

ENLIANCING SUPERCONDUCTING PROPERTIES AND GRAIN
CONNECTIVITY OF MAGNISHIM DIBORDIE VIA DOPANT ADDITIONS
DESCRIPTION CONNECTIVITY OF MAGNISHIM DISPUTE SUPERVALUE AND DISPUTE SUPERVALUE AND DISPUTE SUPERVALUE AND DISPUTE SUP **ENHANCING SUPERCONDUCTING PROPERTIES AND GRAIN CONNECTIVITY OF MAGNESIUM DIBORIDE VIA DOPANT ADDITIONS**

By

NURHIDAYAH BINTI MOHD HAPIPI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

December 2022

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

DEDICATION

This work is dedicated to my beloved father and mother

MOHD HAPIPI BIN HANAFI ASPALILA BINTI JUSOH

and to my sibling

This work is dedicated to my beloved father and mother
MOME HAPPH BIN HANAFF
ASPALITA, NEWTLATESOH
ASPALITA NEWTLATESOH
Modify and to my subling
NORMEDAYATT BINTYNORD HAPPH
NURHEDAYATT BINTYNORD HAPPH
NURHEDAYATT BINTYNORD **NORHIWANI BINTI MOHD HAPIPI MOHD IQRAM BIN MOHD HAPIPI NURHIDAYATI BINTI MOHD HAPIPI**

Thank you for everything!

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

ENHANCING SUPERCONDUCTING PROPERTIES AND GRAIN CONNECTIVITY OF MAGNESIUM DIBORIDE VIA DOPANT ADDITIONS

By

NURHIDAYAH BINTI MOHD HAPIPI

December 2022

Chair : Chen Soo Kien, PhD Faculty : Science

ENHANCING SUPERCONDUCTING PROPERTIES AND GRAIN
CONNECTIVITY OF MAGNISIUM DIBORIDE VIA DOPANT ADDITIONS

(Cher Soo Ness, PhD

(by
 Cher Soo Ness, PhD

(by
 Cher Soo Ness, PhD

(complexe 2022)

Chair (c) $\frac{1}{2}$ (Ch In this work, both $ex\text{-}situ$ and *in-situ* methods were used to synthesise MgB_2 samples. Pure *ex-situ* MgB₂ sample (Series 1) was sintered at various temperatures (600-900 °C) and times (1-7 h). Several dopants such as excess Mg (Series 2), $(1.5 \text{ Mg} + 2 \text{ B})$ (Series 3), nano-Si (Series 4), nano-Si + LaB₆ (Series 5), and $Dy_2O_3 + La_2O_3$ (Series 6) were added into MgB₂. For series 1, increasing the sintering temperature to 900 °C increased the J_c value (0 T, 20 K) to 4.2×10^3 A/cm², suggesting an enhancement in sample grain coupling. A prolonged sintering time of 3 h increased the J_c value to 3.2×10^3 A/cm² before decreasing to 0.5×10^3 A/cm² when the sintering time was prolonged to 7 h. Meanwhile, the addition of excess Mg into *ex-situ* MgB2 (Series 2) successfully inhibits MgB_2 decomposition where no MgB_4 peaks were observed in the Mg-added sample, in contrast to pure $ex-situ$ MgB₂ which exhibited MgB₄ peaks at higher sintering temperatures. When the sintering temperature increased, the addition of excess Mg reduced the average grain sizes and further strengthened the grain coupling of the samples, which subsequently increased the J_c value to 10^4 A/cm², which is more than 20 times. In Series 3, the addition of 0 to 50 wt.% of $(1.5 \text{ Mg} + 2 \text{ B})$ increased the J_c (0 T, 20 K) value from 3.0×10^3 A/cm² to 1.3×10^4 A/cm², respectively. The highest *J_c* (0 T, 20 K) value obtained for Series 3 was 2.1×10^4 A/cm² for the sample sintered at 1000 ^oC. XRD pattern for nano-Si added into *in-situ* MgB₂ samples (Series 4) shows the formation of Mg₂Si where excess Mg₂Si can obstruct the current pathway of the samples and lower the value of *J*c. The addition of nano-Si from 0 to 10 wt.% decreased the value of J_c (0 T, 20 K) from 2.4 \times 10⁵ A/cm² to 1.7 \times 10⁵ A/cm², respectively. However, the J_c value at high field increased to 2.8×10^3 A/cm² with the addition of 5 wt.% of nano-Si. The co-addition of 0.03 mol LaB₆ and x wt.% nano-Si (Series 5) inhibited the grain growth of the samples as no significant changes in average grain size were observed. The addition of LaB₆ decreased J_c (0 T, 20 K) to 2.12 \times 10⁵ A/cm², and it further decreased to 1.7×10^5 A/cm² with co-addition of LaB₆ and 10 wt.% of nano-Si. Co-addition of Dy_2O_3 and La_2O_3 into MgB_2 (Series 6) enhanced the flux pinning of the samples and the J_c value, where the highest J_c (0 T, 20 K) value obtained was 4.3×10^5 A/cm² for 1.00 wt.% co-added samples.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

MENINGKATKAN SIFAT MENSUPERKONDUKSI DAN SAMBUNGAN BUTIRAN MAGNESIUM DIBORIDE MELALUI TAMBAHAN BAHAN DOP

Oleh

NURHIDAYAH BINTI MOHD HAPIPI

Disember 2022

Fakulti : Sains

Pengerusi : Chen Soo Kien, PhD

MENINGEATIKAN SIFAT MENSUPERKONDUKSI DAN SAMBUNGAN

RUTHARA MAGNESUM DIROYEDE MELAL UTANHAHIAN BAHAN 10P

RUTHARA MAGNESUM DIROYEDE MELAL UTANHAHIAN BAHAN 10P

(Oleh

COPYRIGHT UPM COPYRIGHT UPM CONTROL (OR COPYRIGHT)

TR Di dalam kerja ini, kedua-dua kaedah *ex-situ* dan *in-situ* telah digunakan untuk mensintesis sampel MgB2. Sampel MgB² *ex-situ* tulen (Siri 1) telah disinter pada pelbagai suhu (600-900 °C) dan masa (1-7 jam). Beberapa dopan seperti Mg berlebihan (Siri 2), $(1.5 \text{ Mg} + 2 \text{ B})$ (Siri 3), nano-Si (Siri 4), nano-Si + LaB₆ (Siri 5), dan Dy₂O₃ + $La₂O₃$ (Siri 6) telah ditambah ke dalam MgB₂. Untuk siri 1, peningkatan suhu pensinteran kepada 900 °C telah meningkatkan nilai *J*_c (0 T, 20 K) kepada 4.2 \times 10³ A/cm², mencadangkan peningkatan dalam gandingan butiran sampel. Masa pensinteran yang berpanjangan selama 3 jam telah meningkatkan nilai *J*^c kepada 3.2 × 10³ A/cm² sebelum berkurangan kepada 0.5×10^3 A/cm² apabila masa pensinteran dipanjangkan kepada 7 jam. Sementara itu, penambahan Mg berlebihan ke dalam MgB² *ex-situ* (Siri 2) berjaya menghalang penguraian MgB_2 di mana tiada puncak MgB_4 diperhatikan dalam sampel tambah Mg, berbeza dengan MgB² *ex-situ* tulen yang mempamerkan puncak MgB⁴ pada suhu pensinteran yang lebih tinggi. Apabila suhu pensinteran meningkat, penambahan Mg berlebihan telah mengurangkan saiz butiran purata dan mengukuhkan lagi gandingan butiran sampel, yang seterusnya meningkatkan nilai *J*^c kepada 10⁴ A/cm² iaitu lebih daripada 20 kali ganda. Dalam Siri 3, penambahan 0 hingga 50 wt.% daripada (1.5 Mg + 2 B) meningkatkan nilai *J*_c (0 T, 20 K) daripada 3.0×10^3 A/cm² kepada 1.3×10^4 A/cm² , masing-masing. Nilai *J*^c (0 T, 20 K) tertinggi yang diperolehi untuk Siri 3 ialah 2.1×10^4 A/cm² untuk sampel yang disinter pada 1000 °C. Corak XRD untuk nano-Si ditambah ke dalam sampel MgB₂ in-situ (Siri 4) menunjukkan pembentukan Mg₂Si di mana Mg2Si berlebihan boleh menghalang laluan arus sampel dan menurunkan nilai *J*c. Penambahan nano-Si daripada 0 hingga 10 wt.% telah menurunkan nilai *J*^c (0 T, 20 K) daripada 2.4 \times 10⁵ A/cm² kepada 1.7 \times 10⁵ A/cm², masing-masing. Walau bagaimanapun, nilai J_c pada medan tinggi telah meningkat kepada 2.8×10^3 A/cm² dengan penambahan 5 wt.% nano-Si. Penambahan bersama 0.03 mol LaB⁶ dan *x* wt.% nano-Si (Siri 5) menghalang pertumbuhan butiran sampel kerana tiada perubahan ketara dalam saiz purata butiran dapat diperhatikan. Penambahan LaB₆ mengurangkan *J*_c (0 T, 20 K) kepada 2.12 \times 10⁵ A/cm², dan ia terus menurun kepada 1.7 \times 10⁵ A/cm² dengan penambahan bersama LaB₆ dan 10 wt.% nano-Si. Penambahan bersama Dy₂O₃ dan

La2O³ ke dalam MgB² (Siri 6) telah meningkatkan penyematan fluks sampel dan nilai *J*c, di mana nilai *J*_c (0 T, 20 K) tertinggi yang diperolehi ialah 4.3×10^5 A/cm² untuk 1.00 wt.% sampel ditambah bersama.

ACKNOWLEDGEMENT

Praise and thanks to Allah for blessing me much more than I deserve.

Praise and then k to Allah for blessing me meads more than I deserve.

