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The hydroprocessing of fatty acids into hydrocarbons is a viable alternative 
approach for producing renewable fuel with improved properties than biodiesel, 
which has inherent drawbacks due to its high oxygen content. Therefore, this 
study explored the catalytic hydroprocessing of fatty acids into renewable diesel 
using zeolite based-catalysts (zeolite beta and HZSM5). The optimal conditions 
established for both catalysts were 350 °C, 4 MPa hydrogen pressure, and 5 
wt.% of catalyst loading for 2 h. Zeolite beta outperformed the HZSM5 in terms 
of HDO reaction activity, with a diesel selectivity of 77% compared to HZSM5 
(70%). Furthermore, the La(10)zeo(90) catalyst demonstrated conversion of OA up 
to 99% with 83% of C15 and C17 selectivity. The superior activity of La(10)zeo(90) 

was attributed to the synergistic interaction of La-Si-Al, a sufficient number of 
weak and medium acid sites, and excellent textural properties of the catalyst. 
Interestingly, when La(10)zeo(90) was applied to palm fatty acid distillate (PFAD) 
for the renewable diesel production, catalytic deoxygenation (DO) and HDO 
reactions were involved. The DO reaction was carried out at 350 °C in a nitrogen 
environment with 5 wt.% catalyst loading for 3 h reaction time, whereas the HDO 
reaction was carried at 400 °C and 5 MPa, respectively. Remarkably, the HDO 
reaction of PFAD produced renewable diesel (RD 100) containing 73% of C16 
selectivity, whereas the DO reaction produced 51% of C15 via the deCOx route. 
The RD 100 produced via the HDO and DO reactions met ultra-low sulphur 
diesel (ULSD) specifications, indicating that it can be used directly in automobile 
engines or blended with conventional diesel to significantly improve the fuel 
characteristics profile. Meanwhile, the performance of La(10)HZSM5(90) was 
evaluated using used frying oil (UFO) and PFAD, using 5 wt.% catalyst loading, 
2 h reaction time, 5 MPa H2 pressure, and 400 °C. The diesel yields were 85% 
(UFO) and 93% (PFAD) respectively. The UFO showed a selectivity of 19% for 
C17 fraction and 51% for C20 fraction while PFAD exhibited C15 (48%) and C20 
(29%). Additionally, the La(10)HZSM5(90) catalyst exhibited a promising cycle with 
five consecutive runs despite coke formation.  
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Fakulti :   Sains  
 
 
Hidropemprosesan asid lemak kepada hidrokarbon adalah pendekatan alternatif 
untuk menghasilkan bahan api boleh diperbaharui yang mempunyai pencirian 
yang lebih baik daripada biodiesel yang mempunyai kelemahan akibat 
kandungan oksigen yang tinggi. Oleh itu, kajian ini meneroka hidropemprosesan 
bermangkin asid lemak kepada diesel boleh diperbaharui menggunakan 
pemangkin berasaskan zeolit (zeolit beta dan HZSM5). Keadaan optimum bagi 
kedua-dua pemangkin ialah 350 °C, tekanan hidrogen 4 MPa, dan 5 wt.% 
mangkin selama 2 jam. Zeolit beta menunjukkan aktiviti tindak balas HDO yang 
lebih baik daripada HZSM5 dengan selektiviti diesel sebanyak 77% berbanding 
HZSM5 (70%). Oleh itu, pemangkin berasaskan zeolit beta yang diubah suai 
logam turut dikaji kepada OA pada suhu 350 °C selama 2 jam di bawah tekanan 
4 MPa H2. La(10)zeo(90) menunjukkan penukaran OA sebanyak 99% dengan 83% 
selektiviti C15 dan C17. Prestasi yang baik bagi La(10)zeo(90) adalah disebabkan 
oleh interaksi sinergistik La-Si-Al, bilangan tapak asid lemah dan sederhana 
yang mencukupi, dan sifat tekstur pemangkin yang sangat baik. Menariknya, 
apabila La(10)zeo(90) digunakan pada asid lemak sawit tersuling (PFAD) untuk 
menghasilkan diesel boleh diperbaharui, dua tindakbalas terlibat iaitu 
penyahoksigenan bermangkin (DO) dan HDO. Tindak balas DO telah dijalankan 
pada 350 °C dalam persekitaran nitrogen, 5 wt.% mangkin selama 3 jam, 
manakala tindak balas HDO dijalankan pada 400 °C dan 5 MPa tekanan H2 

