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In this work, both ex-situ and in-situ methods were used to synthesise MgB2 samples. 

Pure ex-situ MgB2 sample (Series 1) was sintered at various temperatures (600-900 °C) 

and times (1-7 h). Several dopants such as excess Mg (Series 2), (1.5 Mg + 2 B) (Series 

3), nano-Si (Series 4), nano-Si + LaB6 (Series 5), and Dy2O3 + La2O3 (Series 6) were 

added into MgB2. For series 1, increasing the sintering temperature to 900 °C increased 

the Jc value (0 T, 20 K) to 4.2 × 103 A/cm2, suggesting an enhancement in sample grain 

coupling. A prolonged sintering time of 3 h increased the Jc value to 3.2 × 103 A/cm2 

before decreasing to 0.5 × 103 A/cm2 when the sintering time was prolonged to 7 h. 

Meanwhile, the addition of excess Mg into ex-situ MgB2 (Series 2) successfully inhibits 

MgB2 decomposition where no MgB4 peaks were observed in the Mg-added sample, in 

contrast to pure ex-situ MgB2 which exhibited MgB4 peaks at higher sintering 

temperatures. When the sintering temperature increased, the addition of excess Mg 

reduced the average grain sizes and further strengthened the grain coupling of the 

samples, which subsequently increased the Jc value to 104 A/cm2, which is more than 20 

times. In Series 3, the addition of 0 to 50 wt.% of (1.5 Mg + 2 B) increased the Jc (0 T, 

20 K) value from 3.0 × 103 A/cm2 to 1.3 × 104 A/cm2, respectively. The highest Jc (0 T, 

20 K) value obtained for Series 3 was 2.1 × 104 A/cm2 for the sample sintered at 1000 

C. XRD pattern for nano-Si added into in-situ MgB2 samples (Series 4) shows the 

formation of Mg2Si where excess Mg2Si can obstruct the current pathway of the samples 

and lower the value of Jc. The addition of nano-Si from 0 to 10 wt.% decreased the value 

of Jc (0 T, 20 K) from 2.4 × 105 A/cm2 to 1.7 × 105 A/cm2, respectively. However, the Jc 

value at high field increased to 2.8 × 103 A/cm2 with the addition of 5 wt.% of nano-Si. 

The co-addition of 0.03 mol LaB6 and x wt.% nano-Si (Series 5) inhibited the grain 

growth of the samples as no significant changes in average grain size were observed. The 

addition of LaB6 decreased Jc (0 T, 20 K) to 2.12 × 105 A/cm2, and it further decreased 

to 1.7 × 105 A/cm2 with co-addition of LaB6 and 10 wt.% of nano-Si. Co-addition of 

Dy2O3 and La2O3 into MgB2 (Series 6) enhanced the flux pinning of the samples and the 

Jc value, where the highest Jc (0 T, 20 K) value obtained was 4.3 × 105 A/cm2 for 1.00 

wt.% co-added samples.  
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Di dalam kerja ini, kedua-dua kaedah ex-situ dan in-situ telah digunakan untuk 

mensintesis sampel MgB2. Sampel MgB2 ex-situ tulen (Siri 1) telah disinter pada 

pelbagai suhu (600-900 °C) dan masa (1-7 jam). Beberapa dopan seperti Mg berlebihan 

(Siri 2), (1.5 Mg + 2 B) (Siri 3), nano-Si (Siri 4), nano-Si + LaB6 (Siri 5), dan Dy2O3 + 

La2O3 (Siri 6) telah ditambah ke dalam MgB2. Untuk siri 1, peningkatan suhu pensinteran 

kepada 900 °C telah meningkatkan nilai Jc (0 T, 20 K) kepada 4.2 × 103 A/cm2, 

mencadangkan peningkatan dalam gandingan butiran sampel. Masa pensinteran yang 

berpanjangan selama 3 jam telah meningkatkan nilai Jc kepada 3.2 × 103 A/cm2 sebelum 

berkurangan kepada 0.5 × 103 A/cm2 apabila masa pensinteran dipanjangkan kepada 7 

jam. Sementara itu, penambahan Mg berlebihan ke dalam MgB2 ex-situ (Siri 2) berjaya 

menghalang penguraian MgB2 di mana tiada puncak MgB4 diperhatikan dalam sampel 

tambah Mg, berbeza dengan MgB2 ex-situ tulen yang mempamerkan puncak MgB4 pada 

suhu pensinteran yang lebih tinggi. Apabila suhu pensinteran meningkat, penambahan 

