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Abstract: Fuzzy set theory has extensively employed various divergence measure methods to quantify
distinctions between two elements. The primary objective of this study is to introduce a generalized
divergence measure integrated into the Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) approach. Given the inherent uncertainty and ambiguity in multi-criteria decision-
making (MCDM) scenarios, the concept of the fuzzy α-cut is leveraged. This allows experts to
establish a broader spectrum of rankings, accommodating fluctuations in their confidence levels. To
produce consistent criteria weights with the existence of outliers, the fuzzy Method based on the
Removal Effects of Criteria (MEREC) is employed. To showcase the viability and effectiveness of the
proposed approach, a quantitative illustration is provided through a staff performance review. In
this context, the findings are compared with other MCDM methodologies, considering correlation
coefficients and CPU time. The results demonstrate that the proposed technique aligns with current
distance measure approaches, with all correlation coefficient values exceeding 0.9. Notably, the
proposed method also boasts the shortest CPU time when compared to alternative divergence
measure methodologies. As a result, it becomes evident that the proposed technique yields more
sensible and practical results compared to its counterparts in this category.

Keywords: divergence measure; TOPSIS method; fuzzy α-cut; correlation coefficient; performance
appraisal

MSC: 90B50; 03E72

1. Introduction

In any organization, whether private or public, performance evaluation unquestion-
ably plays a pivotal role in human resource management. The increasing impact of global-
ization, fueled by worldwide competition, has raised new challenges for both researchers
and practitioners in this field [1,2]. An organization’s ability to function effectively and
realize its vision now hinges significantly on the quality of its performance evaluation
practices. In the realm of employee performance assessment, there exist both qualitative
and quantitative methods [3]. It is imperative for organizations to establish a robust perfor-
mance assessment system that can fairly and accurately evaluate staff performance. Such a
system guides and channels employees’ skills and efforts toward achieving organizational
goals. Without a robust evaluation system in place, managers may risk jeopardizing or-
ganizational competencies and making suboptimal decisions. Consequently, outstanding
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employees might not receive the constructive feedback they need, leading to dissatisfaction
and potential departures, incurring high recruitment costs for the company [4].

One strategy that organizations employ to take corrective actions backed by solid
evidence is performance appraisal, which examines and assesses past performance records
in the context of future expectations. This approach is not only used to inform employees
about their workloads but also to motivate staff and shape their perceptions of the organi-
zation, both of which are crucial factors in achieving organizational objectives. Perception
is the cognitive process through which individuals organize and analyze sensory input to
make sense of their environment. Given that people’s perceptions are influenced by their
unique ideas and experiences, it is inevitable that individuals will have diverse viewpoints
and justifications [5].

Understanding the staff’s capacity to accomplish tasks within a defined time frame
is a fundamental element contributing to an organization’s success. Research indicates
that organizations employing a performance appraisal process experience an average
productivity improvement of 43% [6]. Performance evaluations, as mentioned in a study,
are a critical process through which organizations assess employees’ work and the goals
they have set, utilizing these assessments to determine appropriate rewards [7]. This
process holds significant importance, as it underpins career growth, employee training,
promotions, transfers, and compensation decisions [8]. Moreover, it serves as a valuable
tool for monitoring staff productivity and efficacy, making it imperative that it be conducted
meticulously and impartially to continually enhance staff performance [8].

Throughout the performance evaluation process, several fundamental assumptions
come into play. Notably, it presupposes that employers possess the ability to differentiate
among employees and recognize that each employee’s contribution to the organization
varies due to their unique performance [9]. Researchers such as the authors of [10] argued
that performance appraisal can be further improved by identifying employees’ strengths
and limitations, providing constructive feedback and fostering effective communication be-
tween employees and managers. To implement such a procedure successfully, a pragmatic
performance evaluation tool should account for various factors and constraints, including
time and costs [11].

Previous research underscores the pivotal role of performance reviews for staff mem-
bers in terms of self-identification and goal setting, both in the short and long term, resulting
in enhanced work output [12,13]. Furthermore, performance reviews hold great potential to
boost organizational performance by outlining remuneration and evaluation systems, iden-
tifying growth opportunities and training requirements, and validating selection practices
that may warrant corrective action or termination [14]. Performance evaluation, similar to
other decision-making challenges, is a multifaceted process. It involves generating accurate
predictions for quantitative forecasting and making sound judgments on qualitative issues.
To tackle this complexity, the application of a fuzzy linguistic model proves invaluable,
bridging the gap between verbal expressions and numerical values [15].

