRS and PTFE/SLS composites 
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varied from 2.11, 0.0022, 0.0011 and 2.11, 0.0022, 0.0011 to 2.24, 0.0029, 
0.0013 and 2.57, 0.0031, 0.0012, respectively, for the OCP method. For the 
RWG method, the ε', ε'', and tanδ had a respective change from 2.16, 0.0035, 
0.0015, and 2.18, 0.0035, 0.0016 to 2.31, 0.0042, 0.0018 and 2.57, 0.0047, 
0.0018 when filler content was varied from 5 wt.% to 25 wt.%. In addition, the 
results of |S11| and |S21| were used to calculate the power loss (dB) for the 
different volume fractions of PTFE/BRS and PTFE/SLS composites. The power 
loss at 10 GHz frequency was found to be from 3.33 dB and 3.48 dB to 3.89 dB 
and 3.85 dB in that order. Furthermore, the electric field distribution through the 
dielectric composites in the RWG was visualised for various filler content and 
then used to calculate the attenuation of the electric field intensity. The 
attenuation was found to increase from 3.67 dB and 3.70 dB to 3.81 dB and 3.77 
dB for the PTFE/BRS and PTFE/SLS composites, respectively, when the filler 
content was adjusted from 5 wt.% to 25 wt.%. 
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Perkembangan pesat dalam teknologi maklumat dan industri telekomunikasi 
memerlukan substrat gelombang mikro berkelajuan tinggi, ringan dan murah 
untuk aplikasi frekuensi tinggi. Dalam kajian ini, penyediaan komposit kos 
rendah menggunakan kaca borosilikat (BRS) dan soda kapur silika (SLS). Kaca 
digunakan sebagai pengisi dalam matriks politetrafluoroetilena (PTFE) sebagai 
gantian kepada kaca gentian teranyam dan seramik untuk mengurangkan kos 
dan meningkatkan prestasi komposit berasaskan PTFE bagi aplikasi substrat 
gelombang mikro.. Serbuk kaca BRS dan SLS dikitar semula menggunakan sisa 
kaca melalui pengisaran bebola. Kebergantungan ketelusan kompleks pada saiz 
butiran BRS dan SLS telah ditentukan. Pengisi bersaiz butiran 63 μm dipilih 
untuk mengisi matriks PTFE melalui teknik pemprosesan serbuk kering. 
Morfologi permukaan dan komposisi bahan dianalisis menggunakan belauan 
sinar-X (XRD), mikroskopi elektron pengimbasan (SEM), dan penyebaran 
tenaga sinar-X (EDX). Kekuatan tegangan, pekali pengembangan haba (CTE), 
ketumpatan, dan penyerapan kelembapan bagi komposit telah dikaji dengan  
ukuran dan kandungan pengisi.  
 