That, leaded the track mean meaning three hystems and support in the properties and supporting me. Without their the nail supportion that the new yield First, I would like to thank my amazing family, especially my parents for always loving and supporting me. Without their love and support none of this would have been possible. They have always been there for me, and I am thankful for everything. I would like to express my deepest thanks to my supervisor, Assoc. Prof. Dr Chen Soo Kien for the help and kind supervision throughout my research. I am truly fortunate and grateful to have you as my supervisor. A special thank you to my co-supervisor Assoc. Prof. Dr Mohd Mustafa Awang Kechik and Assoc. Prof. Dr Tan Kar Ban. Not forgetting, this special thanks also goes to Assoc. Prof. Dr Lim Kean Pah and Prof. Dr Abdul Halim Shaari for all the help and knowledge given throughout my study.

I would also like to express my thanks to all the staff at the Faculty of Science, UPM, especially, Pn. Nik Afida and Pn. Wan Nor Najwa, for their help and contributions. Finally, thank you to all my wonderful superconductor family members and my fellow friends for always making me laugh a little louder, smile a little wider, and live a little better. Thank you to everyone who takes part in my PhD journey. Special appreciation to the Graduate Research Fellowship (GRF) under School Graduate of Studies and the Special Graduate Research Allowance Scheme for financial support throughout my studies.

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy.The members of the Supervisory Committee were as follows:

Chen Soo Kien, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Mohd Mustafa Bin Awang Kechik, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

Tan Kar Ban, PhD

Chen San Kien, PhD

Anselm of Science

University Policy Malaysia

University Pair Malaysia

Chairman

Model Mustafr Bin Awang Kechlik, PhD

Noona Chendren

University Pair Malaysia

Member

University Pair Malaysia

Unive Associate Professor, ChM. Faculty of Science Universiti Putra Malaysia (Member)

ZALILAH MOHD SHARIFF, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 11 May 2023

Declaration by the Graduate Student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any institutions;
- intellectual property from the thesis and the copyright of the thesis are fully-owned by Universiti Putra Malaysia, as stipulated in the Universiti Putra Malaysia (Research) Rules 2012;
- Thereby may for the control of the control written permission must be obtained from the supervisor and the office of the Deputy Vice-Chancellor (Research and innovation) before the thesis is published in any written, printed or electronic form (including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials) as stated in the Universiti Putra Malaysia (Research) Rules 2012;
	- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld in accordance with the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2015-2016) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Name and Matric No.: Nurhidayah Binti Mohd Hapipi

Declaration by Members of the Supervisory Committee

This is to confirm that:

- the research and the writing of this thesis were done under our supervision;
- supervisory responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2015-2016) are adhered to.

TABLE OF CONTENTS

LIST OF TABLES

xiv

- 5.35 Intensity fraction of *in-situ* MgB₂ samples co-added with *x* wt.% Dy_2O_3 : *x* wt.% La_2O_3 108
- 5.36 Lattice parameter, unit cell volume, and crystallite size of *in-situ* MgB₂ samples co-added with *x* wt.% Dy₂O₃: *x* wt.% La₂O₃ 109
- 5.37 Average grain size for *in-situ* MgB_2 co-added with *x* wt.% Dy_2O_3 : x wt.% La₂O₃ 112
- 5.38 Critical current density, J_c , and irreversibility field, H_{irr} at 20 K for MgB₂ samples co-added with *x* wt.% Dy₂O₃: *x* wt.% La₂O₃ 114
- 576 Latitude parameter of neutrino and experiment and experimental the state of the state 100 sharp equal size for *its situa*lly the state of 5.39 Onset of critical temperature, $T_{\text{c-onset}}$ at 20 K for MgB₂ samples coadded with x wt.% Dy₂O₃: x wt.% La₂O₃ 116

LIST OF FIGURES

Figure Page

2

3

11

- 1.1 Comparison of the cross-sectional area for bismuth-based superconductor wire and copper wire carrying the same current magnitude
- 1.2 The illustration of the superconductor Maglev levitation and propulsion system
- **Expression of the cross-sectional area for bismuinh-based Magnitude correspondence wise and copper wire carrying the same current magnitude of the superconductor Maglev levitation and 3 proposition space of same current** 2.1 Backscattered SEM images of samples sintered at (a) $900 \degree C$, (b) 1000 °C, (c) 1100 °C, and (d) 1200 °C at 250 \times magnification. Four different contrast levels, MgB_2 (light gray), MgB_4 (dark grey), MgO (white), and porosity (black) can be observed (Matthews et al., 2020)
	- 2.2 SEM images of *ex-situ* MgB² bulks (a) before and after being sintered at (b) 900 °C (24 h), and (c) 900 °C (240 h). Area A in (a) indicates 'egg' of necks. Areas B and C in (b) indicate a neck and an open pore, respectively (Tanaka et al., 2012) 11
	- 2.3 SEM images $ex\text{-}situ\ \text{MgB}_2$ sintered at (a) $1000\ ^\circ\text{C}$ (30 min), and (b) 1050 °C (10 min). The arrows indicate the secondary phase particles (Shim et al., 2005) 12
	- 2.4 SEM images of MgB₂ bulks sintered at (a) 650 °C (b) 700 °C (c) 750 °C, and (d) at 800 °C (Yan et al., 2004) 16
	- 2.5 SEM images of MgB₂ superconductor sintered at 775 °C (left) and 805 °C (right) in the argon atmosphere (Kobayashi et al., 2015) 16
	- 2.6 SEM-BSE for (a) low magnification image and (b) high magnification image of MgB_2 sample sintered at 900 °C for 48 h (Shimada et al., 2016) 17
	- 2.7 SEM images of MgB₂ powder after 5 h of oxidation at 900 °C indicate long thin MgO whiskers on the grain surface (Yang et al., 2003) 17
	- 2.8 SEM images of (a) pure MgB_2 (b) $MgB_2 + 10\%$ Mg samples (Wu, 2014) 20
	- 2.9 SEM images for (a) pure, (b) 5 wt.% La_2O_3 , (c) 10 wt.% acetone, and (d) 5 wt.% $La_2O_3 + 10$ wt.% acetone codoped samples (Gao et al., 2010) 21
	- 3.1 Timeline of discoveries of superconducting materials. Colours symbols represent different classes of materials (Ray, 2015) 28

xvii

- 5.11 (a) Temperature dependence of normalized DC susceptibility (b) plots of $\delta \gamma / \delta T$ versus *T* of *ex-situ* MgB₂ sintered at 700 °C for different sintering times 66
- 5.12 XRD patterns of *ex-situ* MgB2 samples added with 0.5 mol Mg sintered at different temperatures for 1 h 68
- 5.13 XRD patterns of *ex-situ* MgB₂ samples added with 0.5 mol Mg sintered at 700 °C for different sintering time 68
- S.12 XRD patterns of *cositu* MgBs samples added with 0.5 mol Mg 6

same ad aliferent is equivalent and the same and the same and the same and the same of *ex-sim* MgB_s samples added with 0.5 mol Mg 6

Same and all UPM 5.14 High magnification FESEM images of fractured surfaces of *ex-situ* MgB2 bulks added with 0.5 mol Mg sintered at different temperatures (a) $600 \degree C$ (b) $700 \degree C$ (c) $1000 \degree C$ for 1 h, respectively. The distribution of grain size is shown on the right-hand side of the images 72
	- 5.15 High magnification FESEM images of fractured surfaces of *ex-situ* MgB_2 bulks added with 0.5 mol Mg sintered at 700 °C, respectively for (a) 1 h (b) 3 h (c) 7 h. The distribution of grain size is shown on the right-hand side of the images 73
	- 5.16 Field dependence of critical current densities, *J*^c (20 K) of *ex-situ* MgB2 samples added with 0.5 mol Mg sintered at different temperatures for 1 h (b) Same plot as (a) with J_c in log scale 75
	- 5.17 Field dependence of critical current densities, *J*^c (20 K) of *ex-situ* MgB_2 samples added with 0.5 mol Mg sintered at 700 °C for different sintering time (b) Same plot as (a) with J_c in log scale 75
	- 5.18 Comparison of critical current densities, J_c (20 K) between selffield J_c (0 T) and high field J_c (3 T) of *ex-situ* MgB₂ samples added with 0.5 mol Mg sintered at different (a) sintering temperatures and (b) sintering time 76
	- 5.19 Normalized pinning force $F_p/F_{p,\text{max}}$ as a function of reduced magnetic field H/H_{irr} at 20 K for *ex-situ* MgB₂ samples added with 0.5 mol Mg sintered at different (a) sintering temperatures and (b) sintering time 77
	- 5.20 (a) Temperature dependence of normalized DC susceptibility (b) plots of $\delta \chi / \delta T$ versus *T* of *ex-situ* MgB₂ samples added with 0.5 mol Mg sintered at different temperatures for 1 h 78
	- 5.21 (a) Temperature dependence of normalized DC susceptibility (b) plots of $\delta \chi / \delta T$ versus *T* of *ex-situ* MgB₂ samples added with 0.5 mol Mg sintered at 700 \degree C for different sintering times 78
	- 5.22 XRD patterns of *ex-situ* MgB₂ added with different weight percentages of $(1.5 \text{ Mg} + 2.0 \text{ B})$ sintered at 700 °C for 1 h 80
- 5.23 XRD patterns of $ex\text{-}situ\,\text{MgB}_2$ added with 30 wt.% of (1.5 Mg + 2.0) B) sintered at different temperatures for 1 h 81
- 5.24 High magnification FESEM images of fractured surfaces of *ex-situ* MgB_2 bulk added with (a) 0 wt.%, (b) 10 wt.%, (c) 30 wt.%, (d) 50 wt.% of (1.5 Mg + 2.0 B), respectively sintered at 700 $^{\circ}$ C for 1 h. The distribution of grain size is shown on the right-hand side of the images
- 5.25 High magnification FESEM images of fractured surfaces of *ex-situ* MgB_2 bulks added with 30 wt.% (1.5 Mg + 2.0 B) sintered at (a) 700 °C, (b) 800 °C, (c) 1000 °C, for 1 h respectively. The distribution of grain size is shown on the right-hand side of the images
- 5.26 Field dependence of critical current densities, *J*^c (20 K) of *ex-situ* MgB_2 added with different weight percentages of (1.5 Mg + 2.0 B) and sintered at 700 °C for 1 h (b) Same plot as (a) with J_c in log scale
- 5.27 Comparison of critical current densities, *J*^c (20 K) between selffield J_c (0 T) and high field J_c (3 T) of *ex-situ* MgB₂ added with (a) different weight percentages of $(1.5 \text{ Mg} + 2.0 \text{ B})$ sintered at 700 °C for 1 h and (b) 30 wt.% $(1.5 \text{ Mg} + 2.0 \text{ B})$ sintered at different temperatures for 1 h
- 5.28 Field dependence of critical current densities, *J*^c (20 K) of *ex-situ* MgB_2 added with 30 wt.% of (1.5 Mg + 2.0 B) and sintered at different temperatures for 1 h (b) Same plot as (a) with J_c in log scale
- 3.34 High magnitude of PSIM magnetic Fraction of the steam of the 5.29 Normalized pinning force $F_p/F_{p,\text{max}}$ as a function of reduced magnetic field H/H_{irr} at 20 K for *ex-situ* MgB₂ added with (a) different weight percentages of $(1.5 \text{ Mg} + 2.0 \text{ B})$ sintered at 700 °C for 1 h and (b) 30 wt. % $(1.5 \text{ Mg} + 2.0 \text{ B})$ sintered at different temperatures for 1 h 90
	- 5.30 (a) Temperature dependence of normalized DC susceptibility (b) plots of $\delta \gamma / \delta T$ versus *T* of *ex-situ* MgB₂ added with different weight percentages of $(1.5 \text{ Mg} + 2.0 \text{ B})$ and sintered at 700 °C for 1 h 91
	- 5.31 (a) Temperature dependence of normalized DC susceptibility (b) plots of $\delta \gamma / \delta T$ versus *T* of *ex-situ* MgB₂ added with 30 wt.% of (1.5) $Mg + 2.0 B$) and sintered at different temperatures for 1 h 91
	- 5.32 XRD patterns of *in-situ* MgB² added with different weight percentages of nano-Si 93
	- 5.33 High magnification FESEM images of fractured surfaces of *in-situ* MgB_2 added with (a) 0 wt.%, (b) 5 wt.%, (c) 10 wt.% of nano-Si. 95