For an efficient and equitable execution of the performance review process, a sys-
tematic decision-making approach is imperative. Jafari et al. [16] proposed a method
for selecting performance appraisal methodologies and comparing various approaches
to aid organizations in making informed choices, enabling them to assess their perfor-
mance appraisal system’s essential components before implementation, thereby averting
unnecessary costs. Staff performance reviews entail a multitude of perspectives in team
decision-making processes, as observed by [14]. To determine the relative importance
of the evaluation group’s opinions and criteria, they introduce a fuzzy Delphi technique.
Additionally, to enable decision-makers to express their evaluations using various linguis-
tic scales, depending on their familiarity with the evaluated personnel, Andrés et al. [6]
introduced the multi-granular framework for linguistic assessment.

In the realm of linguistic variables, ref. [17] introduced a unique 2-tuple linguistic
expression framework capable of managing data in decision-making scenarios that incorpo-
rate both linguistic and numeric ratings. This framework expands the range of information
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that managers can effectively handle in heterogeneous contexts. Intuitive fuzzy sets, as em-
ployed by [18], offerred a generalized approach to fuzzy entropy with a solid axiomatic
foundation. These sets also shed light on the significance of the parameter α and provide a
means for managers to handle heterogeneous information efficiently.

The development of complex decision models, including one of the key operations
research techniques, MCDM has become widely utilized to assist assessors in analyzing
and selecting the most suitable options [19]. In response to MCDM challenges, various
mathematical programming models have undergone significant improvement. However,
MCDM has recently gained increased popularity in evaluating diverse approaches [20].
Numerous criteria have been assessed, selected, and ranked using MCDM methodolo-
gies [21]. The qualitative evaluation approach of MCDM places a strong emphasis on the
subjective nature of criteria. It is essential to provide comprehensive details about the
selected and recommended criteria [22]. MCDM assists decision-makers in identifying the
constituent variables that lead to the optimal operational strategy, particularly when faced
with limited resources [23]. Due to its effectiveness in addressing decision-related issues,
this methodology has found application across a wide range of industries and continues
to evolve.

Several well-known and prevalent MCDM techniques include Simple Additive Weight-
ing (SAW) [23], Elimination and Choice Expressing Reality (ELECTRE) [24], the Preference
Ranking Organization Method for Enrichment Evaluation (PROMETHEE) [25], the Tech-
nique for Order of Preference by Similarity to an Ideal Solution (TOPSIS) [26], linear pro-
gramming techniques [27], and the Analytic Hierarchy Process (AHP) [28], among others.
Among these, the widely recognized MCDM technique is TOPSIS, which was developed
by [26]. It is renowned for its advantages in dealing with both positive and negative ideal
solutions and its user-friendly nature. Researchers have applied the traditional TOPSIS
approach in various ambiguous scenarios. For specific applications, researchers have
adapted MCDM techniques. For instance, ref. [29] employed Fuzzy TOPSIS to select the top
reverse logistics provider based on performance indicators. Kumari et al. [30] introduced
the Shapley-TOPSIS technique, based on intuitionistic fuzzy sets (IFSs), to identify the best
solutions for a cloud service problem. Furthermore, ref. [31] expanded the concept of IFSs
in the TOPSIS model for assessing offshore wind (OFW) turbine infant failure.

The concept of divergence measures, which assess the discriminatory information,
was originally introduced by [32]. Over the years, various entropy metrics have been
proposed, and extensive examinations of their applications, properties, and utility have
been conducted [33,34]. In one study, the divergence measure in a fuzzy context was
axiomatically defined, accompanied by computational methods for handling fuzzy sets [35].
Essentially, the divergence measure serves to elucidate dissimilarity and introduces a set
of intriguing axioms for approximating fuzzy set discrimination. Subsequently, ref. [36]
introduced the J-divergence metric for intuitionistic fuzzy sets (IFSs). This development
underscored the importance of having reliable distance measures between IFSs, particularly
in the context of inference problems. The proposed divergence measure proves to be
effective in quantifying the actual separation and degree of similarity between IFSs.

In the realm of automated leukocyte recognition, ref. [37] devised a method for com-
puting fuzzy divergence. Furthermore, ref. [38] went on to develop a modified fuzzy
divergence measure, addressing the limitations of existing divergence measures while
exploring their unique attributes. Joshi and Kumar [39] introduced a divergence measure
rooted in the well-known Shannon entropy concept, shedding light on some of its key
characteristics. To tackle MCDM issues within a fuzzy environment, ref. [40] proposed an
approach based on a divergence measure for Fuzzy Systems (FSs). Subsequently, in their
work in [41], they introduced the fuzzy Technique for Order of Preference by Similarity to an
Ideal Solution (TOPSIS) technique, incorporating a divergence measure to address decision-
making challenges. However, it is worth noting that some of the preceding divergence
measure techniques have limitations, as they are only applicable after the defuzzification
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process. This constraint prevents them from evaluating values within a fuzzy interval that
may contain either 0 or 1.