 
Sifat dielektrik dicirikan dari 8 GHz hingga 12 GHz untuk pandu gelombang segi 
empat tepat (RWG) dan dari 1 GHz hingga 12 GHz untuk kuar sepaksi terbuka 
(OCP). Di samping itu, pencirian dilakukan menggunakan penganalisis 
rangkaian vektor pada suhu bilik. RWG juga digunakan untuk mengukur pekali  
magnitud pantulan (|S11|) dan pekali pemancaran (|S21|). Hasil kaedah OCP dan 
RWG menunjukkan bahawa sifat dielektrik bagi semua komposit meningkat 
dengan kandungan pengisi, bagaimanapun, kaedah RWG menunjukkan nilai 
yang lebih tinggi daripada kaedah OCP kerana adanya ruang udara dalam 
kaedah OCP. Bagi kaedah OCP, pada frekuensi 10 GHz, ketelusan relatif (ε'), 
faktor kehilangan (ε'') dan tangen hilangan (tanδ) bagi komposit PTFE/BRS dan 
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PTFE/SLS bebeza-beza dari 2.11, 0.0022, 0.0011 dan 2.11, 0.0022, 0.0011 
hingga 2.24, 0.0029, 0.0013 dan 2.57, 0.0031, 0.0012, masing-masing. Untuk 
kaedah RWG, ε', ε'', dan tanδ mempunyai perubahan masing-masing dari 2.16, 
0.0035, 0.0015, dan 2.18, 0.0035, 0.0016 hingga 2.31, 0.0042, 0.0018 dan 2.57,   
0.0047, 0.0018 apabila kandungan pengisi bervariasi dari 5 wt. % hingga 25 
wt.%. Di samping itu, keputusan |S11| dan |S21| telah digunakan untuk mengira 
kehilangan kuasa (dB) untuk pecahan isipadu yang berbeza untuk komposit 
PTFE/BRS dan PTFE/SLS. Kehilangan kuasa pada frekuensi 10 GHz didapati 
dari 3.33 dB dan 3.48 dB hingga 3.89 dB dan 3.85 dB dalam urutan tersebut. 
Selanjutnya, sebaran medan elektrik melalui komposit dielektrik dalam RWG 
digambarkan untuk pelbagai kandungan pengisi dan kemudian digunakan untuk 
mengira pelemahan keamatan medan elektrik. Pelemahan didapati meningkat 
dari 3.67 dB dan 3.70 dB menjadi 3.81 dB dan 3.77 dB untuk komposit 
PTFE/BRS dan PTFE/SLS, masing-masing, apabila kandungan pengisi 
dilaraskan dari 5 wt. % hingga 25 wt.%. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
The last decade has witnessed a rapid and unprecedented development in 
information technology and telecommunication industries driven by military and 
consumer markets (Manu et al., 2013; Hao Wang et al., 2020; C. Xie et al., 2017). 
This sudden change creates a high demand for high-speed, light and low-cost 
microwave substrates. A microwave base substrate that meets specific criteria, 
supports the microwave circuits (Ren et al., 2018; Tan et al., 2022; Varghese et 
al., 2015). Microwave substrates are dielectric materials with moderate 
permittivity and low loss tangent at microwave frequencies (Li et al., 2021). The 
substrate candidate materials should possess a low dielectric constant to reduce 
signal propagation delay, a small magnitude of thermal expansion coefficient 
(CTE) to avoid a mismatch between the conductor and the substrate material,  a 
high thermal conductivity (TC) to transport the heat generated away from the 
circuits at high frequencies (> 1 GHz) and good mechanical strength (Murali et 
al., 2009; Tan et al., 2021). Polymers are widely used for substrate applications 
due to their low dielectric constant and chemical inertness, but they have a high 
thermal expansion coefficient and low thermal conductivity (Han et al., 2020; 
Thomas et al., 2016). However, polytetrafluoroethylene (PTFE) is the most 
widely used among polymers due to its low dielectric loss and low 
moisture absorption, but it has a high melting point, making it difficult to process. 
PTFE is crystalline and has a broad range of applications as an excellent 
insulator from high electrical power to defence industries (Venkateswarlu et al., 
2015; Zhou et al., 2020). Generally, the properties of polymers depend on their 
microstructure and composition as such suitable fillers of varying sizes and 
content should be used to fill and strengthen the polymers (Thomas et al., 2016). 
Several studies have been conducted to improve PTFE's thermal, mechanical 
and dielectric properties (Han et al., 2020; Shamsuddin et al., 2020; Varghese 
et al., 2015; C. Xie et al., 2017; Jie Yang et al., 2020). To enhance the thermal 
and mechanical properties of PTFE without affecting its electrical properties, a 
filler with a low dielectric constant and CTE and high tensile strength is required. 
Most practical demands to control the properties of the PTFE can be addressed 
by incorporating glass fillers such as borosilicate (BRS) and soda lime silica 
(SLS) glasses as they have high thermal conductivity and tensile strength, low 
CTE, and moderate dielectric constant (Ashby, 2012; Bruns et al., 2020a; Karasu 
et al., 2020; Khazaalah et al., 2022). 
 