selama 3 jam. Tindak balas HDO menghasilkan diesel boleh diperbaharui (RD 
100) yang mengandungi 73% selektiviti C16, manakala tindak balas DO 
menghasilkan 51% C15 melalui laluan penyahkarboksilan. RD 100 yang 
dihasilkan melalui tindak balas HDO dan DO memenuhi spesifikasi diesel ultra-
rendah sulfur (ULSD), menunjukkan bahawa ia boleh digunakan terus dalam 
enjin kereta atau dicampur dengan diesel konvensional untuk meningkatkan 
profil ciri bahan api. Sementara itu, aktiviti La(10)HZSM5(90) dikaji menggunakan 
minyak goreng terpakai (UFO) dan PFAD, pada suhu 400 °C, tekanan H2 5 MPa,  
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5 wt.% La(10)HZSM5(90) selama 2 jam dengan 85% diesel terhasil dari UFO dan 
93% dari PFAD telah diperolehi. UFO menunjukkan selektiviti 19% untuk C17 
dan 51% untuk C20 manakala PFAD menunjukkan selektiviti C15 (48%) dan C20 
(29%). Selain itu, pemangkin La(10)HZSM5(90) menunjukkan kebolehgunaan 
semula mangkin sebanyak lima kali walaupun terdapat pembentukan kok. 
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1 INTRODUCTION 

1.1 Research background 

Approximately 20% of the world's energy requirements are met by transportation 
fuels, which are derived from fossil fuels (Shi et al., 2017). The drastic increase 
in the number of automobiles, advanced industrialisation, rapid urbanisation has 
caused the depletion of fossil fuels and increased environmental awareness 
(Why et al., 2019). The combustion of fossil fuels is a key factor that contributes 
to the spike in Greenhouse Gas (GHG) emissions and climate change (Wang et 
al., 2020). Past studies have conveyed that climate change mitigation was 
consistent with the Sustainable Development Goal 13 (SDG 13; climate action), 
which is deemed the most challenging issue that affect both developed and 
developing nations (Torres et al., 2021). One of the most feasible approaches to 
combat climate change is to maximise the utilisation of renewable energy 
sources (SDG 7: Affordable and Clean Energy) (Purnomo et al., 2018).  

Renewable energy technologies, such as solar, wind, hydrogen, fuel cells, and 
biomass, are considered promising alternatives to meet the future global energy 
demand (Eagan et al., 2017). Currently, numerous renewable energy research 
has focused on extracting energy from biomass sources, which can provide 
solid, gaseous, and liquid fuels with the greatest potential to cater to future global 
energy demands (Liu et al., 2018). Biomass is also an attractive renewable 
source for biofuel production given its naturally abundant, economically viable, 
and ecologically friendly features (Baharudin, Taufiq-Yap, et al., 2019). The use 
of biofuels derived from renewable resources, such as biomass and vegetable 
oils, could serve as an alternative fuel source to reduce the overdependency on 
fossil fuels and minimise the GHG emission (Douvartzides et al., 2019). 
Therefore, there is an urgent need for the development of renewable energy 
sources that can effectively replace fossil fuels (Yu et al., 2013). In this regard, 

biofuel has been suggested as a replacement for fossil fuel.  