The aim of this research is to introduce a generalized divergence measure, which can
overcome the existing limitations, including potential anomalies in results, and provide a
solution for assessing score values of alternatives. The research also addresses a real-world
decision-making problem related to selecting the most suitable candidate for a staff perfor-
mance review, illustrating the practical applicability of the proposed method. This study
contributes significantly in three main ways. Firstly, it introduces a comprehensive and
generalized divergence measure that effectively addresses the shortcomings of previous
measures. This achievement is the result of an extensive review and analysis of existing
measures. Secondly, the research improves the method proposed in [42] by applying fuzzy
α-cut to the MCDM problem of selecting the most appropriate candidate for staff perfor-
mance reviews. This application enhances the widely utilized TOPSIS approach within
the context of fuzzy sets, showcasing the versatility and adaptability of the methodology.
Thirdly, the research applies the fuzzy MEREC technique adapted from [43] to determine
the weights of the criteria used in the evaluation process. The fuzzy MEREC is an effective
objective weighting technique, as the existence of outliers only has a small effect on the
results of the criteria weights.

2. Preliminaries
2.1. Fuzzy Sets

Definition 1 ([44]). Let Z = {z1, z2, . . . , zn} be a finite universe of discourse and let H ⊂ Z.
Then, H is fuzzy set defined as:

H = {(zi, νH(zi)) : νH(zi) ∈ [0, 1]; ∀zi ∈ Z}, (1)

where νH : Z → [0, 1] is membership function of H. The value νH(zi) exhibits membership degree
of zi ∈ Z to H.

Definition 2 ([44,45]). A triplet (m1, m2, m3) depicted in Figure 1 can be used to define a triangu-
lar fuzzy number, m̃. The definition of the membership function νm̃(z) is:

νm̃(z) =



0 if z < m1,
z − m1

m2 − m1
if m1 ≤ z < m2,

m3 − z
m3 − m2

if m2 ≤ z ≤ m3,

0 if z > m3,

. (2)

Figure 1. A triangular fuzzy number m̃.

Definition 3 ([46]). When k is a positive real number, the definitions that follow are applicable to
the arithmetic operations of triangular fuzzy number, Ξ̃ = (ξ1, ξ2, ξ3) and H̃ = (η1, η2, η3):
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1. Addition: Ξ̃(+)H̃ = (ξ1 + η1, ξ2 + η2, ξ3 + η3).
2. Subtraction: Ξ̃(−)H̃ = (ξ1 − η3, ξ2 − η2, ξ3 − η1).
3. Multiplication: Ξ̃(×)H̃ = (min(ξ1η1, ξ1η3, ξ3η1, ξ3η3), ξ2η2, max(ξ1η1, ξ1η3, ξ3η1, ξ3η3)),

c(×)ξ = (c × ξ1, c × ξ2, c × ξ3).

4. Division: Ξ̃(÷)H̃ =

(
min

(
ξ1

η1
,

ξ1

η3
,

ξ3

η1
,

ξ3

η3

)
,

ξ2

η2
, max

(
ξ1

η1
,

ξ1

η3
,

ξ3

η1
,

ξ3

η3

))
.

2.2. Existing Theories of Divergence Measures

The divergence measure can be used to assess the level of discrimination between
fuzzy sets. It is an important concept that has been used in many disciplines, including
decision-making [47], pattern recognition [48], image segmentation [49], and medical
diagnosis [50]. The idea of divergence measures in communication theory was developed
by Shannon and Weaver [32] and is explained as follows:

Let ∆n = {A = (p1, p2, . . . , pn) : pi ≥ 0, i = 1, 2, . . . , n; ∑n
i=1 pi = 1}, n ≥ 2 be set of n-

complete probability distributions. For any probability distribution A = (p1, p2, . . . , pn) ∈ ∆n,
an entropy is defined as:

H(A) = −
n

∑
i=1

pi log(pi). (3)

After this concept is developed, Kullback and Leibler [51] calculated the divergence
measure between X = (p1, p2, . . . , pn) ∈ ∆n and Y = (q1, q2, . . . , qn) ∈ ∆n as:

KL(X : Y) =
n

∑
i=1

pi log
(

pi
qi

)
. (4)

The symmetric divergence measure was then proposed by Kullback [52] as:

K(X : Y) = KL(X : Y) + KL(Y : X) =
n

∑
i=1

(pi − qi) log
(

pi
qi

)
. (5)

This inspired Bhandari et al. [53] to propose the following divergence measure between
fuzzy set P ∈ FS(X) and Q ∈ FS(X) as:

I(P, Q) =
n

∑
i=1

[
νP(xi) log

(
νP(xi)

νQ(xi)