xx

84

85

87

88

89

The distribution of grain size is shown on the right-hand side of the images

- 5.34 Field dependence of critical current densities, *J*^c (20 K) of *in-situ* MgB² samples added with different weight percentages of nano Si (b) Same plot as (a) with J_c in log scale 96
- 5.35 Comparison of critical current densities, *J*^c (20 K) between selffield J_c (0 T) and high field J_c (3 T) of *in-situ* MgB₂ samples added with different weight percentages of nano-Si 97
- 5.36 Normalized pinning force $F_p/F_{p,\text{max}}$ as a function of reduced magnetic field H/H _{irr} at 20 K for *in-situ* MgB₂ added with different weight percentages of nano-Si 98
- 5.37 (a) Temperature dependence of normalized DC susceptibility (b) plots of $\delta \chi / \delta T$ versus *T* of *in-situ* MgB₂ added with different weight percentages of nano-Si 99
- 5.38 XRD patterns of *in-situ* MgB_2 co-added with LaB_6 and different weight percentages of nano-Si 100
- 5.4 For the state of extractance and the state is equilible the state of the s 5.39 High magnification FESEM images of fractured surfaces of (a) pure *in-situ* MgB₂ and *in-situ* MgB₂ co-added with LaB₆ and (b) 0 wt.%, (c) 5 wt.% and (d) 10 wt.% of nano-Si. The distribution of grain size is shown on the right-hand side of the images 102
	- 5.40 Field dependence of critical current densities, *J*^c (20 K) of *in-situ* $MgB₂$ samples co-added with $LaB₆$ and different weight percentages of nano-Si (b) Same plot as (a) with J_c in log scale 104
	- 5.41 Comparison of critical current densities, J_c (20 K) between selffield J_c (0 T) and high field J_c (3 T) of *in-situ* MgB₂ samples coadded with LaB₆ and different weight percentages of nano-Si 105
	- 5.42 Normalized pinning force $F_p/F_{p,\text{max}}$ as a function of reduced magnetic field H/H_{irr} at 20 K for *in-situ* MgB₂ co-added with LaB₆ and different weight percentages of nano-Si 105
	- 5.43 (a) Temperature dependence of normalized DC susceptibility (b) plots of $\delta \chi / \delta T$ versus *T* of *in-situ* MgB₂ samples co-added with $LaB₆$ and different weight percentages of nano-Si 106
	- 5.44 XRD patterns of *in-situ* MgB₂ samples co-added with *x* wt.% Dy_2O_3 : *x* wt.% La_2O_3 108
	- 5.45 High magnification FESEM images of fractured surfaces of *in-situ* MgB_2 bulks added with *x* wt.% Dy₂O₃: *x* wt.% La₂O₃ for (a) $x = 0.0$ wt.% (b) $x = 0.25$ wt.% (c) $x = 0.50$ wt.% (d) $x = 0.75$ wt.% (e) $x =$ 110

1.00 wt.%, respectively. The distribution of grain size is shown on the right-hand side of the images

- 3.46 Interactional HSNN mappe in linkents to Welly 112
samples to stacked with a well by $Q_{\text{D}}(x)$ with $Q_{\text{D}}(x)$ and $Q_{\text{D}}(x)$
 $x = 10.29$ with, 20.95 with $Q_{\text{D}}(x) = 0.20$ with $Q_{\text{D}}(x) = 0.75$ with, and t 5.46 Backscattered FESEM images of fractured surfaces of MgB² samples co-added with *x* wt.% Dy₂O₃: *x* wt.% La₂O₃ for (a) $x = 0.0$ wt.% (b) $x = 0.25$ wt.% (c) $x = 0.50$ wt.% (d) $x = 0.75$ wt.%, and (e) $x = 1.00$ wt.%, respectively 112
	- 5.47 Field dependence of critical current densities, *J*^c (20 K) *in-situ* MgB₂ samples co-added with *x* wt.% Dy₂O₃: *x* wt.% La₂O₃ (b) Same plot as (a) with J_c in log scale
	- 5.48 Comparison of critical current densities, J_c (20 K) between selffield J_c (0 T) and high field J_c (3 T) of MgB₂ samples co-added with *x* wt.% Dy2O3: *x* wt.% La2O³ 114
	- 5.49 Normalized pinning force *F*p/*F*p,max as a function of reduced magnetic field H/H_{irr} at 20 K for MgB₂ samples co-added with *x* wt.% Dy₂O₃: *x* wt.% La₂O₃ 115
	- 5.50 (a) Temperature dependence of normalized DC susceptibility (b) plots of $\delta \chi / \delta T$ versus *T* of *in-situ* MgB₂ samples co-added with *x* wt.% Dy₂O₃: *x* wt.% La₂O₃ 116

113

LIST OF ABBREVIATIONS

xxiii

CHAPTER 1

INTRODUCTION

1.1 Background Study

Superconductivity is a physical phenomenon that occurs when the electrical resistance of a material is zero and magnetic flux is expelled from the material. Any material that exhibits these properties is known as a superconductor (Rose-Innes and Rhoderick, 1978). Superconductors can be divided into low-temperature superconductors, LTS (niobium-based alloy), and high-temperature superconductors, HTS (copper-oxidebased). If the critical temperature, T_c , of a superconductor is above 30 K, it is classified as HTS. In the meantime, a T_c value below 30 K is referred to as LTS. Many researchers are more interested in studying HTS compared to LTS due to its higher T_c and J_c values.

INTRODUCTION

1.4 **Background Study**

5. **Equivarial phenomenon that occurs** when the electrical resistance

of a national is zero and nugarited into its corporate form is a supercolation of the metrical range and

the However, following the discovery of superconductivity in MgB₂, researchers became interested in studying $MgB₂$. This is because $MgB₂$ has a simple crystal structure and high critical temperature ($T_c \approx 39$ K), making it a most promising candidate for cryogenfree operation to replace conventional NbTi and Nb₃Sn-based technology. Two common methods to prepare MgB2 bulk samples are *in-situ* (Arvapalli et al., 2019; Gao et al., 2010; Kim et al., 2007; Muralidhar et al., 2017) and *ex-situ* method (Malagoli et al., 2010; Mizutani et al., 2014; Tanaka et al., 2012). *In-situ* is a method of synthesising MgB_2 by simply mixing Mg and B powders at the appropriate ratio of Mg: B = 1: 2. During heat treatment, Mg grains melt and diffuse into B grains through a liquid-solid reaction. Meanwhile, the $ex\text{-}situ$ method involves heat treatment of the pre-reacted $MgB₂$ powders. Although commercial MgB_2 powders are readily available as it has been synthesized since the early 1950s, the quality of $MgB₂$ powder may not be as good as desired (Buzea and Yamashita, 2001).

MgB₂ also possesses a high critical current density, J_c (> 10^5 A/cm² at 20 K, 0 T), strong grain coupling due to its large coherence lengths ($\xi_{ab} \sim 6.5$ nm at 0 K), and weak-linkfree behaviour at grain boundaries. MgB_2 is a lightweight and inexpensive material that is ideal for commercial and industrial applications (Buzea and Yamashita, 2001; Larbalestier et al., 2001; Xu et al., 2001; Yamamoto et al., 2004; Zhao et al., 2001). However, further improvement of J_c and flux pinning is crucial for the material to be used in high magnetic field applications. Prior studies show the addition of dopants such as Mg (Zeng et al., 2008; Zhang et al., 2015), La (Kimishima et al., 2004; Shekhar et al., 2005), La2O³ (Gao et al., 2010), Dy2O3 (Chen et al., 2006), Si (Tan et al., 2015; Zhang et al., 2010) and carbon (Ohmichi et al., 2004; Tan et al., 2015; Yeoh et al., 2004) into MgB_2 can act as flux pinning that enhanced the value of J_c resulting in high-quality MgB_2 samples.