Biofuel is defined as solid, liquid, or gaseous fuels derived primarily from bio-
renewable feedstocks (Fatih Demirbas, 2009). It can be categorised as first-, 
second-, or third-generation based on the applied production technologies 
(Hongloi, Prapainainar and Prapainainar, 2021) as well as the type of biomass 
it utilises (Alalwan, Alminshid and Aljaafari, 2019). For instance, food crop 
feedstocks, primarily corn and sugarcane, are the source of first-generation 
biofuels, which include bioethanol, biogas, and biodiesel (fatty acid methyl 
esters, or FAME), while second-generation biofuels are basically hydrocarbon 
fuels produced by catalytic deoxygenation (DO) or the Fischer-Tropsch process 
from edible and non-edible feedstocks (Di Vito Nolfi, Gallucci and Rossi, 2021). 
Meanwhile, Brandão et al., 2021 stated that third-generation biofuels are 
generated using cyanobacteria, yeast, fungus, and algae.  
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Biodiesel, the first-generation biofuel, is produced through a transesterification 
process in which vegetable oil or animal fat (triglyceride) reacts with alcohol in 
the presence or absence of a catalyst to produce the corresponding alkyl esters 
of the fatty acid mixture found in the parent vegetable oil or animal fat (Kombe 
et al., 2013). However, some concerns have emerged regarding the use of 
biodiesel as a result of its practical applications as an alternative to petroleum 
diesel. These issues include a shorter shelf life and inferior cold flow properties, 
such as lower cold-temperature fluidity and cold filter plugging point (CFPP), as 
well as engine compatibility (Wang et al., 2018). These issues are primarily 
caused by the high oxygen content in its composition (Lee et al., 2021). 
Consequently, in recent years, several approaches have been proposed and 
developed to remediate these problems (Hachemi et al., 2017).  

Hydroprocessing, which involves selective catalytic cracking or DO via 
decarbonylation (DCN), decarboxylation (DCX), or hydrodeoxygenation (HDO) 
processes, is used to convert vegetable oils and fatty acids as well as lipids from 
microalgae into fuels such as conventional diesel (Plaola et al., 2022). The 
majority of reactions emphasise the importance of multiple operating 
parameters, such as the type of supporting metal catalyst, the type and rate 
(residence time) of feed, reaction temperature, reaction atmosphere, H2 partial 
pressure, amount of catalyst, and type of solvent, in determining the overall yield 
and selectivity of the diesel-like hydrocarbon fuels (Yao et al., 2021).  

Recently, attention has been drawn to technologies such as biomass to liquid 
fuels (BTL) and hydrotreatment of vegetable oils to produce renewable diesel. 
The biofuel growth trend in biofuels industry is depicted in Figure 1.1 (Arun, 
Sharma and Dalai, 2015). Although vegetable oils are commonly converted into 
transportation fuels (Mansir et al., 2017), the high viscosity of crude vegetable 
oil (often in the range of 28 - 40 mm2 s-1) leads to operational issues in diesel 
engines, such as deposit formation and injector coking due to poorer atomisation 
upon injection into the combustion chamber, making it an unfavourable option to 
produce biofuel (Ashraf Amin, 2019). Therefore, bio-based sources, specifically 
fatty acids, are sustainable resources with high energy densities that can be 
efficiently converted into liquid fuel (Bjelić et al., 2018).  

Palm fatty acid distillate (PFAD) is an example of a readily available fatty acids 
by-product from the refinement of crude palm oil in the oil palm industry. 
According to the Malaysian Palm Oil Board (MPOB), every 100 tonnes of refined 
palm oil produces approximately 4.8 tonnes of PFAD, and a plentiful supply of 
622,309 tonnes of PFAD was generated in 2021 with a Free On Board (FOB) 
price of RM 4,233 per tonne (Malaysian Palm Oil Board, 2021). Contrarily, used 
frying oil (UFO) is the by-product generated from frying food in cooking oil, which 
contains refined plant- or animal-based fats (Lycourghiotis et al., 2019). 
According to previous reports, UFOs are generated in large quantities in the 
European Union (EU) between 700,000 and 1,000,000 tonnes annually, while 
Asian nations, such as China, Malaysia, Indonesia, Thailand, Hong Kong, and 
India, generated around 40,000 tonnes of UFOs annually (Alsultan et al., 2021).  
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Figure 1.1 : The biofuel growth trend (Arun, Sharma and Dalai, 2015) 
 