)
+ (1 − νP(xi)) log

(
1 − νP(xi)

1 − νQ(xi)

)]
, (6)

and the respective symmetric divergence measure by

J(P, Q) = I(P, Q) + I(Q, P),

which on simplification gives

J(P, Q) =
n

∑
i=1

[
(νP(xi)− νQ(xi)) log

(
νP(xi)(1 − νQ(xi))

νQ(xi)(1 − νP(xi))

)]
. (7)

3. Generalized Divergence Measure

From Equation (5), let

f (P, Q) = (νP(xi)− νQ(xi)) log
(

νP(xi)

νQ(xi)

)
. (8)

In the fuzzy sets theory, it is essential to note that membership values must fall within
the range of [0, 1]. For a function f to be well defined, it is imperative that the membership
functions, denoted as νP(xi) and νQ(xi), within f should not equate to zero. This, however,
introduces a limitation to f because it cannot encompass the entire domain of membership
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functions νP(xi) and νQ(xi). The issue arises when either νP(xi) or νQ(xi) equals zero,
rendering the function f invalid. It is important to acknowledge that there exists the
possibility of the values of νP(xi) or νQ(xi) reaching zero, thus jeopardizing the overall
function f .

Translating this into the context of staff performance evaluation, where alternatives are
assessed and compared based on predetermined criteria, a similar principle applies. If an
alternative fails to meet the requirements of a specific criterion, it receives a zero score for
that criterion. To address this limitation effectively, a new variable denoted as 0 < τ < ∞
has been introduced into the function. This modification ensures that all membership
values within the range of [0, 1] can be accommodated in the given function.

g(P, Q) = (νP(xi)− νQ(xi)) log
(

νP(xi) + τ

νQ(xi) + τ

)
. (9)

The TOPSIS technique hinges on two key concepts: the positive ideal solution (PIS) and
the negative ideal solution (NIS). To ensure the accurate and consistent derivation of these
solutions, it is important that the distance function be symmetric. However, the current
function remains non-symmetric, as evidenced by the lack of consistency in the distance
values from both PIS and NIS, as demonstrated in the given numerical example.

Example 1. The function g as in Equation (9) is non-symmetric for some membership values.
Let νP(xi) = 0.5 ∈ P and νQ(xi) = 0.8 ∈ Q be the performance scores of an alternative and

the positive ideal alternative, respectively, where τ = 1; the distance value of the alternative from
the PIS is determined as follows:

g(P, Q) = (0.5 − 0.8) log
(

0.5 + 1
0.8 + 1

)
= 0.02375.

Next , let νR(xi) = 0.2 ∈ R be the performance score of the negative ideal alternative;
the distance value of the alternative from the NIS is determined as follows:

g(P, R) = (0.5 − 0.2) log
(

0.5 + 1
0.2 + 1

)
= 0.02907.

The example has clearly shown that g(P, Q) ̸= g(P, R). This leads to the firm conclusion that
the function g lacks the property of symmetry.

Let us introduce a new function, denoted as h(P, Q), which corresponds to the existing
function g(P, Q). Specifically, when νP(xi) = k or νQ(xi) = k, function h is defined as
the reflection of function g about the line νP(xi) = k or νQ(xi) = k, where k ∈ [0, 1].
To achieve this reflection, we transform νP(xi) to 1 − νP(xi) and νQ(xi) to 1 − νQ(xi), as
outlined below:

νP(xi) → 1 − νP(xi) and νQ(xi) → 1 − νQ(xi),

then

h(P, Q) = ((1 − νP(xi))− (1 − νQ(xi))) log
(
(1 − νP(xi)) + τ

(1 − νQ(xi)) + τ

)
= (νQ(xi)− νP(xi)) log

(
τ + 1 − νP(xi)

τ + 1 − νQ(xi)

)
.

(10)

To ensure the calculation of consistent distance values from both the PIS and NIS as
a symmetric function, it is important to combine the function g with its corresponding
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reflected function, h. Additionally, we modify the base of the logarithmic function to an
exponent, allowing for better comparability with other divergence measures and enhancing
the distinctiveness of function values for each point. This symmetric function is now
introduced as the new generalized divergence measure and is defined as follows:

J(P, Q) =
n

∑
i=1

[g(P, Q) + h(P, Q)]

=
n

∑
i=1

[
(νP(xi)− νQ(xi)) ln

(
νP(xi) + τ

νQ(xi) + τ

)
+ (νQ(xi)− νP(xi)) ln

(
τ + 1 − νP(xi)

τ + 1 − νQ(xi)

)]
,

(11)

where 0 < τ < ∞.
In the domain of divergence measures, it is customary to expect and establish var-

ious properties. In this research, the recently introduced divergence measure, J(P, Q),
is bounded by the preexisting divergence measure, K(P, Q). Notably, all the properties
characterizing K(P, Q) are equally satisfied by J(P, Q), as explained in Theorem 1.