Mg berlebihan telah mengurangkan saiz butiran purata dan mengukuhkan lagi gandingan 

butiran sampel, yang seterusnya meningkatkan nilai Jc kepada 104 A/cm2 iaitu lebih 

daripada 20 kali ganda. Dalam Siri 3, penambahan 0 hingga 50 wt.% daripada (1.5 Mg 

+ 2 B) meningkatkan nilai Jc (0 T, 20 K) daripada 3.0 × 103 A/cm2 kepada 1.3 × 104 

A/cm2, masing-masing. Nilai Jc (0 T, 20 K) tertinggi yang diperolehi untuk Siri 3 ialah 

2.1 × 104 A/cm2 untuk sampel yang disinter pada 1000 C. Corak XRD untuk nano-Si 

ditambah ke dalam sampel MgB2 in-situ (Siri 4) menunjukkan pembentukan Mg2Si di 

mana Mg2Si berlebihan boleh menghalang laluan arus sampel dan menurunkan nilai Jc. 

Penambahan nano-Si daripada 0 hingga 10 wt.% telah menurunkan nilai Jc (0 T, 20 K) 

daripada 2.4 × 105 A/cm2 kepada 1.7 × 105 A/cm2, masing-masing. Walau bagaimanapun, 

nilai Jc pada medan tinggi telah meningkat kepada 2.8 × 103 A/cm2 dengan penambahan 

5 wt.% nano-Si. Penambahan bersama 0.03 mol LaB6 dan x wt.% nano-Si (Siri 5) 

menghalang pertumbuhan butiran sampel kerana tiada perubahan ketara dalam saiz 

purata butiran dapat diperhatikan. Penambahan LaB6 mengurangkan Jc (0 T, 20 K) 

kepada 2.12 × 105 A/cm2, dan ia terus menurun kepada 1.7 × 105 A/cm2 dengan 

penambahan bersama LaB6 dan 10 wt.% nano-Si. Penambahan bersama Dy2O3 dan 
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La2O3 ke dalam MgB2 (Siri 6) telah meningkatkan penyematan fluks sampel dan nilai Jc, 

di mana nilai Jc (0 T, 20 K) tertinggi yang diperolehi ialah 4.3 × 105 A/cm2 untuk 1.00 

wt.% sampel ditambah bersama. 
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CHAPTER 1  
 

 

INTRODUCTION 

 

 

1.1 Background Study  

 

 

Superconductivity is a physical phenomenon that occurs when the electrical resistance 

of a material is zero and magnetic flux is expelled from the material. Any material that 

exhibits these properties is known as a superconductor (Rose-Innes and Rhoderick, 

1978). Superconductors can be divided into low-temperature superconductors, LTS 

(niobium-based alloy), and high-temperature superconductors, HTS (copper-oxide-

based). If the critical temperature, Tc, of a superconductor is above 30 K, it is classified 

as HTS. In the meantime, a Tc value below 30 K is referred to as LTS. Many researchers 

are more interested in studying HTS compared to LTS due to its higher Tc and Jc values.  

 

 

However, following the discovery of superconductivity in MgB2, researchers became 

interested in studying MgB2. This is because MgB2 has a simple crystal structure and 

high critical temperature (Tc ≈ 39 K), making it a most promising candidate for cryogen-

free operation to replace conventional NbTi and Nb3Sn-based technology. Two common 

methods to prepare MgB2 bulk samples are in-situ (Arvapalli et al., 2019; Gao et al., 

2010; Kim et al., 2007; Muralidhar et al., 2017) and ex-situ method (Malagoli et al., 

2010; Mizutani et al., 2014; Tanaka et al., 2012). In-situ is a method of synthesising 

MgB2 by simply mixing Mg and B powders at the appropriate ratio of Mg: B = 1: 2. 