 
In addition, catalysts play a vital role to enhance the rate of hydroprocessing 
while excellerate the fatty acid conversion from fatty acids into biofuel. For 
example, the conversion of unsaturated molecules into saturated compounds 
and the removal of heteroatoms (Taromi and Kaliaguine, 2018). Noble-metal 
catalysts (Pt, Pd, etc.) and sulfided catalysts (Co-Mo, Ni-Mo) were traditionally 
used for hydroprocessing (primarily HDO). Nevertheless, the use of noble metals 
substantially raises the price of catalysts, whereas sulfided catalysts necessitate 
the addition of sulphur-containing agents in order to maintain their stable activity. 
The use of sulfided catalysts frequently results in sulphur pollution during the 
production of fuels, which is a significant disadvantage. Transition metals such 
as nickel (Ni), molybdenum (Mo), zinc (Zn), and iron (Fe) were also used as 
active components, however, they are prone to coke formation (Nuhma et al., 

2022).  

Meanwhile, rare earth (RE) elements are essential components of the 
commercial catalysts for the catalytic cracking of hydrocarbons (Xiaoning et al., 
2007). The REs have recently received much attention regarding energy-
efficient petroleum cracking from refined crude oil into gasoline, distillates, lighter 
oil products, and other fuels. They are also responsible to remove leaded 
gasoline (Akah, 2017). Lanthanum oxide has already been studied in catalysis 
as a support for Ni catalysts in ethanol steam reforming (Lanre et al., 2020); as 
a catalyst in methane reforming (Kalai et al., 2017) and as a catalyst for hydrogen 
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production from steam reforming or oxidative steam reforming of ethanol (de 
Lima et al., 2010) and for biodiesel production (Russbueldt and Hoelderich, 
2010; Vieira et al., 2013; Rattanaphra et al., 2019),  

Catalysts with high metal loading, exhibit poor catalytic performance during 
chemical removal of O atoms from fatty acid (Peng et al., 2013). In this regard, 
supports are at least as important as the metal itself to the distribution and 
decrease of metal particles (Dusescu et al., 2018). Zeolites have also been 
extensively applied as solid acid catalysts or catalyst carriers in the oil refining 
and petrochemical industries, which are gradually replacing conventional 
homogeneous and heterogeneous catalysts (de Oliveira Camargo et al., 2020). 
Zeolites exhibit various unique properties that make them suitable to catalyse 
organic chemical processes, including their crystalline structure with porous and 
large surface areas, homogenous microporosity, high hydrophobicity, shape 
selectivity, acid-base properties, and high resistance to deactivation by carbon 
deposition (Aziz et al., 2020). The low cost of production and biodegradability 
features also allow zeolites to be widely applied in numerous industrial 
heterogeneous catalytic applications. Furthermore, the molecular pores of 
zeolites can readily absorb smaller molecules while excluding larger molecules, 
thus acting as molecular sieves (Yan et al., 2021). This characteristic also 
permits zeolite to function as an ion exchange media. For instance, Al+3 can be 
used in place of Si+4 inside the framework of crystalline silica (SiO2), which 
generates negative charges inside the framework of the catalyst and increases 
its catalytic activity (Shahinuzzaman, Yaakob and Ahmed, 2017).  

1.2 Problem statements 

Demand for fossil fuels is rising as a result of increased global industrialization 
and motorization (Mandal and Cho, 2022). However, the massive use of fossil 
fuels to meet the energy needs of today's society has a severe influence on the 
environment due to the high levels of hazardous gases like NOX and SOX, 
photochemical oxidants, lead compounds, and particulate matter in the 
atmosphere, (Díaz-Pérez and Serrano-Ruiz, 2020). Moreover, due to high 
demand, the fossil fuel sources are being depleted, and  caused an increase in 
it’s prices and makes the substitution of fossil fuel with biofuel more vital 
(Martinez-Hernandez et al., 2019).  