Theorem 1. The divergence measures J(P, Q) and K(P, Q) satisfy the inequality with τ > 0 and
νP(xi), νQ(xi) ∈ [0, 1] such that

J(P, Q) ≤ K(P, Q),

where

K(P, Q) =
n

∑
i=1

[
(νP(xi)− νQ(xi)) ln

(
νP(xi)

νQ(xi)

)
+ (νQ(xi)− νP(xi)) ln

(
1 − νP(xi)

1 − νQ(xi)

)]
. (12)

Proof. Firstly, the following inequality is proved such that

(νP(xi)− νQ(xi)) ln
(

νP(xi) + τ

νQ(xi) + τ

)
≤ (νP(xi)− νQ(xi)) ln

(
νP(xi)

νQ(xi)

)
.

Case 1: For νP(xi) ≤ νQ(xi) and τ > 0, suppose that(
νP(xi) + τ

νQ(xi) + τ

)
≥
(

νP(xi)

νQ(xi)

)
.

By applying the ln function for both sides, it yields

ln
(

νP(xi) + τ

νQ(xi) + τ

)
≥ ln

(
νP(xi)

νQ(xi)

)
.

Since (νP(xi)− νQ(xi)) ≤ 0, by multiplying (νP(xi)− νQ(xi)) for both sides, it yields

(νP(xi)− νQ(xi)) ln
(

νP(xi) + τ

νQ(xi) + τ

)
≤ (νP(xi)− νQ(xi)) ln

(
νP(xi)

νQ(xi)

)
.

Case 2: For νP(xi) ≥ νQ(xi) and τ > 0, suppose that(
νP(xi) + τ

νQ(xi) + τ

)
≤
(

νP(xi)

νQ(xi)

)
.

By applying the ln function for both sides, it yields

ln
(

νP(xi) + τ

νQ(xi) + τ

)
≤ ln

(
νP(xi)

νQ(xi)

)
.

Since (νP(xi)− νQ(xi)) ≥ 0, by multiplying (νP(xi)− νQ(xi)) for both sides, it yields

(νP(xi)− νQ(xi)) ln
(

νP(xi) + τ

νQ(xi) + τ

)
≤ (νP(xi)− νQ(xi)) ln

(
νP(xi)

νQ(xi)

)
.

Secondly, the following inequality is proved such that
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(νQ(xi)− νP(xi)) ln
(

τ + 1 − νP(xi)

τ + 1 − νQ(xi)

)
≤ (νQ(xi)− νP(xi)) ln

(
1 − νP(xi)

1 − νQ(xi)

)
.

Case 3: For νP(xi) ≤ νQ(xi) and τ > 0, suppose that(
τ + 1 − νP(xi)

τ + 1 − νQ(xi)

)
≤
(

1 − νP(xi)

1 − νQ(xi)

)
.

By applying the ln function for both sides, it yields

ln
(

τ + 1 − νP(xi)

τ + 1 − νQ(xi)

)
≤ ln

(
1 − νP(xi)

1 − νQ(xi)

)
.

Since (νQ(xi)− νP(xi)) ≥ 0, by multiplying (νQ(xi)− νP(xi)) for both sides, it yields

(νQ(xi)− νP(xi)) ln
(

τ + 1 − νP(xi)

τ + 1 − νQ(xi)

)
≤ (νQ(xi)− νP(xi)) ln

(
1 − νP(xi)

1 − νQ(xi)

)
.

Case 4: For νP(xi) ≥ νQ(xi) and τ > 0, suppose that(
τ + 1 − νP(xi)

τ + 1 − νQ(xi)

)
≥
(

1 − νP(xi)

1 − νQ(xi)

)
.

By applying the ln function for both sides, it yields

ln
(

τ + 1 − νP(xi)

τ + 1 − νQ(xi)

)
≥ ln

(
1 − νP(xi)

1 − νQ(xi)

)
.

Since (νQ(xi)− νP(xi)) ≤ 0, by multiplying (νQ(xi)− νP(xi)) for both sides, it yields

(νQ(xi)− νP(xi)) ln
(

τ + 1 − νP(xi)

τ + 1 − νQ(xi)

)
≤ (νQ(xi)− νP(xi)) ln

(
1 − νP(xi)

1 − νQ(xi)

)
.