 
1.1 Problem Statement 

 
 

Commercial fibreglass and ceramic are the most commonly used fillers to 
produce PTFE-based microwave substrates due to their good electrical, thermal 
and mechanical properties (Luo et al., 2018; H. Wang et al., 2020). However, the 
increased demand for high-speed and low-cost microwave substrates demands 
alternative lower-cost filler materials to sustain the industry's advancement and 
reduce the cost of microwave substrates for consumers. Therefore, this research 
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proposes a new technique to reduce the cost of polymer-based composites by 
using recycled BRS and SLS glass waste in combination with a PTFE matrix. 
The BRS and SLS glasses have comparable dielectric and mechanical 
properties to the commercial fillers. However, the glasses possess better rigidity 
and lower CTE. Furthermore, the technique involves extracting glass powders 
from the BRS and SLS waste and following optimisation of the dielectric 
properties by reducing the particle size to micrometre sizes through ball milling. 
The relationship between grain size and the dielectric properties of the BRS and 
SLS powders was then determined. The BRS and SLS powders with optimum 
dielectric properties could reduce the cost of inorganic fillers for microwave 
substrates and further eliminate environmental pollution without compromising 
performance. 
 
 
PTFE is a carbon-based, fluorinated synthetic polymer (Kecerdasan & Ikep, 
2017). It has outstanding dielectric and moisture absorption properties that make 
it the most preferable among polymers for microwave substrate application 
(Zhang et al., 2022). However, its high CTE, lack of rigidity, and high processing 
temperature pose a challenge to its handling for practical application (Q. Li et al., 
2021). The inclusion of BRS and SLS fillers into the PTFE matrix through a 
simple dry powder processing method could easily remedy the processing 
obstacles and produce composites with well-adjusted dielectric, mechanical, and 
thermal properties suitable for microwave substrate application. Also, the BRS 
and SLS particle sizes could affect the dielectric, mechanical, and thermal 
properties of the PTFE/BRS and PTFE/SLS composites, which have to be 
examined. Moreover, composites must have low dielectric properties for high-
speed data transmission. Therefore, an optimum filler size of 63 m for the BRS 
and SLS was fed into the PTFE/BRS and PTFE/SLS to enhance the mechanical 
and thermal properties without adversely affecting the dielectric properties of the 
PTFE matrix. 
 
 
The conventional measurement technique used to characterise the dielectric 
properties of the PTFE/BRS and PTFE/SLS composites was the open-ended 
coaxial probe (OCP). The technique has the advantage of being simple to 
implement and easy to prepare a sample for measurement (Aydinalp et al., 
2022). However, the technique suffers from the wrong assumption that samples 
are homogeneous and isotropic within the volume of the measurement probe 
(Brace & Etoz, 2020). Moreover, the technique is one-port, thus, it could not 
characterise the scattering parameters (S11 and S21) of the composites. The S11 
and S21 are fundamental to determining the power loss in the composites due to 
absorption. In this research, a rectangular waveguide (RWG) measurement 
technique was used, in addition to the OCP technique, to measure the dielectric 
properties as well as the S11 and S21 of the PTFE/BRS and PTFE/SLS 
composites. The dielectric results from the RWG technique were used as inputs 
to the COMSOL software using the finite element method (FEM) to calculate the 
S11 and S21 and visualised the electric field distribution in the composites. 
 
 
 



© C
OPYRIG

HT U
PM

 

3 
 

1.2 Research Objectives 
 
 

This research prepares, fabricates and characterises PTFE/BRS and PTFE/SLS 
on their structural, morphology and dielectric properties. The specific objectives 
of the study are: 
 

I. To fabricate PTFE/BRS and PTFE/SLS composites with different filler 
sizes to investigate the effect of the filler size on the mechanical, thermal, 
and dielectric properties of the composites. 

II. To fabricate PTFE/BRS and PTFE/SLS composites with different filler 
volume fractions to examine the effect of filler content on the structural, 
mechanical, thermal, and dielectric properties of the composites 

III. To examine the effect of recycled BRS and SLS fillers on the S11, S21 
and power loss due to absorption for the PTFE/BRS and PTFE/ SLS 
composites. The experimentally measured |S11| and |S21| would be 
compared with those calculated from the FEM implemented in COMSOL 
software. 