During heat treatment, Mg grains melt and diffuse into B grains through a liquid-solid 

reaction. Meanwhile, the ex-situ method involves heat treatment of the pre-reacted MgB2 

powders. Although commercial MgB2 powders are readily available as it has been 

synthesized since the early 1950s, the quality of MgB2 powder may not be as good as 

desired (Buzea and Yamashita, 2001).  

 

 

MgB2 also possesses a high critical current density, Jc (> 105 A/cm2 at 20 K, 0 T), strong 

grain coupling due to its large coherence lengths (ξab ~ 6.5 nm at 0 K), and weak-link-

free behaviour at grain boundaries. MgB2 is a lightweight and inexpensive material that 

is ideal for commercial and industrial applications (Buzea and Yamashita, 2001; 

Larbalestier et al., 2001; Xu et al., 2001; Yamamoto et al., 2004; Zhao et al., 2001). 

However, further improvement of Jc and flux pinning is crucial for the material to be 

used in high magnetic field applications. Prior studies show the addition of dopants such 

as Mg (Zeng et al., 2008; Zhang et al., 2015), La (Kimishima et al., 2004; Shekhar et al., 

2005), La2O3 (Gao et al., 2010), Dy2O3 (Chen et al., 2006), Si (Tan et al., 2015; Zhang et 

al., 2010) and carbon (Ohmichi et al., 2004; Tan et al., 2015; Yeoh et al., 2004) into 

MgB2 can act as flux pinning that enhanced the value of Jc, resulting in high-quality MgB2 

samples. 
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1.2 Applications of Superconductor 

 

 

Superconductors have brought great success and technological changes, especially in 

energy storage, transportation, electronics, and medical sector. Some of the applications 

are discussed as follows:  

 

 

1.2.1 Superconducting Wire 

 

 

Superconductor wire is an electrical wire made of superconductor material that exhibits 

no electrical resistance when cooled below Tc. Figure 1.1 shows that, although bismuth-

based superconductor wire has a smaller cross-sectional area than copper wire, it can 

carry the same current magnitude. It means that superconductor wire can carry 

approximately 200 times more electric current than copper wire with the same cross-

sectional area (Hayashi, 2020). 

 

 
Bismuth-based superconductor wire 

1 mm2 
Copper wire 

    200 mm2 

 

 

 

Figure 1.1: Comparison of the cross-sectional area for bismuth-based 

superconductor wire and copper wire carrying the same current magnitude 

 

 

Commonly, conventional superconductors such as niobium-titanium (NbTi) and 

niobium-tin (Nb3Sn) are used as the superconducting wire. However, these conventional 

superconductors are made from low-temperature superconductors that require very 

expensive liquid helium for cooling. Besides, Nb3Sn is brittle and difficult to fabricate. 

High-temperature superconductor (HTS) wires were later introduced to the market. HTS 

wire can operate in liquid nitrogen, which is cheaper than liquid helium. HTS wires are 

also more tolerant of AC loss and have better thermal stability than low-temperature 

superconducting (LTS) wires. There are two types of high-temperature superconductor 

wires: first-generation (1G) wire, bismuth strontium calcium copper oxide, BSCCO, and 

second-generation (2G) wire, rare-earth barium copper oxide, ReBCO. 1G HTS 

superconductor wires are widely used on various HTS power devices such as 

transmission cables, transformers, motors, and generators. The first company to produce 

long bismuth-based superconductor wire (DI-BSCCO) is Sumitomo Electric Japan. The 

transition from 1G HTS wire to 2G HTS wires promises that 2G HTS wires will be 

cheaper than existing 1G wires. This 2G HTS wire provides cost benefits and excellent 

performance benefits (Hayashi, 2020). 