The production of biofuel has played an important role in the global economy 
and environmental protection. It can be derived from biomass and are 
considered an eco-friendly, non-toxic, and sustainable alternative to fossil fuels 
(Janampelli and Darbha, 2018). Traditional biodiesel (FAME) is produced from 
vegetable oils by homogeneously-catalyzed transesterification with methanol 
(Mansir et al., 2017). Even though FAME is suitable for blending with petroleum-
derived diesel fuels, it suffers from some drawbacks, the main being low 
oxidation stability that limits its long-term storage and the use of biodiesel–diesel 
blends containing more than 20 – 30 vol.% of FAME (Manchanda, Tyagi and 
Sharma, 2018). Therefore, production of renewable diesel through 
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hydroprocessing that is fully compatible with fossil fuels should be developed. 
Method to produce renewabel diesel that have garnered substantial attention 
from academics and industry is the catalytic hydroprocessing of liquid biomass, 
which is utilised to remove heteroatoms (sulphur, nitrogen, oxygen, and metals) 
as well as for the cracking and saturation of olefins and aromatics (Bjelić et al., 
2018). Catalytic HDO is one of the hydroprocessing methods to enhance the 
physico-chemical and fuel properties of liquid biofuels through the removal of 
oxygen and moisture content.  

The feedstock for renewable diesel production depends on several factors, such 
as the commercial availability and oil yield from the seed. Raw oil is unsuitable 
for diesel engines due to its high viscosity and low volatility. In contrast, oleic 
acid (OA) is usually used as a reactant for renewable diesel production because 
it is the main component in vegetable oil, such as palm oil, sunflower oil, and 
jatropha oil (Hongloi et al., 2021). Nevertheless, the use of edible vegetable oils 
as a material for renewable biofuel production instead as a crucial source of food 
raises concern over the possible disruption of global food security and food 
shortage (Tuli and Kasture, 2021). Hence, it is crucial to search for a residual 
resource, such as PFAD and UFO as it would not only mitigate the excessive 
production of agricultural by-products but also replace edible oils to produce 
second-generation renewable diesel production. Besides the low-commodity 
value, the free fatty acids content of PFAD could be easily converted into 
sustainable renewable diesel and address the current problems of improper 
disposal of PFAD into waterways. In addition, the use of PFAD is advantageous 
because it does not compete with the food industry (Kantama et al., 2015).  

Conventional HDO catalysts are predominantly composed of sulphided forms of 
silica and alumina-supported that results in sulphur residues in the end products 
and the emission of harmful H2S (Afshar Taromi and Kaliaguine, 2017). In 
addition, the use of active supported noble metal catalysts is not advised due to 
their exorbitant cost, which renders the procedure uneconomical. Moreover, 
noble metal catalysts are extremely sensitive to toxins and impurities in the 
feedstock (such as sulphur, heavy metals, and oxygenated compounds) and 
could lead to a considerable rate of catalyst deactivation (Ameen et al., 2020).  

Zeolites, a well-known support catalysts that have been well-utilised in industrial 
processes, such as catalytic cracking, isomerisation, and alkylation reactions 
(Foraita et al., 2017) appears to have desired surface area, and pore sizes that 
are appropriate for hydrocarbon fuel production via HDO reaction (Srihanun et 
al., 2020). However, the presence of a substantial amount of Bronsted acidity 
and the cage structure of zeolite provides suitable active sites for coke formation, 
resulting in the deactivation of the catalyst. In addition, the dealumination 
process at high temperatures may cause the zeolite structure to collapse, 
resulting in denser crystalline phases (Simancas et al., 2021).  