1.2 Applications of Superconductor

Superconductors have brought great success and technological changes, especially in energy storage, transportation, electronics, and medical sector. Some of the applications are discussed as follows:

1.2.1 Superconducting Wire

Superconductor wire is an electrical wire made of superconductor material that exhibits no electrical resistance when cooled below T_c . Figure 1.1 shows that, although bismuthbased superconductor wire has a smaller cross-sectional area than copper wire, it can carry the same current magnitude. It means that superconductor wire can carry approximately 200 times more electric current than copper wire with the same crosssectional area (Hayashi, 2020).

Figure 1.1: Comparison of the cross-sectional area for bismuth-based superconductor wire and copper wire carrying the same current magnitude

Superconductor-have broady lyrent success and nodelod is
clock the properties and model and certain space of the supplications
are directed in follows:

T.2.1 Superconducting Wire

Superconducting Wire

Superconducting Wi Commonly, conventional superconductors such as niobium-titanium (NbTi) and niobium-tin (Nb3Sn) are used as the superconducting wire. However, these conventional superconductors are made from low-temperature superconductors that require very expensive liquid helium for cooling. Besides, Nb₃Sn is brittle and difficult to fabricate. High-temperature superconductor (HTS) wires were later introduced to the market. HTS wire can operate in liquid nitrogen, which is cheaper than liquid helium. HTS wires are also more tolerant of AC loss and have better thermal stability than low-temperature superconducting (LTS) wires. There are two types of high-temperature superconductor wires: first-generation (1G) wire, bismuth strontium calcium copper oxide, BSCCO, and second-generation (2G) wire, rare-earth barium copper oxide, ReBCO. 1G HTS superconductor wires are widely used on various HTS power devices such as transmission cables, transformers, motors, and generators. The first company to produce long bismuth-based superconductor wire (DI-BSCCO) is Sumitomo Electric Japan. The transition from 1G HTS wire to 2G HTS wires promises that 2G HTS wires will be cheaper than existing 1G wires. This 2G HTS wire provides cost benefits and excellent performance benefits (Hayashi, 2020).

1.2.2 High-Temperature Superconductor (HTS) Cable

High-temperature superconductor (HTS) power cable is made of a group of sheathcoated wires. It can carry two to five times the electrical current more than conventional cables such as XLPE (Cross Link Poly Etheline) of the same size. Furthermore, HTS cable can operate at high current levels with minimal heat and electricity loss, which aids in energy conservation. HTS cables are also smaller than conventional cables, allowing them to occupy less space. Therefore, it does not require extensive construction work for installation, potentially lowering construction costs. In Japan, the Railway Technical Research Institute (RTRI) has developed a superconducting feeder cable system. This superconducting feeder cable connects the Hino Civil Engineering Testing Station to the regular feeding circuit of the Chuo line (408 m cable), where it needs to be cooled with cryogenic or liquid nitrogen. The test confirmed that currents up to 2200 A or larger could flow from the substation to the test train as the train is accelerated. Most importantly, the shut-off test confirmed that the train could keep running, powered by the regular feeding circuit, even after the superconducting system is shut off (*Superconducting Feeder Cable System*, 2019).

1.2.3 Maglev Train

In the 21st century, few countries such as Japan, South Korea, and China have developed powerful electromagnetic high-speed trains called maglev trains. Maglev is derived from "magnetic" and "levitation". Maglev trains operate on magnetic repulsion principles between a train and a track, where magnetic levitation can be achieved using an electrodynamic suspension system (EDS).

Figure 1.2: The illustration of the superconductor Maglev levitation and propulsion system

Figure 1.2 shows an illustration of the Maglev superconductor levitation and propulsion system. The Maglev train railway consists of two sets of cross-connected metal coils wound into a "figure eight" pattern along both the guideway walls to form electromagnets. These coils are also cross connected underneath the rails to accelerate the cars and guide and stabilise them. Due to the magnetic field induction effect, the magnetic field of the superconducting magnets induces a current into these coils when the train accelerates.

The train's movement starts when it moves forward slowly on the wheels, allowing the magnets beneath the train to interact with the guideway. Once the train reaches 150 kilometres per h, the magnetic force is strong enough to lift the train 4 inches off the ground. The magnetic force will then eliminate friction between the car and the guideway, allowing for faster speeds. This magnetic force also makes the train move forward and continue to be centred within the guideway. If the train is centred with the coils, the electrical potential will be balanced, and no currents will be induced. However, when the train runs on rubber wheels at a lower speed, a magnetic field positioned below the coils' centre will cause an unbalanced electrical potential. When stopped, the train will rest on rubber wheels.

electromagnets. These usins we also ensus corrected underweated the with to accelerate their spectra line of the spectra distribution of the spectra control of the spectra line of the spectra line of the spectra line of t The advantage of the Maglev train is that it can float on the rails, which means there is no rail friction. It allows trains to travel at speeds of hundreds of miles per h. Since the trains rarely touch the track, there is not much noise and vibration compared to regular trains. As a result, the Maglev train produces minor mechanical damage. The Central Japan Railway Company and the Railway Technical Research Institute developed the first Maglev superconductor trains in the 1970s. In April 2015, Japan Railway maglev trains recorded 603 km/h, far faster than Maglev trains operating in Shanghai, China (431 km/h to 500 km/h) and in South Korea (109 km/h). In the latest related development, Chuo Shinkansen maglev line is planned to connect Tokyo and Nagoya by 2027. The Chuo Shinkansen maglev line is expected to cover the 178-mile distance (Tokyo to Nagoya) at 500 km/h, slashing the travel time to just forty minutes. It means that the Chuo Shinkansen maglev line can reduce travel time by around 50% compared to the current Tokaido Shinkansen line.

1.3 Problem Statement and Research Objective

The main problem in the process of synthesising $MgB₂$ is determining suitable and optimal sintering conditions. This is because the optimal sintering value can reduce the grain size of the sample which increased the flux pinning at the grain boundary and enhanced the grain connectivity of the samples (Kobayashi et al., 2015; Matthews et al., 2020; Tanaka et al., 2012; Yamamoto et al., 2012). Unlike previous studies that varied the sintering conditions at high temperatures (Shim et al., 2005) and for a long time (Tanaka et al., 2012), this study is more focused on shorter sintering time (1-7 h) and lower sintering temperature (600-1000 °C).

Furthermore, another major issue for $MgB₂$ is that Mg is highly volatile and oxidised, especially at elevated temperatures. Addition of excess Mg is expected to compensate for the loss of Mg, reduce the formation of the MgO phase, and increase the grain connectivity, which can increase the value of J_c , especially at low temperatures and magnetic fields (Zeng et al., 2008; Zhang et al., 2015). However, prior studies (Arvapalli et al., 2019; Zeng et al., 2008; Zhang et al., 2015) focused on the addition of excess Mg to *in-situ* MgB² instead of *ex-situ* MgB2. Both *in-situ* and *ex-situ* methods have their shortcomings. Although *in-situ* sample has strong grain coupling and easily reaches a high *J*c value, it has a low bulk density and low connectivity. Meanwhile, *ex-situ* sample has a higher bulk density, but the grain coupling for *ex-situ* MgB₂ sample is weaker than *in-situ* MgB₂ sample (Li et al., 2012; Yamamoto et al., 2012). Therefore, in this work, both methods are combined to compensate for each other's shortcomings.

ed al., 2018) *F* required and of *Co*-2000 *R* (2018) *Concered on the allehino is exactly because the control of the alternative states* where the alternative states of *Co*-200 MgB is neared on *Coreal MgB* is neared t It is necessary to further improve the flux pinning and J_c value of MgB₂ sample to make it suitable for high magnetic field applications. This problem can be overcome by introducing dopants such as Si and LaB_6 into MgB_2 . The addition of Si into MgB_2 can increase the value of J_c at a higher field (Wang et al, 2003). It has also been claimed that the addition of La_2O_3 resulted in the formation of La_6 , which acts as an effective pinning center that increased the intragrain *J*^c (Gao et al., 2010; Shekhar et al., 2005). Hence, this study continues to focus on the co-addition of Si and LaB_6 to improve the flux pinning center and increase the value of J_c at all magnetic fields.

Similar to LaB_6 , the formation of DyB_4 (Chen et al., 2006) can act as an effective flux pinning and increase the value of J_c . Although it is important to increase the value of J_c , the addition of dopants should not affect the value of T_c . Studies have shown that the addition of Dy_2O_3 (Chen et al., 2006) or La_2O_3 (Zhao-Shun et al., 2010) did not result in a drastic reduction of *T*c, most likely due to the insignificant substitution of the lattice structure of MgB₂. Therefore, the co-addition of Dy_2O_3 and La_2O_3 into MgB₂ is expected to form LaB_6 and DyB_4 which can act as flux pinning centers and further improve the J_c value.

Hence, the objectives of this work are:

- i. To enhance grain coupling of *ex-situ* MgB₂ via optimisation of sintering temperature and time.
- ii. To elucidate the influence of materials addition such as excess Mg and (1.5 mol Mg + 2.0 mol B) on structural and superconducting properties of the *ex-situ* $MgB₂$.
- iii. To investigate the effects of LaB_6 , nano Si and co-addition of LaB_6 and nano-Si on structural and superconducting properties of *in-situ* MgB2.
- iv. To investigate the effects of co-addition of Dy_2O_3 and La_2O_3 on structural and superconducting properties of *in-situ* MgB₂.

1.4 Thesis Overview

This thesis consists of six chapters. Chapter 1 introduces a brief history of superconductors and their applications. The problem statement and the objectives of this work are also discussed in Chapter 1. Chapter 2 reviews the previous works of MgB₂ superconductors focusing on the preparation methods, heat treatment conditions, and dopant additions used by previous researchers. The theory and fundamentals of superconductivity, especially $MgB₂$, will be explained in Chapter 3. Chapter 4 focuses on the materials and methods used for this work. Sample characterisation, such as XRD, FESEM, and SQUID measurement, is also discussed in detail. Chapter 5 discusses all the analysed results obtained from all the sample characterisations. Finally, in Chapter 6, the outcomes of this research will be summarised, followed by recommendations for future research.