Thus, for any νP(xi), νQ(xi) ∈ [0, 1] and τ > 0, the following inequality is obtained
such that:

n

∑
i=1

[
(νP(xi)− νQ(xi)) ln

(
νP(xi) + τ

νQ(xi) + τ

)
+ (νQ(xi)− νP(xi)) ln

(
τ + 1 − νP(xi)

τ + 1 − νQ(xi)

)]
≤

n

∑
i=1

[
(νP(xi)− νQ(xi)) ln

(
νP(xi)

νQ(xi)

)
+ (νQ(xi)− νP(xi)) ln

(
1 − νP(xi)

1 − νQ(xi)

)]
.

Hence, it is proven that J(P, Q) ≤ K(P, Q).

The proposed divergence measure, J(P, Q) also satisfies the fundamental properties
of divergence measures such as nonnegativity and symmetricity as in Theorem 2.

Theorem 2. Let P, Q ∈ FSs(Z); the following properties of the divergence measure J(P, Q)
described in Equation (11) are provided as:

1. J(P, Q) ≥ 0,
2. J(P, Q) = 0 if P = Q,
3. J(P, Q) = J(Q, P).
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Proof. (1) and (2): Consider

J(P, Q) =
n

∑
i=1

f (νP(zi), νQ(zi)),

and

f (νP(zi), νQ(zi)) = (νP(zi)− νQ(zi)) ln
(

νP(zi) + τ

νQ(zi) + τ

)
+ (νQ(zi)− νP(zi)) ln

(
τ + 1 − νP(zi)

τ + 1 − νQ(zi)

)
,

then, assuming that f has a first partial derivative with regard to νP(zi),

fνP(zi)
=

νP(zi)− νQ(zi)

νP(zi) + τ
−

νQ(zi)− νP(zi)

τ + 1 − νP(zi)
+ ln

(
νP(zi) + τ

νQ(zi) + τ

)
− ln

(
τ + 1 − νP(zi)

τ + 1 − νQ(zi)

)
,

and also, the second partial derivative of f with regard to νP(zi) is provided by:

fνP(zi)νP(zi)
=

2τ + νP(zi) + νQ(zi)

(νP(zi) + τ)2 +
2τ + 2 − νP(zi)− νQ(zi)

(τ + 1 − νP(zi))2 .

Due to the fact that fνP(zi)νP(zi)
> 0 for νP(zi), νQ(zi) ∈ [0, 1], therefore f is a concave

upmapping of νP(zi) making J(P, Q) a convex function. With constant νQ(zi) ∈ [0, 1],
f (νP(zi), νQ(zi)) is decreasing in [νP(zi), νQ(zi)] and increasing in [νQ(zi), νP(zi)]. There-
fore, when νP(zi) ∈ [0, νQ(zi)],

f (νQ(zi), νQ(zi)) ≤ f (νP(zi), νQ(zi)) ≤ f (0, νQ(zi))

and similarly for νP(zi) ∈ [νQ(zi), 1],

f (νQ(zi), νQ(zi)) ≤ f (νP(zi), νQ(zi)) ≤ f (1, νQ(zi)).

Hence, for νP(zi) ∈ [0, 1] with constant νQ(zi) ∈ [0, 1], f (νP(zi), νQ(zi)) reaches its
highest point at νP(zi) = {1}, νQ(zi) = {0} (or νP(zi) = {0}, νQ(zi) = {1}) and its
minimum at νP(zi) = νQ(zi).

Therefore, J(P, Q) ≥ 0 and J(P, Q) = 0 if νP(zi) = νQ(zi).
(3): Suppose

J(P, Q) =
n

∑
i=1

[
(νP(zi)− νQ(zi)) ln

(
νP(zi) + τ

νQ(zi) + τ

)
+ (νQ(zi)− νP(zi)) ln

(
τ + 1 − νP(zi)

τ + 1 − νQ(zi)

)]

=
n

∑
i=1

[
− (νQ(zi)− νP(zi)) ln

(
νQ(zi) + τ

νP(zi) + τ

)−1

− (νP(zi)− νQ(zi)) ln
(

τ + 1 − νQ(zi)

τ + 1 − νP(zi)

)−1
]

=
n

∑
i=1

[
(νQ(zi)− νP(zi)) ln

(
νQ(zi) + τ

νP(zi) + τ

)
+ (νP(zi)− νQ(zi)) ln

(
τ + 1 − νQ(zi)

τ + 1 − νP(zi)

)]
=J(Q, P).

It is therefore shown that J(P, Q) = J(Q, P).

The divergence measure J(P, Q), as stated in Theorem 3, exhibits some features that are
related to the characteristics of the union and intersection of sets. The use of the properties
provides the simplification and resolution of some instances of set union or intersection.
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Theorem 3. For P, Q, R ∈ FS(Z), the divergence measure J(P, Q) described in Equation (11)
satisfies the following properties:

1. J(P ∪ Q, P ∩ Q) = J(P, Q),
2. J(P ∪ Q, P) + J(P ∩ Q, P) = J(P, Q),
3. J(P ∪ Q, R) ≤ J(P, R) + J(Q, R),
4. J(P ∩ Q, R) ≤ J(P, R) + J(Q, R).