IV. To visualise the electric field distribution across dielectric samples and 
calculate the attenuation of the field intensity due to filler content.  
 
 

1.3 Scope of the Study 
 
 
This research prepares recycled BRS and SLS powders from glass waste. 
The powders will be reduced into five micro sizes using a high ball milling 
technique for twenty-four hours. The complex permittivity of the recycled glass 
powders will be measured in the microwave frequency range of 1–12 GHz. The 
first set of composites will be fabricated using recycled glass powders of different 
sizes at a 5 wt.% fixed concentration. The fabrication will be conducted via the 
powder dry processing technique to determine the optimum filler size. This filler 
size then will be used to fabricate the final composites. The percentage weight 
of the glass powders to fill the matrix will be varied from 5 wt.%-25 wt.% with a 5 
wt.% increment. The structural, morphological, and compositional 
characterisation will be conducted using techniques of XRD, SEM, and EDX. 
Tensile strength, CTE, moisture absorption, and the composites' density will also 
be determined. 
 
 
The influence of the recycled fillers on the complex permittivity of PTFE/BRS and 
PTFE/SLS composites will be studied using rectangular waveguide and open-
ended coaxial probe techniques at 8.2 GHz- 12.4 GHz and 1 GHz -12 GHz, 
respectively. Similarly, the effect of the fillers on the scattering parameters will 
be determined using the rectangular waveguide technique. The study also 
calculates the scattering parameters using the finite element method (FEM) 
implemented in COMSOL software. Measured and computed S-parameters will 
be compared, and error analysis between them would be determined. The 
COMSOL software will also be utilised to visualise the interaction of 
electromagnetic waves with the dielectric samples. Attenuation of the 
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electromagnetic intensity of the composites will be calculated via the finite 
element method (FEM) using COMSOL software. 
 
 
1.5 Thesis Layout 
 
 
The thesis consists of six chapters. Chapter 1 presents the general overview of 
substrate materials and the interaction of microwaves with materials. The 
chapter highlights the problem statement and research objectives, followed by 
the scope of the study and the thesis layout.  
 
 
Chapter 2 looks at the literature review of some principles and presents a dry 
powder processing technique. The properties of PTFE, BRS, and SLS glasses 
were presented, along with a review of the composite preparation methods. The 
chapter also reviews dielectric measurement techniques and FEM formulation 
for calculating S-parameters.  
 
 
Chapter 3 discusses the theory behind mechanical alloying and dry powder 
processing techniques, and the chapter presents the dielectric properties and 
the nature of polarisation taking place. It also discusses the basic 
electromagnetic wave equation and its derivation. Finally, the theory for FEM 
analysis is presented. 
 
 
Chapter 4 consists of the methodology used in this study. The preparations of 
BRS and SLS glass powders are discussed. PTFE/BRS and PTFE/SLS 
composites fabrication process is given in detail. The use of OCP, RWG, and 
FEM concerning dielectric characterisation is thoroughly discussed. The 
methods for characterising tensile and CTE are also provided. The structural, 
morphological, and compositional techniques are also presented. 
 
 
Chapter 5 gives the results of the entire characterisation carried out. Sections 
5.1 and 5.2 discuss the results for XRD, SEM, and EDX. This is followed by a 
discussion on the results from moisture absorption, density, tensile strength and 
CTE in sections 5.3, 5.4, 5.5, and 5.6. The complex permittivity results from the 
open-ended coaxial probe and rectangular waveguide techniques are discussed 
in sections 5.7 and 5.8. Section 5.9 discusses the S-parameters results 
calculated from RWG and FEM. Section 5.10 discusses the power loss due to 
material absorption, while section 5.11 discusses electrical field distribution and 
its attenuation.  
 
 
Chapter 6 summarises the study and recommends future work. 
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