BIBLIOGRAPHY

- Akimitsu, J., Akutagawa, S., Kawashima, K., and Muranaka, T. (2005). Superconductivity in MgB² and its related materials. *Progress of Theoretical Physics Supplement*, *159*, 326–337.
- Aksu, E. (2013). Study of MgB_2 phase formation by using XRD, SEM, thermal and magnetic measurements. *Journal of Alloys and Compounds*, *552*, 376–381.
- Aldica, G., Popa, S., Enculescu, M., Pasuk, I., Ionescu, A.M., and Badica, P. (2018). Dwell time influence on spark plasma-sintered MgB₂. *Journal of Superconductivity and Novel Magnetism*, *31*, 317–325.
- Aruldhas, G., and P. Rajagopal. (2006). *Modern physics* (Second Edi). New Delhi: Prentice-Hall of India Pvt. Ltd.
- Arvapalli, S.S., Miryala, M., and Murakami, M. (2019). Beneficial impact of excess Mg on flux pinning in bulk MgB2 synthesized with Ag addition and carbon encapsulated boron. *Advanced Engineering Materials*, *21*, 1900497.
- Arvapalli, S.S., Muralidhar, M., and Murakami, M. (2019). High-performance bulk MgB² superconductor using amorphous nano-boron. *Journal of Superconductivity and Novel Magnetism*, *32*, 1891–1895.
- Balducci, G., Brutti, S., Ciccioli, A., Gigli, G., Manfrinetti, P., Palenzona, A., Butman, M.F., and Kudin, L. (2005). Thermodynamics of the intermediate phases in the Mg-B system. *Journal of Physics and Chemistry of Solids*, *66*, 292–297.
- Bardeen, J., Cooper, L.N., and Schrieffer, J.R. (1957). Microscopic theory of superconductivity. *Physical Review*, *108*, 162–164.
- Bednorz, J.G., and Muller, K.A. (1986). Possible high T_c superconductivity in the Ba-La-Cu-0 system. *Condensed Matter*, *64*, 189–193.
- Arimita, J., Atachaya, S., Kawakhma, K., and Mustaka, T. (2005).

The Baytesia Superconducted by in MgB₂ and its celead materials. *Frogers* of *Theoretical*
 Physics Spyperman, 139, 25:35 137.

Alsin, F. (2015). Stud Braccini, V., Malagoli, A., Tumino, A., Vignolo, M., Bernini, C., Fanciulli, C., Romano, G., Tropeano, M., Siri, A.S., and Grasso, G. (2007). Improvement of magnetic field behavior of *ex-situ* processed magnesium diboride tapes. *IEEE Transactions on Applied Superconductivity*, *17*, 2766–2769.
	- Brutti, S., Ciccioli, A., Balducci, G., Gigli, G., Manfrinetti, P., and Palenzona, A. (2002). Vaporization thermodynamics of MgB² and MgB4. *Applied Physics Letters*, *80*, 2892–2894.
	- Bruzek, C.E., Ballarino, A., Escamez, G., Giannelli, S., Grilli, F., Lesur, F., Marian, A., & Tropeano, M. (2017). Cable conductor design for the high-power MgB_2 DC superconducting cable project of BEST PATHS. *IEEE Transactions on Applied Superconductivity*, *27*, 4801405.
	- Bruzek, C.E., and Marian, A. (2021). Superconducting links for very high power transmission based on MgB² wires. *Conference: 2021 AEIT HVDC International*

Conference (AEIT HVDC).

- Buzea, C., and Yamashita, T. (2001). Review of the superconducting properties of MgB₂. *Superconductor Science and Technology*, *14*, R115–R146.
- Canfield, P.C., and Crabtree, G.W. (2003). Magnesium diboride: Better late than never. *Physics Today*, *56*, 34–40.
- Chen, D.X., and Goldfarb, R.B. (1989). Kim model for magnetization of type-II superconductors. *Journal of Applied Physics*, *66*, 2489–2500.
- Chen, H., Li, Y., Chen, G., Xu, L., and Zhao, X. (2018). The effect of inhomogeneous phase on the critical temperature of smart meta-superconductor MgB2. *Journal of Superconductivity and Novel Magnetism*, *31*, 3175–3182.
- Chen, L., and Li, H. (2003). Superconducting properties of $MgB₂$ with different lattice parameters. *Chinese Physics Letters*, *20*, 1128–1130.
- Notes that P_n and Grahamonical Technology, 14, R115 R146.

Canad Christops: Δt (2003), Magnesian alboride: Better late than never.

Physics Todoy, 36, 34–40.

Chen, 10. X, and Grahamonical of Applical Physics 166. S1 Chen, S.K., Serquis, A., Serrano, G., Yates, K.A., Blamire, M.G., Guthrie, D., Cooper, J., Wang, H., Margadonna, S., and MacManus-Driscoll, J.L. (2008). Structural and superconducting property variations with nominal Mg non-stoichiometry in Mg_xB_2 and its enhancement of upper critical field. *Advanced Functional Materials*, *18*, 113–120.
	- Chen, S.K., Wei, M., and MacManus-Driscoll, J.L. (2006). Strong pinning enhancement in MgB² using very small Dy2O³ additions. *Applied Physics Letters*, *88*, 192512.
	- Choi, H.J., Roundy, D., Sun, H., Cohen, M.L., and Louie, S.G. (2002). The origin of the anomalous superconducting properties of MgB2. *Nature*, *418*, 758–760.
	- Collings, E.W., Sumption, M.D., Bhatia, M., Susner, M.A., and Bohnenstiehl, S.D. (2008). Prospects for improving the intrinsic and extrinsic properties of magnesium diboride superconducting strands. *Superconductor Science and Technology*, *21*, 103001.
	- Cooley, L.D., Kang, K., Klie, R.F., Li, Q., Moodenbaugh, A.M., and Sabatini, R.L. (2004). Formation of MgB₂ at low temperatures by reaction of Mg with B₆Si. *Superconductor Science and Technology*, *17*, 942–946.
	- Cyrot, M. (1973). Ginzburg-Landau theory for superconductors. *Reports on Progress in Physics*, *36*, 103–158.
	- Cyrot, M., and Pavuna, D. (1992). *Introduction to superconductivity and high-T^c materials*. World Scientific Publishing Co. Pte. Ltd.
	- Dahm, T. (2005). Two-gap superconductivity in magnesium diboride. *Advances in Solid State Physics*, *45*, 239–249.
	- De la Mora, P., Castro, M., and Tavizon, G. (2002). Comparative study of the electronic structure of alkaline-earth borides (MeB₂; Me = Mg, Al, Zr, Nb, and Ta) and their normal-state conductivity. *Journal of Solid State Chemistry*, *169*, 168–175.
- Degen, T., Sadki, M., Bron, E., König, U., and Nénert, G. (2014). The high score suite. *Powder Diffraction*, *29*, S13–S18.
- Dew-Hughes, D. (1974). Flux pinning mechanisms in type II superconductors. *Philosophical Magazine*, *30*, 293–305.
- Dou, S.X., Pan, A.V., Zhou, S., Ionescu, M., Liu, H.K., and Munroe, P.R. (2002). Substitution-induced pinning in MgB² superconductor doped with SiC nanoparticles. *Superconductor Science and Technology*, *15*, 1587–1591.

Durrant, A. (2000). *Quantum Physics of Matter*. United States: CRC Press.

Eisterer, M. (2008). Calculation of the volume pinning force in $MgB₂$ superconductors. *Physical Review B*, *77*, 144524.

- Describes the Mac and the state in the state of the state of the SUPS.

Full suppliers, Δt , Pan, AV, Zowi, Xowi, Zowi, Xow Eom, C.B., Lee, M.K., Choi, J.H., Belenky, L.J., Song, X., Cooley, L.D., Naus, MT., Patnaik, S., Jiang, J., Rikel, M., Polyanskii, A., Gurevich, A., Cai, X.Y., Bu, S.D., Babcock, S.E., Hellstrom, E.E., Larbalestier, D. C., Rogado, N., Regan, K.A., Hayward, M.A., He, T., Slusky, J.S., Inumaru, K., Haas, M.K., and Cava, R.J. (2001). High critical current density and enhanced irreversibility field in superconducting MgB² thin films. *Nature*, *411*, 558–560.
	- Fan, Z.Y., Hinks, D.G., Newman, N., and Rowell, J.M. (2001). Experimental study of MgB² decomposition. *Applied Physics Letters*, *79*, 87–89.
	- Fang, C., Huang, B., Yang, X., He, K., Chen, L., Shi, A., Zhang, Z., and Huang, Q. (2020). Effects of LaB_6 on the microstructures and ablation properties of 3D C/C-SiC-ZrB2-LaB⁶ composites. *Journal of the European Ceramic Society*, *40*, 2781– 2790.
	- Forrest, A.M. (1983). Meissner and ochsenfeld revisited. *European Journal of Physics*, *4*, 117–120.
	- Fuchs, G., Müller, K.H., Handstein, A., Nenkov, K., Narozhnyi, V.N., Eckert, D., Wolf, M., and Schultz, L. (2001). Upper critical field and irreversibility line in superconducting MgB2. *Solid State Communications*, *118*, 497–501.
	- Gao, Z., Ma, Y., Wang, D., and Zhang, X. (2010). Development of doped $MgB₂$ wires and tapes for practical applications. *IEEE Transactions on Applied Superconductivity*, *20*, 1515–1520.
	- Gao, Z.S., Ma, Y.W., Wang, D.L., Zhang, X.P., Awaji, S., and Watanabe, K. (2010). Enhancement of critical current density and flux pinning in acetone and La_2O_3 codoped MgB² tapes. *Chinese Physics Letters*, *27*, 117401.
	- Ginzburg, V. L., and E. A. Andryushin. (2004). *Superconductivity* (Revised Edition). Singapore: World Scientific Publishing Co. Pte. Ltd.
	- Giunchi, G., Ripamonti, G., Raineri, S., Botta, D., Gerbaldo, R., and Quarantiello, R. (2004). Grain size effects on the superconducting properties of high density bulk MgB2. *Superconductor Science and Technology*, *17*, S583–S588.
- Glowacki, B.A., Kutukcu, M.N., Atamert, S., Dhulst, C., and Mestdagh, J. (2019). Formation of Mg2Si inclusions in *in situ* SiC doped MgB² wires made from variable concentration of large micrometer-size Mg powder by continuous method. *IOP Conference Series: Materials Science and Engineering*, *502*, 2–7.
- Guo, Y., Zhang, W., Yang, D., and Yao, R.L. (2012). Decomposition and oxidation of magnesium diboride. *Journal of the American Ceramic Society*, *95*, 754–759.
- Gupta, A., Kumar, A., and Narlikar, A.V. (2009). Normal state connectivity and *J*^c of weakly coupled MgB² particles. *Superconductor Science and Technology*, *22*, 105005.
- *IOP Comparison Strings Miniterials Science and Tophuerings 30,2-7* .