Approximate 4 mm 

Approximate 16 mm 
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1.2.2 High-Temperature Superconductor (HTS) Cable  

 

 

High-temperature superconductor (HTS) power cable is made of a group of sheath-

coated wires. It can carry two to five times the electrical current more than conventional 

cables such as XLPE (Cross Link Poly Etheline) of the same size. Furthermore, HTS 

cable can operate at high current levels with minimal heat and electricity loss, which aids 

in energy conservation. HTS cables are also smaller than conventional cables, allowing 

them to occupy less space. Therefore, it does not require extensive construction work for 

installation, potentially lowering construction costs. In Japan, the Railway Technical 

Research Institute (RTRI) has developed a superconducting feeder cable system. This 

superconducting feeder cable connects the Hino Civil Engineering Testing Station to the 

regular feeding circuit of the Chuo line (408 m cable), where it needs to be cooled with 

cryogenic or liquid nitrogen. The test confirmed that currents up to 2200 A or larger 

could flow from the substation to the test train as the train is accelerated. Most 

importantly, the shut-off test confirmed that the train could keep running, powered by 

the regular feeding circuit, even after the superconducting system is shut off 

(Superconducting Feeder Cable System, 2019).  

 

 

1.2.3 Maglev Train 

 

 

In the 21st century, few countries such as Japan, South Korea, and China have developed 

powerful electromagnetic high-speed trains called maglev trains. Maglev is derived from 

"magnetic" and "levitation". Maglev trains operate on magnetic repulsion principles 

between a train and a track, where magnetic levitation can be achieved using an 

electrodynamic suspension system (EDS).  

 

 

  

 

Figure 1.2: The illustration of the superconductor Maglev levitation and propulsion 

system 
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Figure 1.2 shows an illustration of the Maglev superconductor levitation and propulsion 

system. The Maglev train railway consists of two sets of cross-connected metal coils 

wound into a "figure eight" pattern along both the guideway walls to form 

electromagnets. These coils are also cross connected underneath the rails to accelerate 

the cars and guide and stabilise them. Due to the magnetic field induction effect, the 

magnetic field of the superconducting magnets induces a current into these coils when 

the train accelerates.  

 

 

The train's movement starts when it moves forward slowly on the wheels, allowing the 

magnets beneath the train to interact with the guideway. Once the train reaches 150 

kilometres per h, the magnetic force is strong enough to lift the train 4 inches off the 

ground. The magnetic force will then eliminate friction between the car and the 

guideway, allowing for faster speeds. This magnetic force also makes the train move 

forward and continue to be centred within the guideway. If the train is centred with the 

coils, the electrical potential will be balanced, and no currents will be induced. However, 

when the train runs on rubber wheels at a lower speed, a magnetic field positioned below 

the coils' centre will cause an unbalanced electrical potential. When stopped, the train 

will rest on rubber wheels.  

 

 

The advantage of the Maglev train is that it can float on the rails, which means there is 

no rail friction. It allows trains to travel at speeds of hundreds of miles per h. Since the 

trains rarely touch the track, there is not much noise and vibration compared to regular 

trains. As a result, the Maglev train produces minor mechanical damage. The Central 

Japan Railway Company and the Railway Technical Research Institute developed the 

first Maglev superconductor trains in the 1970s. In April 2015, Japan Railway maglev 

trains recorded 603 km/h, far faster than Maglev trains operating in Shanghai, China (431 

km/h to 500 km/h) and in South Korea (109 km/h). In the latest related development, 

Chuo Shinkansen maglev line is planned to connect Tokyo and Nagoya by 2027. The 

Chuo Shinkansen maglev line is expected to cover the 178-mile distance (Tokyo to 

Nagoya) at 500 km/h, slashing the travel time to just forty minutes. It means that the 

Chuo Shinkansen maglev line can reduce travel time by around 50% compared to the 

current Tokaido Shinkansen line. 

 

 

1.3 Problem Statement and Research Objective 

 

 

The main problem in the process of synthesising MgB2 is determining suitable and 

optimal sintering conditions. This is because the optimal sintering value can reduce the 

grain size of the sample which increased the flux pinning at the grain boundary and 

enhanced the grain connectivity of the samples (Kobayashi et al., 2015; Matthews et al., 

2020; Tanaka et al., 2012; Yamamoto et al., 2012). Unlike previous studies that varied 

the sintering conditions at high temperatures (Shim et al., 2005) and for a long time 

(Tanaka et al., 2012), this study is more focused on shorter sintering time (1-7 h) and 

lower sintering temperature (600-1000 °C). 