The addition of RE elements, which frequently display basic characteristics, has 
been shown to reduce the acidity of zeolite and modifies the basicity of zeolite 
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catalysts (Sousa-Aguiar et al., 2013). RE elements can sustain catalyst efficacy 
and boost the product yield by breaking heavier oil fractions. Moreover, La is an 
environmentally friendly and cheap RE that has been added to catalyst carriers 
to increase their thermal resistance and surface basicity (Escobar et al., 2019). 
So, an optimum RE content must be found to meet the output goals. Although 
the influence of RE element modification on the catalytic performance of zeolite 
for hydrocarbon cracking has been reported, there are few publications on 
zeolite-RE catalysts for renewable diesel production. 

While the prospect of renewable diesel has become more attractive with 
numerous reports on the development of zeolite-based catalysts to catalyse the 
production of renewable diesel, few studies have been published regarding the 
potential use of La-modified zeolite-based catalysts for renewable diesel 
production. Therefore, the current work will highlight the effectiveness of the 
novel La-modified zeolite-based catalyst that are affordable, ecologically 
acceptable, recyclable and easily functionalised for the production of renewable 
diesel which indirectly improve the waste management of the oil palm by- 
product such as PFAD and UFO.  

1.3 Research objectives 

The purpose of this research is to produce renewable diesel from OA and palm 
products (UFO and PFAD) catalysed by highly efficient metal modified zeolite-
based catalyst. There are three main objectives that have been highlighted:  
 

1. To synthesise, characterise and evaluate the metal modified zeolite-
based catalyst performance towards hydroprocessing of OA. 

2. To optimise the catalytic HDO reaction at various catalytic parameters 
and experimental reaction conditions (e.g., different range of 
temperature, H2 pressure, amount of catalysts loading, and the 
variation of reaction time).  

3. To apply the optimised catalytic performance of the metal-modified 
zeolite-based catalyst to palm-based feedstocks and evaluate the 
renewable diesel characteristics as a potential alternative biofuel. 

 
 
1.4 Scope of research 

This study commenced with the screening of two zeolite-based catalysts, namely 
zeolite beta and Zeolite Socony Mobil–5 (HZSM) as the supported catalyst, 
followed by the synthesis of metal-modified zeolite-based catalysts. The metal-
modified zeolite beta catalyst was synthesised via the wet impregnation method 
using various metals, namely La, Co, Fe, Mg, Mn, and Zn. Subsequently, the 
physical properties of the catalysts were characterised using X-ray Diffraction 
(XRD), Scanning Electron Microscope (SEM), Brunauer-Emmet-Teller (BET), 
Ammonia Temperature-Programmed Desorption (TPD-NH3), Thermogravimetric 
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Analysis (TGA), and Carbon, Hydrogen, Nitrogen, and Sulphur elemental 
analysis (CHNS). 

The study was then extended to the evaluation of the HDO reaction of OA as the 
fatty acid model compound using the metal-modified zeolite beta and HZSM5 
catalyst, followed by HDO of OA utilising La-modified zeolite-based catalyst and 
implementation of the optimal HDO condition for palm-based feedstock. Next, 
the screening and catalytic performance evaluations were conducted to 
determine the optimal catalyst for the related catalytic hydroprocessing process. 
Additionally, the “One Variable-at-a Time” (OVAT) optimisation technique was 
employed using a variety of parameters, including reaction temperature (300 − 
400 °C), hydrogen (H2) pressure (1 − 5 MPa), catalyst concentration (1 − 7 wt.%), 
and metal loading (5 − 20 wt.%). This study also focused on the product 
selectivity, conversion, and hydrocarbon yield of model compounds in the 
presence of supported catalysts.  

The vacuum distillation was used to purify the Crude Liquid Product (CLP) and 
produce the Refined Liquid Product (RLP). The CLP and RLP were then 
quantitatively and qualitatively analysed using the Gas Chromatography-Flame 
Ionisation Detector (GC-FID) and Gas Chromatography-Mass Spectrometer 
(GC-MS), respectively, to determine the hydrocarbon yield and selectivity of the 
liquid product whereas the gas products were determined using the Gas 
Chromatography-Thermal Conductivity Detector (GC-TCD). Finally, the 
optimised reaction conditions were applied to realistic feedstocks, including UFO 
and PFAD. The fuel properties were determined using the method specified in 
the American biodiesel standard (American Society for Testing and Materials, 
ASTM D6751-2).  