Comparison Science Association of the American Coronal original and original

Guy, Y_{c} , X_{c} , X_{c} , X_{c} , X_{c} , X_{c} , Hapipi, N.M., Miryala, M., Chen, S.K., Arvapalli, S.S., Murakami, M., Kechik, M.M.A., Tan, K.B., and Lee, O.J. (2020). Enhancement of critical current density for MgB² prepared using carbon-encapsulated boron with co-addition of Dy_2O_3 and La_2O_3 . *Ceramics International*, *46*, 23041–23048.
	- Häßler, W., Scheiter, J., Hädrich, P., Kauffmann-Weiß, S., Holzapfel, B., Oomen, M., and Nielsch, K. (2018). Properties of *ex-situ* MgB² bulk samples prepared by uniaxial hot pressing and spark plasma sintering. *Physica C*, *551*, 48–54.
	- Hayashi, K. (2020). Commercialization of Bi-2223 superconducting wires and their applications. *SEI Technical Review*, *91,* 68–74.
	- Higuchi, M., Muralidhar, M., Jirsa, M., and Murakami, M. (2017). Microstructure and critical current density in MgB_2 bulk made of 4.5 wt% carbon-coated boron. *Journal of Physics: Conference Series*, *871*, 012059.
	- Hinks, D.G., Jorgensen, J.D., Zheng, H., and Short, S. (2002). Synthesis and stoichiometry of MgB2. *Physica C*, *382*, 166–176.
	- Jones, M.E., and Marsh, R.E. (1953). Formation of $MgB₂$ phase with interaction of Mg and amorphous B. *Journal of the American Chemical Society*, *76*, 870.
	- Jung, S.G., Seong, W.K., and Kang, W.N. (2012). Effect of columnar grain boundaries on flux pinning in MgB² films. *Journal of Applied Physics*, *111*, 053906.
	- Kario, A., Nast, R., Häler, W., Rodig, C., Mickel, C., Goldacker, W., Holzapfel, B., and Schultz, L. (2011). Critical current density enhancement in strongly reactive *exsitu* MgB² bulk and tapes prepared by high energy milling. *Superconductor Science and Technology*, *24*, 075011.
	- Khachan, J., and Bosi, S. (2003). *Superconductivity*. Brookhaven National Laboratory, University of California, Santa Barbara.
	- Kim, J.H., Dou, S.X., Shi, D.Q., Rindfleisch, M., and Tomsic, M. (2007). Study of MgO formation and structural defects in *in situ* processed MgB2/Fe wires. *Superconductor Science and Technology*, *1026*, 1–7.
	- Kim, J.H., Dou, S.X., Wang, J.L., Shi, D.Q., Xu, X., Hossain, M.S.A., Yeoh, W.K., Choi, S., and Kiyoshi, T. (2007). The effects of sintering temperature on

superconductivity in MgB2/Fe wires. *Superconductor Science and Technology*, *20*, 448–451.

- Kim, Jung Ho, Oh, S., Heo, Y.U., Hata, S., Kumakura, H., Matsumoto, A., Mitsuhara, M., Choi, S., Shimada, Y., Maeda, M., MacManus-Driscoll, J.L., and Dou, S.X. (2012). Microscopic role of carbon on $MgB₂$ wire for critical current density comparable to NbTi. *NPG Asia Materials*, *4*, e3-7.
- Kimishima, Y., Uehara, M., Kuramoto, T., Takano, S., and Takami, S. (2004). La-doping effects on pinning properties of MgB2. *Physica C*, *412*–*414*, 402–406.
- Kobayashi, H., Muralidhar, M., Koblischka, M.R., Inoue, K., and Murakami, M. (2015). Improvement in the performance of bulk $MgB₂$ material through optimization of sintering process. *Physics Procedia*, *65*, 73–76.
- Kortus, J., Mazin, I.I., Belashchenko, K.D., Antropov, VP., and Boyer, L.L. (2001). Superconductivity of metallic boron in MgB2. *Physical Review Letters*, *86*, 4656– 4659.
- Kortus, J., Dolgov, O.V., Kremer, RK., and Golubov, A.A. (2005). Band filling and interband scattering effects in MgB2: Carbon versus aluminum doping. *Physical Review Letters*, *94*, 027002.
- Kováč, P., Hušek, I., Melišek, T., Rosová, A., and Dobročka, E. (2021). Effect of grain size selection in *ex-situ* made MgB₂ wires. *Physica C*, 583, 1353826.
- Kováč, P., Hušek, I., Rosová, A., Kulich, M., Kováč, J., Melišek, T., Kopera, L., Balog, M., and Krížik, P. (2018). Ultra-lightweight superconducting wire based on Mg, B, Ti and Al. *Scientific Reports*, *8*, 11229.
- Kováč, P., Reissner, M., Melišek, T., Hušek, I., and Mohammad, S. (2009). Current densities of MgB2 wires by combined *ex situ*/*in situ* process. *Journal of Applied Physics*, *106*, 013910.
- Langford, J.I., and Wilson, A.J.C. (1978). Scherrer after sixty years: A survey and some new results in the determination of crystallite size. *Jounal of Applied Crystallography*, *11*, 102–113.
- Km, Anglish, Dies, Hes, Y.U., Hank, S. Kmakura, H., Mohammat, A., Mohammat, A., Mohammat, A. (2015), Mohammat, C. (2017), Mohammat, M. Co Larbalestier, D.C., Cooley, L.D., Rikel, M.O., Polyanskii, A.A., Jiang, J., Patnaik, S., Cai, X. Y., Feldmann, D.M., Gurevich, A., Squitieri, AA., Naus, M.T., Eom, C. B., Hellstrom, E. E., Cava, R.J., Regan, K.A., Rogado, N., Hayward, M.A., He, T., Slusky, J.S., Khalifah, P., Inumaru, K., and Haas, M. (2001). Strongly linked current flow in polycrystalline forms of the superconductor MgB2. *Nature*, *410*, 186–189.
	- Li, W.X., Zeng, R., Wang, J.L., Li, Y., and Dou, S.X. (2012). Dependence of magnetoelectric properties on sintering temperature for nano-SiC-doped MgB2/Fe wires made by combined *in situ/ex situ* process. *Journal of Applied Physics*, *111*, 07E135.

Liao, X.Z., Serquis, A., Zhu, Y.T., Huang, J.Y., Civale, L., Peterson, DE., Mueller, F.M.,

and Xu, H.F. (2003). Mg(B,O)² precipitation in MgB2. *Journal of Applied Physics*, *93*, 6208–6215.

- Liu, A.Y., Mazin, I.I., and Kortus, J. (2001). Beyond eliashberg superconductivity in MgB2: Anharmonicity, two-phonon scattering, and multiple gaps. *Physical Review Letters*, *87*, 87005.
- Liu, C.F., Yan, G., Du, S.J., Xi, W., Feng, Y., Zhang, P.X., Wu, X.Z., and Zhou, L. (2003). Effect of heat-treatment temperatures on density and porosity in $MgB₂$ superconductor. *Physica C*, *386*, 603–606.
- Liu, H.K., Zhou, S.H., Soltanian, S., Horvat, J., Pan, A.V., Qin, M.J., Wang, X.L., Lonescu, M., and Dou, S. X. (2003). Effect of nano-SiC and nano-Si doping on critical current density of MgB2. *Tsinghua Science and Technology*, *8*, 307–315.
- Liu, H., Li, J., Sun, M., Qu, J., Zheng, R., Cairney, J. M., Zhu, M., Li, Y., and Li, W. (2020). Carbon-coating layers on boron generated high critical current density in MgB² superconductor. *ACS Applied Materials and Interfaces*, *12*, 8563–8572.
- Liu, Y., Qin, J., Ke, C., Cheng, C., Zhou, D., Zhang, Y., and Zhao, Y. (2022). Enhanced flux pinning by magnetic CrB² nanoparticle in MgB² superconductor. *Journal of Magnetism and Magnetic Materials*, *551*, 169174.
- London, F., and London, H. (1935). The electromagnetic equations of the supraconductor. In *Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences*, *149*, 71–88.
- Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T. (1988). A new high-T_c oxide superconductor without a rare earth element. *Japanese Journal of Applied Physics*, *27*, L209–L210.
- Malagoli, A., Braccini, V., Bernini, C., Romano, G., Vignolo, M., Putti, M., and Ferdeghini, C. (2010). Study of the MgB₂ grain size role in *ex-situ* multifilamentary wires with thin filaments. *Superconductor Science and Technology*, *23*, 025032.
- Matsushita, T. (2014). *Flux Pinning in Superconductors*; 2nd ed.; New York: Springer Series in Solid-State Sciences.
- 1.5, ΔV , Matria, L.J., and Lostina, L. (2011). Heyrnic disablege superconductively in
The CE-V and Control in the state of the Matthews, G.A.B., Liu, J., Grovenor, C.R.M., Grant, P.S., and Speller, S. (2020). Design and characterisation of *ex-situ* bulk MgB₂ superconductors containing a nanoscale dispersion of artificial pinning centres. *Superconductor Science and Technology*, *33*, 034006.
	- Matthews, G.A.B., Santra, S., Ma, R., Grovenor, C.R.M., Grant, P.S., and Speller, S.C. (2020). Effect of the sintering temperature on the microstructure and superconducting properties of MgB² bulks manufactured by the field assisted sintering technique. *Superconductor Science and Technology*, *33*, 054003.
	- Mizutani, S., Yamamoto, A., Shimoyama, J.I., Ogino, H., and Kishio, K. (2014). Selfsintering-assisted high intergranular connectivity in ball-milled *ex-situ* MgB₂

bulks. *Superconductor Science and Technology*, *27*, 114001.