 

 

Furthermore, another major issue for MgB2 is that Mg is highly volatile and oxidised, 

especially at elevated temperatures. Addition of excess Mg is expected to compensate 
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for the loss of Mg, reduce the formation of the MgO phase, and increase the grain 

connectivity, which can increase the value of Jc, especially at low temperatures and 

magnetic fields (Zeng et al., 2008; Zhang et al., 2015). However, prior studies (Arvapalli 

et al., 2019; Zeng et al., 2008; Zhang et al., 2015) focused on the addition of excess Mg 

to in-situ MgB2 instead of ex-situ MgB2. Both in-situ and ex-situ methods have their 

shortcomings. Although in-situ sample has strong grain coupling and easily reaches a 

high Jc value, it has a low bulk density and low connectivity. Meanwhile, ex-situ sample 

has a higher bulk density, but the grain coupling for ex-situ MgB2 sample is weaker than 

in-situ MgB2 sample (Li et al., 2012; Yamamoto et al., 2012). Therefore, in this work, 

both methods are combined to compensate for each other's shortcomings. 

 

 

It is necessary to further improve the flux pinning and Jc value of MgB2 sample to make 

it suitable for high magnetic field applications. This problem can be overcome by 

introducing dopants such as Si and LaB6 into MgB2. The addition of Si into MgB2 can 

increase the value of Jc at a higher field (Wang et al, 2003). It has also been claimed that 

the addition of La2O3 resulted in the formation of LaB6, which acts as an effective pinning 

center that increased the intragrain Jc (Gao et al., 2010; Shekhar et al., 2005). Hence, this 

study continues to focus on the co-addition of Si and LaB6 to improve the flux pinning 

center and increase the value of Jc at all magnetic fields. 

 

 

Similar to LaB6, the formation of DyB4 (Chen et al., 2006) can act as an effective flux 

pinning and increase the value of Jc. Although it is important to increase the value of Jc, 

the addition of dopants should not affect the value of Tc. Studies have shown that the 

addition of Dy2O3 (Chen et al., 2006) or La2O3 (Zhao-Shun et al., 2010) did not result in 

a drastic reduction of Tc, most likely due to the insignificant substitution of the lattice 

structure of MgB2. Therefore, the co-addition of Dy2O3 and La2O3 into MgB2 is expected 

to form LaB6 and DyB4 which can act as flux pinning centers and further improve the Jc 

value. 

 

 

Hence, the objectives of this work are: 

i. To enhance grain coupling of ex-situ MgB2 via optimisation of sintering 

temperature and time. 

ii. To elucidate the influence of materials addition such as excess Mg and (1.5 mol 

Mg + 2.0 mol B) on structural and superconducting properties of the ex-situ 

MgB2. 

iii. To investigate the effects of LaB6, nano Si and co-addition of LaB6 and nano-

Si on structural and superconducting properties of in-situ MgB2. 

iv. To investigate the effects of co-addition of Dy2O3 and La2O3 on structural and 

superconducting properties of in-situ MgB2.  
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1.4 Thesis Overview 

 

 

This thesis consists of six chapters. Chapter 1 introduces a brief history of 

superconductors and their applications. The problem statement and the objectives of this 

work are also discussed in Chapter 1. Chapter 2 reviews the previous works of MgB2 

superconductors focusing on the preparation methods, heat treatment conditions, and 

dopant additions used by previous researchers. The theory and fundamentals of 

superconductivity, especially MgB2, will be explained in Chapter 3. Chapter 4 focuses 

on the materials and methods used for this work. Sample characterisation, such as XRD, 

FESEM, and SQUID measurement, is also discussed in detail. Chapter 5 discusses all 

the analysed results obtained from all the sample characterisations. Finally, in Chapter 

6, the outcomes of this research will be summarised, followed by recommendations for 

future research.
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