1.5 Significance of the study 

The use of La-modified zeolite-based catalyst in hydroprocessing of OA was 
expected to produce renewable diesel. The application of zeolite beta (12-
membered ring channels) and HZSM5 (10-membered rings) is appropriate for 
renewable diesel production due to their large micropores. It was hypothesised 
that La would function as a highly advantageous acid-base metal promoter for 
the DCX pathway and also as a coke inhibitor when impregnated with the zeolite-
based support. Therefore, the La-modified zeolite-based catalyst could influence 
the final product distribution by different selectivity properties. Both zeolites have 
also different acidity features, which could influence the interaction with La and 
the HDO reaction mechanism. The low-cost and time-efficient methodology for 
the catalyst preparation compared to other alternative options would effectively 
remove the oxygenated compound from the final product and improve renewable 
diesel production. In addition, the findings in this study would support existing 
petroleum refineries to produce more sustainable biofuel, hence reducing the 
initial capital expenditure. Finally, this study would contribute to the body of 
knowledge and understanding of the behaviour of La-modified zeolite-based 
catalysts on renewable diesel production.  
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1.6 Organization of the thesis 

This thesis consists of seven main chapters. Chapter 1 is the introduction, which 
covers the research background, problem statement, research objective, scope 
of research, the significance of the study, and the organisation of the thesis.  

Chapter 2 provides a comprehensive literature review based on previously 
published research reports on the current trend of the global energy demand, 
the currently available biofuel sources and the potential feedstocks for 
renewable diesel production. Additionally, the chapter provides a detailed review 
of the catalytic hydroprocessing for renewable diesel production, catalyst for 
hydroprocessing reaction, factors affecting hydroprocessing reaction, 
deactivation and regeneration of the catalyst and renewable diesel’s fuel 
properties. A summary and research gap are presented at the end of this chapter 
based on the compiled literature studies. 

In Chapter 3, the experimental studies related to objective 1 is provided, which 
involves the screening process between zeolite beta and HZSM5 as support 
catalysts based on several process parameter of the HDO reaction of OA for 
effective diesel-like hydrocarbon production.  

Chapter 4 describes the work on objective 2 and 3, specifically on the 
synthesised La-modified zeolite beta catalyst and its application for renewable 
diesel production using OA as the model compound for palm products. This 
chapter also presents the catalyst characterisation using various analytical tools, 
such as XRD, BET, TPD-NH3 and TPD-CO2, and SEM/EDX. Furthermore, the 
purified liquid product via vacuum distillation was characterised using GC-FID, 
GC-MS and GC-TCD.  

Chapter 5 represents the experimental works based on objectives 2, 3 and 4. In 
particular, this chapter discussed the HDO reaction of OA over HZSM5 and La-
modified HZSM5 for optimal renewable diesel production and the application of 
optimised reaction conditions to palm-based feedstocks, as well as the 
reusability of the catalyst. Apart from that, the effect of different La 
concentrations on the hydrocarbon yield and selectivity of the liquid product is 
highlighted. The prepared catalysts were characterised using XRD, BET, TPD-
NH3 and TPD-CO2, SEM/EDX, and TGA. A comparative analysis was performed 
to evaluate the results from the current study with those of previous findings. 

Chapter 6 describes objectives 5, where the catalytic performance of 
synthesised La(10)zeo(90) for the production of diesel-like hydrocarbon fuel from 
PFAD via HDO. The fuel properties of the generated liquid products were 
evaluated and compared to that of Ultra-low Sulphur Diesel (ULSD) and 
petroleum diesel.  
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Finally, Chapter 7 summarises the significant findings and the main conclusions 
of the study based on the research objectives. Several recommendations for 
future work are also provided in this chapter based on limitations of the research 
findings. 
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