- Moshchalkov, V., Menghini, M., Nishio, T., Chen, Q.H., Silhanek, A.V, Dao, V.H., Chibotaru, L.F., Zhigadlo, N.D., and Karpinski, J. (2009). Type-1.5 superconductivity. *Physical Review Letters*, *102*, 117001.
- Mourachkine, A. (2002). *High-temperature superconductivity in cuprates*. Kluwer Academic Publishers.
- Muralidhar, M., Higuchi, M., Diko, P., Jirsa, M., and Murakami, M. (2017). Record critical current density in bulk MgB² using carbon-coated amorphous boron with optimum sintering conditions. *Journal of Physics: Conference Series*, *871*, 012056.
- Muralidhar, M., Higuchi, M., Jirsa, M., Diko, P., Kokal, I., and Murakami, M. (2017). Improved critical current densities of bulk $MgB₂$ using carbon-coated amorphous boron. *IEEE Transactions on Applied Superconductivity*, *27*, 6201104.
- Muralidhar, M., Higuchi, M., Kitamoto, K., Koblischka, M.R., Jirsa, M., and Murakami, M. (2018). Enhanced critical current density in bulk MgB2. *IEEE Transactions on Applied Superconductivity*, *28*, 8000405.
- Muralidhar, M., Kenta, N., Koblischka, M.R., and Murakami, M. (2015). High critical current densities in bulk MgB² fabricated using amorphous boron. *Physica Status Solidi (A) Applications and Materials Science*, *212*, 2141–2145.
- Chinesma, 1.1-1., Zhogalada, ND., and Korpuski, A. (2009). Type-1.5

superconductivity, *Physteal Review Levelst (D2,* 11700).

Moreardizeits, A. (2002). *High-temperature supercronductivity in copraces.* Klawer

Marcal Muralidhar, M., Kitamoto, K., Arvapalli, S.S., Das, D., Jirsa, M., Murakami, M., Ramachandra, S., and Mamidanna, R. (2022). Enhancing critical current density of bulk MgB² via nanoscale boron and Dy2O³ doping. *Advanced Engineering Materials*, *24*, 2200487.
	- Muralidhar, M., Nozaki, K., Kobayashi, H., Zeng, X.L., Koblischka-Veneva, A., Koblischka, M.R., Inoue, K., and Murakami, M. (2015). Optimization of sintering conditions in bulk MgB² material for improvement of critical current density. *Journal of Alloys and Compounds*, *649*, 833–842.
	- Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., and Akimitsu, J. (2001). Superconductivity at 39 K in magnesium diboride. *Nature*, *410*, 2–3.
	- Nagarajan, R., Mazumdar, C., Hossain, Z., Dhar, S.K., Gopalakrishnan, K.V., Gupta, L.C., Godart, C., Padalia, B.D., and Vijayaraghavan, R. (1994). Bulk superconductivity at an elevated temperature $(T = 12 \text{ K})$ in a nickel containing alloy system Y-Ni-B-C. *Physical Review Letters*, *72*, 274–277.
	- Nakane, T., Jiang, C.H., Mochiku, T., Fujii, H., Kuroda, T., and Kumakura, H. (2005). Effect of SiC nanoparticle addition on the critical current density of $MgB₂$ tapes fabricated from MgH2, B and MgB2. *Superconductor Science and Technology*, *18*, 1337–1341.
	- Narlikar, A. V. (1995). *Field Penetration and Magnetization of High Temperature Superconductors*. New York: Nova Science Publisher, Inc.
- Nishibori, E., Takata, M., Sakata, M., Tanaka, H., Muranaka, T., and Akimitsu, J. (2001). Bonding nature in MgB2. *Journal of the Physical Society of Japan*, *70*, 2252–2254.
- Ohmichi, E., Masui, T., Lee, S., Tajima, S., and Osada, T. (2004). Enhancement of irreversibility field in carbon-substituted MgB² single crystals. *Journal of Physical Society of Japan*, *73*, 2065–2068.
- Onar, K., Balci, Y., and Yakinci, M.E. (2014). Effect of grain size on the electrical and magnetic properties of MgB_2 thick films deposited on the Al_2O_3 single crystal substrates. *Journal of Materials Science: Materials in Electronics*, *25*, 2104–2110.
- Pan, A.V., Zhou, S., Liu, H., and Dou, S. (2003). Properties of superconducting MgB₂ wires: *In situ* versus *ex situ* reaction technique. *Superconductor Science and Technology*, *16*, 639–644.
- Peng, J., Cai, Q., Cheng, F., Ma, Z., Li, C., Xin, Y., and Liu, Y. (2017). Enhancement of critical current density by a "MgB2-MgB4" reversible reaction in self-sintered *exsitu* MgB² bulks. *Journal of Alloys and Compounds*, *694*, 24–29.
- Poole, C. P., Farach, H. A., Creswick, R. J., and Prozorov, R. (2014). *Superconductivity* (Third edition). Amsterdam: Elsevier.
- Putilin, S.N., Antipov, E.V., Chmaissemt, O., and Marezio, M. (1993). Superconductivity at 94 K in HgBa₂CuO_{4+d}. Letters to Nature, 362, 226–228.
- Rafieazad, M., Balcı, Ö., Acar, S., and Somer, M. (2017). Review on magnesium diboride $(MgB₂)$ as excellent superconductor: Effects of the production techniques on the superconducting properties. *Journal of Boron*, *2*, 87–96.
- **Ohmichi, E.**, Masui, T. Lec. S., Tajima, S., and Osada, T. (2001). Enhancement of

treversionly their breakon solutioned MgB single cryssin, Journal of Physical

Orter, Holst, Y., and Vasicrei, Mtr. (2014). Fillet of pri Rahul, R., Thomas, S., K.M., D., Varghese, N., Paulose, A.P., Varma, M.R., and Syamaprasad, S. (2017). Tackling the agglomeration of Mg_2Si dopant in Mg_2S superconductor using cast Mg–Si alloy. *Materials Research Bulletin*, *93*, 296–302.
	- Ray, P. J. (2015). *Structural investigation of La2-xSrxCuO4+y - Following staging as a function of temperature* (Issue November). University of Copenhagen, Denmark.
	- Rose-Innes, A. C., and E.H. Rhoderick. (1978). *Introduction to superconductivity* (Second Edition). New York: Pergamon Press.
	- Russell, V., Hirst, R., Kanda, F.A., and King, A.J. (1953). An X-ray study of the magnesium borides. *Acta Crystallographica*, *6*, 870.
	- Schmidt, V. V., Muller, P., and Ustinov, A. V. (1997). *The Physics of Superconductors: Introduction to Fundamentals and Applications*. New York: Springer Science & Business Media.
	- Schmitt, R., Glaser, J., Wenzel, T., Nickel, K.G., and Meyer, H.J. (2006). A reactivity study in the Mg–B system reaching for an improved synthesis of pure $MgB₂$. *Physica C*, *436*, 38–42.

Shahabuddin, M., Alzayed, N.S., Oh, S., Choi, S., Maeda, M., Hata, S., Shimada, Y.,

Hossain, M.S. Al, and Kim, J.H. (2014). Microstructural and crystallographic imperfections of MgB2 superconducting wire and their correlation with the critical current density. *AIP Advances*, *4*, 017113.

- Shekhar, C., Giri, R., Tiwari, R.S., and Srivastava, O.N. (2004). On the synthesis and characterization of La doped MgB² superconductor. *Crystal Research and Technology*, *29*, 718–725.
- Shekhar, C., Giri, R., Tiwari, R.S., Rana, D.S., Malik, S.K., and Srivastava, O.N. (2005). Effect of la doping on microstructure and critical current density of $MgB₂$. *Superconductor Science and Technology, 18*, 1210–1214.
- Sheng, Z.Z., and Hermann, A.M. (1988). Bulk superconductivity at 120 K in the Tl-Ca/Ba-Cu-O system. *Nature*, *332*, 138–139.
- Shim, S.H., Shim, K.B., and Yoon, J. (2005). Superconducting characteristics of polycrystalline magnesium diboride ceramics fabricated by a spark plasma sintering technique. *Journal of the American Ceramic Society*, *88*, 858–861.
- Shimada, Y., Hata, S., Ikeda, K.I., Nakashima, H., Matsumura, S., Tanaka, H., Yamamoto, A., Shimoyama, J.I., and Kishio, K. (2015). Microstructural characteristics of ball-milled self-sintered *ex-situ* MgB² bulks. *IEEE Transactions on Applied Superconductivity*, *25*, 6801105.
- Shichtar, C., Giri, R., Tiwari, R.S., and Stivnature, O.N. (2004). On the synthesis and