Proof. Let X1 = {zi ∈ X, νP(zi) ≤ νQ(zi)}, then
P ∪ Q = Union of P and Q ⇔ νP∪Q(zi) = max{νP(zi), νQ(zi)} = νQ(zi);
P ∩ Q = Intersection of P and Q ⇔ νP∩Q(zi) = min{νP(zi), νQ(zi)} = νP(zi).
(1): Suppose

J(P ∪ Q, P ∩ Q) =
n

∑
i=1

[
(νP∪Q(zi)− νP∩Q(zi)) ln

(
νP∪Q(zi) + τ

νP∩Q(zi) + τ

)

+ (νP∩Q(zi)− νP∪Q(zi)) ln
(

τ + 1 − νP∪Q(zi)

τ + 1 − νP∩Q(zi)

)]

=
n

∑
i=1

[
(νQ(zi)− νP(zi)) ln

(
νQ(zi) + τ

νP(zi) + τ

)

+ (νP(zi)− νQ(zi)) ln
(

τ + 1 − νQ(zi)

τ + 1 − νP(zi)

)]
=J(Q, P).

Using the third property of Theorem 2, J(Q, P) = J(P, Q). Hence,

J(P ∪ Q, P ∩ Q) = J(P, Q).

(2) is also demonstrably true as (1).
(3): Suppose

J(P ∪ Q, R) =
n

∑
i=1

[
(νP∪Q(zi)− νR(zi)) ln

(
νP∪Q(zi) + τ

νR(zi) + τ

)

+ (νR(zi)− νP∪Q(zi)) ln
(

τ + 1 − νP∪Q(zi)

τ + 1 − νR(zi)

)]

=
n

∑
i=1

[
(νQ(zi)− νR(zi)) ln

(
νQ(zi) + τ

νR(zi) + τ

)

+ (νR(zi)− νQ(zi)) ln
(

τ + 1 − νQ(zi)

τ + 1 − νR(zi)

)]
=J(Q, R).

Since J(P, R) ≥ 0 as in Theorem 2, then J(P ∪ Q, R) ≤ J(P, R) + J(Q, R).
(4) is also demonstrably true as (3).

4. Formulation of α-Cut Technique in Divergence Measure

A new fuzzy set divergence measure was recently developed by Rani et al. [41] and is
defined as:
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J(X, Y) =
1
2

n

∑
i=1

[(
νX(zi) + νY(zi)

2

)
ln
(

νX(zi) + νY(zi)

2νX(zi)

)
+

(
2 − νX(zi)− νY(zi)

2

)
ln
(

2 − νX(zi)− νY(zi)

2(1 − νX(zi))

)
+

(
νX(zi) + νY(zi)

2

)
ln
(

νX(zi) + νY(zi)

2νY(zi)

)
+

(
2 − νX(zi)− νY(zi)

2

)
ln
(

2 − νX(zi)− νY(zi)

2(1 − νY(zi))

)]
,

(13)

where X ∈ FS(Z) and Y ∈ FS(Z).
The divergence measure is commonly employed to evaluate the discrimination of

fuzzy sets. However, due to the fuzzy number being in interval form, its application is
limited to the post-defuzzification procedure. To overcome this constraint and measure any
feasible rating of alternatives, a new generalized divergence measure is proposed in this
study. This innovation seeks to circumvent the limitations of current measures, eliminating
the peculiarities observed in the results.

Md Saad et al. [54] introduced the Hamming distance method by employing fuzzy
α-cut for a triangular fuzzy number, Ã = (a1, a2, a3), in the evaluation process, as follows:

[Ã]α = [a1 + α(a2 − a1), a3 − α(a3 − a2)], α ∈ (0, 1]. (14)

The fuzzy α-cut is a fundamental concept in fuzzy logic that establishes a precise subset
within a fuzzy set. Fuzzy logic allows for items to have varying degrees of membership in
a set, unlike classical logic, which only considers elements as either fully in or out of a set.
It is a way to generate a crisp set from a fuzzy set that involves setting a threshold value,
usually represented as α. The α-cut of a fuzzy set A at a specific threshold α, represented as
[Ã]α, is the subset of A that includes all elements whose membership degrees are at least α.