concertedness, 23.7 18-225

Nethan, (2, Giri), 18-225

Shekhar, (2, Giri), 18-18, and Delta syntencolates. Crystal Research and

Tre Shimada, Y., Hata, S., Ikeda, K.I., Nakashima, H., Matsumura, S., Tanaka, H., Yamamoto, A., Shimoyama, J.I., and Kishio, K. (2016). Microstructural connectivity in sintered *ex-situ* MgB² bulk superconductors. *Journal of Alloys and Compounds*, *656*, 172–180.
	- Sinha, B.B., Kadam, M.B., Mudgel, M., Awana, V.P.S., Kishan, H., and Pawar, S.H. (2010). Synthesis and characterization of excess magnesium $MgB₂$ superconductor under inert carbon environment. *Physica C*, *470*, 25–30.
	- Soltanian, S., Wang, X., Horvat, J., Qin, M., Liu, H., Munroe, P.R., and Dou, S.X. (2003). Effect of grain size and doping level of SiC on the superconductivity and critical current density in MgB² superconductor. *IEEE Transactions on Applied Superconductivity*, *13*, 3273–3276.
	- Suhl, H., Matthias, B.T., and Walker, L.R. (1959). Bardeen-Cooper-Schrieffer theory in the case of overlapping bands. *Physical Review Letters*, *3*, 552–554.
	- *Superconducting feeder cable system*. Railway Technical Research Institute. (n.d.). Retrieved August 6, 2019, from https://www.rtri.or.jp/eng/press/2019/nr201904_detail.html
	- Suryanarayana, C., and Norton, M. G. (2013). *X-ray diffraction: A practical approach*. New York: Springer Science & Business Media.
	- Tan, K.L., Tan, K.Y., Lim, K.P., Shaari, A.H., and Chen, S.K. (2012). Optimization of phase formation and superconducting properties in MgB_2 prepared by phase transformation from MgB4. *Journal of Electronic Materials*, *41*, 673–678.
- Tan, K.Y., Tan, K.L., T., Tan, K.B., Lim, K.P., Halim, S.A., and Chen, S.K. (2011). Enhanced critical current density in $MgB₂$ superconductor via Si and C coadditions. *Journal of Superconductivity and Novel Magnetism*, *24*, 2025–2029.
- Tan, K.Y., Tan, K.B., Lim, K.P., Halim, S.A., and Chen, S.K. (2015). Effect of sintering temperature on the superconducting properties of MgB² superconductor co-added with a high concentration of Si and C. *Advanced Materials Research*, *1107*, 589– 594.
- Tanaka, H., Yamamoto, A., Shimoyama, J.I., Ogino, H., and Kishio, K. (2012). Strongly connected $ex\text{-}situ$ MgB₂ polycrystalline bulks fabricated by solid-state selfsintering. *Superconductor Science and Technology*, *25*, 115022.
- Tzeli, D., and Mavridis, A. (2005). Ab initio investigation of the electronic and geometric structure of magnesium diboride, MgB2. *Journal of Physical Chemistry A*, *109*, 10663–10674.
- Verma, N. K. (2017). *Physics for Engineers* (Second Edi). New Delhi: PHI Learning Pvt. Ltd.
- Vinod, K., Varghese, N., Roy, S.B., and Syamaprasad, U. (2009). Significant enhancement of the in-field critical current density of the $MgB₂$ superconductor through codoping of nano-TiC with nano-SiC. *Superconductor Science and Technology*, *22*, 055009.
- Wan, F., Sumption, M.D., and Collings, E.W. (2023). Mechanism of enhanced critical fields and critical current densities of MgB_2 wires with C/Dy_2O_3 co-additions. *Journal of Applied Physics*, *133*, 023905.
- Tan, K.Y., Tan, K.B., Lim, K.P., Halim, S.A., and Chen, S.K. (2015). Effect of sincering
metrics on the supercolution properties of Ngli approximation condition
with the supercolution of Ngli and C. Advanced Motering Ne Wang, J., Bugoslavsky, Y., Berenov, A., Cowey, L., Caplin, A.D., Cohen, L.F., MacManus Driscoll, J.L., Cooley, L.D., Song, X., and Larbalestier, D.C. (2002). High critical current density and improved irreversibility field in bulk $MgB₂$ made by a scaleable, nanoparticle addition route. *Applied Physics Letters*, *81*, 2026– 2028.
	- Wang, X.L., Zhou, S.H., Qin, M.J., Munroe, P.R., Soltanian, S., Liu, H.K., and Dou, S.X. (2003). Significant enhancement of flux pinning in $MgB₂$ superconductor through nano-Si addition. *Physica C*, *385*, 461–465.

Warren, N. (2003). *Excel HSC Physics (New Edition)*. New South Wales: Pascal Press.

- Wu, F. (2014). The improved superconducting properties in the $ex\text{-}situ$ sintered MgB₂ bulks with Mg addition. *Journal of Low Temperature Physics*, *177*, 157–164.
- Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y. O., and Chu, C.W. (1987). Superconductivity at 93 K in a new mixedphase Y-Ba-Cu-O compound system at ambient pressure. *Physical Review Letters*, *58*, 908–910.
- Xu, M., Kitazawa, H., Takano, Y., Ye, J., Nishida, K., Abe, H., Matsushita, A., and Kido, G. (2001). Single crystal MgB_2 with anisotropic superconducting properties.

Applied Physics Letters, *79*, 1–7.

- Yamamoto, A., Shimoyama, J.I., Kishio, K., and Matsushita, T. (2007). Limiting factors of normal-state conductivity in superconducting MgB_2 : An application of meanfield theory for a site percolation problem. *Superconductor Science and Technology*, *20*, 658–666.
- Yamamoto, A., Shimoyama, J.I., Ueda, S., Katsura, Y., Horii, S., and Kishio, K. (2004). Synthesis of high *J_c* MgB₂ bulks with high reproducibility by a modified powderin-tube method. *Superconductor Science and Technology*, *17*, 921–925.
- Yamamoto, A., Tanaka, H., Shimoyama, J.I., Ogino, H., Kishio, K., and Matsushita, T. (2012). Towards the realization of higher connectivity in $MgB₂$ conductors: *In-situ* or sintered *ex-situ*? *Japanese Journal of Applied Physics*, *51*, 010105.
- Yan, G., Feng, Y., Fu, B.Q., Liu, C.F., Zhang, P.X., Wu, X.Z., Zhou, L., Zhao, Y., and Pradhan, A.K. (2004). Effect of synthesis temperature on density and microstructure of MgB² superconductor at ambient pressure. *Journal of Materials Science*, *39*, 4893–4898.
- Yang, D., Sun, H., Lu, H., Guo, Y., Li, X., and Hu, X. (2003). Experimental study on the oxidation of MgB² in air at high temperature. *Superconductor Science and Technology*, *16*, 576–581.
- Yang, Y., Sumption, M.D., and Collings, E.W. (2016). Influence of metal diboride and Dy_2O_3 additions on microstructure and properties of MgB_2 fabricated at high temperatures and under pressure. *Scientific Reports*, *6*, 29306.
- Yeoh, W.K., Horvat, J., Dou, S.X., and Keast, V. (2004). Strong pinning and high critical current density in carbon nanotube doped MgB2. *Superconductor Science and Technology*, *17*, S572–S577.

Yildirim, T. (2002). The surprising superconductor. *Materials Today*, 40–44.

- If the
mean state transitionity by superconfuncting MgHz (Microsoften Coronal control of
the finding of the state percolation pubblics. Superconductor Science and
Famaronics, A., Summeyama, 11, Ulada, S., Kataura, Y., Hor Zeng, R., Lu, L., Li, W. X., Wang, J.L., Shi, D.Q., Horvat, J., Dou, S.X., Bhatia, M., Sumption, M., Collings, E.W., Yoo, J.M., Tomsic, M., and Rindfleisch, M. (2008). Excess Mg addition MgB2/Fe wires with enhanced critical current density. *Journal of Applied Physics*, *103*, 083911.
	- Zeng, R., Lu, L., Wang, J.L., Horvat, J., Li, W.X., Shi, D.Q., Dou, S.X., Tomsic, M., and Rindfleisch, M. (2007). Significant improvement in the critical current density of *in situ* MgB² by excess Mg addition. *Superconductor Science and Technology*, *20*, L43–L47.
	- Zhang, C.Y., Wang, Y.B., Hu, W.W., and Feng, Q.R. (2010). The effect of Si addition in $MgB₂$ thin films by hybrid physical-chemical vapor deposition using silane as the doping source. *Superconductor Science and Technology*, *23*, 065017.
	- Zhang, H., Li, L., Zhao, Y., and Zhang, Y. (2017). The performance improvement of MgB² prepared by the Mg diffusion method with the MgB⁴ addition. *Journal of Physics: Conference Series*, *871*, 012057.
- Zhang, H., Zhao, Y., and Zhang, Y. (2015). The effects of excess Mg addition on the superconductivity of MgB2. *Journal of Superconductivity and Novel Magnetism*, *28*, 8–11.
- Zhang, Y., Lu, C., Zhou, S.H., Chung, K.C., Kim, Y.K., and Dou, S.X. (2009). Influence of heat treatment on superconductivity of MgB_2 bulk sintered in flowing welding grade Ar atmosphere. *IEEE Transactions on Magnetics*, *45*, 2626–2629.
- Zhang, V., Lot. C., Zhou, S.H., Chung, K.C., Kim, Y.K., and Don, S.X. (2009). Influence

or likel treatment on successions that the situation of μ EU. Kim, Y.K., and Don, S.X. (2009).

Thus, X., Lot. (2), Copy, S.C., K Zhang, Y., Lu, C., Zhou, S.H., Chung, K.C., Kim, Y.K., and Dou, S.X. (2009). Influence of heat treatment on the critical current density of MgB₂ bulk sintered in vacuum and flowing welding grade Ar atmosphere. *IEEE Transactions on Magnetics*, *45*, 2626–2629.
	- Zhang, Y., Zhou, S.H., Lu, C., Chung, K.C., and Dou, S.X. (2009). Effect of sintering time on superconductivity in MgB2. *International Journal of Modern Physics B*, *23*, 3476–3481.
	- Zhao, Y., Feng, Y., Cheng, C.H., Zhou, L., Wu, Y., Machi, T., Fudamoto, Y., Koshizuka, N., and Murakami, M. (2001). High critical current density of MgB₂ bulk superconductor doped with Ti and sintered at ambient pressure. *Applied Physics Letters*, *79*, 1154–1156.
	- Zhao-Shun, G.0, Yan-Wei, M., Dong-Liang, W., Xian-Ping, Z., Satoshi, A., and Kazuo, W. (2010). Enhancement of critical current density and flux pinning in acetone and La2O³ codoped MgB2 tapes. *Chinese Physics Letters*, *27*, 11740.