Later, Cavallaro et al. [55] also presented the technique of α-cut for measuring objective
weight by using the concept of Shannon’s entropy as:

[
(x̃ij)

L
α , (x̃ij)

R
α

]
=

[
min

xij
{xij ∈ R|νx̃ij(xij) ≥ α}, max

xij
{xij ∈ R|νx̃ij(xij) ≥ α}

]
, 0 < α ≤ 1, (15)

and presented the distances between each alternative from A∗ and A−, which are deter-
mined using the following equations:

d∗i =
n

∑
j=1

d(ṽij, ṽ∗j ), i = 1, 2, . . . , m. (16)

d−i =
n

∑
j=1

d(ṽij, ṽ−j ), i = 1, 2, . . . , m. (17)

Building on this inspiration, the technique of α-cut from Equation (14) is implemented
in this study for the divergence measure J(P, Q) to assess the performance of alternatives
based on main and sub-criteria weights, as follows:

d+i = ϕ1

a

∑
k=1

w∗
1k

[
J(rL

i1k, (ζ+1k)
L) + J(rU

i1k, (ζ+1k)
U)
]
+ ϕ2

b

∑
k=1

w∗
2k

[
J(rL

i2k, (ζ+2k)
L) + J(rU

i2k, (ζ+2k)
U)
]

+ · · ·+ ϕn

p

∑
k=1

w∗
nk

[
J(rL

ink, (ζ+nk)
L) + J(rU

ink, (ζ+nk)
U)
]
, i = 1, 2, . . . , m,

(18)

and
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d−i = ϕ1

a

∑
k=1

w∗
1k

[
J(rL

i1k, (ζ−1k)
L) + J(rU

i1k, (ζ−1k)
U)
]
+ ϕ2

b

∑
k=1

w∗
2k

[
J(rL

i2k, (ζ−2k)
L) + J(rU

i2k, (ζ−2k)
U)
]

+ · · ·+ ϕn

p

∑
k=1

w∗
nk

[
J(rL

ink, (ζ−nk)
L) + J(rU

ink, (ζ−nk)
U)
]
, i = 1, 2, . . . , m,

(19)

where

J(r∗i1k, (ζ+1k)
∗) = (r∗ijk − (ζ+jk)

∗) ln

(
r∗ijk + τ

(ζ+jk)
∗ + τ

)
+ ((ζ+jk)

∗ − r∗ijk) ln

(
τ + 1 − r∗ijk

τ + 1 − (ζ+jk)
∗

)
, (20)

and

J(r∗i1k, (ζ−1k)
∗) = (r∗ijk − (ζ−jk)

∗) ln

(
r∗ijk + τ

(ζ−jk)
∗ + τ

)
+ ((ζ−jk)

∗ − r∗ijk) ln

(
τ + 1 − r∗ijk

τ + 1 − (ζ−jk)
∗

)
. (21)

5. Fuzzy Divergence Measure Based on TOPSIS Method

Assume the MCDM issue has m alternatives, A = {A1, A2, . . . , Am}, and the alterna-
tives are appraised using n criteria, C = {C1, C2, . . . , Cn}, and sub-criteria,
S = {C11, C12, . . . , Cnp}, where p denotes the number of sub-criteria in the main criteria n.
Let ϕj(j = 1(1)n) be the weight of the main criterion and wjk(j = 1(1)n, k = 1(1)p) be the
weight of the sub-criterion, such that ϕj ≥ 0, wjk ≥ 0, ∑n

j=1 ϕj = 1 and ∑
p
k=1 wjk = 1(j =

1(1)n). All criteria and alternatives are evaluated by several experts, E = {E1, E2, . . . , El}
based on linguistic terms. The proposed method includes several steps, as follows:

Step 1: Develop a fuzzy decision matrix F̃ =
(

ξ̃
(u)
ijk

)
m×n

.

The experts provide the feasible assessments of alternative Ai regarding criterion Cj

and sub-criterion Cjk represented by the fuzzy numbers ξ̃
(u)
ijk =

(
fijk, gijk, hijk

)
acquired

from linguistic variables in Table 1 and demonstrated as:
C1 C2 · · · Cn

C11 C12 · · · C1a C21 C22 · · · C2b · · · Cn1 Cn2 · · · Cnp

R̃α =

A1
A2
...

Am


(r̃111)α (r̃112)α ··· (r̃11a)α (r̃121)α (r̃122)α ··· (r̃12b)α ··· (r̃1n1)α (r̃1n2)α ··· (r̃1np)α

(r̃211)α (r̃212)α ··· (r̃21a)α (r̃221)α (r̃222)α ··· (r̃22b)α ··· (r̃2n1)α (r̃2n2)α ··· (r̃2np)α

...
...

. . .
...

...
...

. . .
...

. . .
...

...
. . .

...
(r̃m11)α (r̃m12)α ··· (r̃m1a)α (r̃m21)α (r̃m22)α ··· (r̃m2b)α ··· (r̃mn1)α (r̃mn2)α ··· (r̃mnp)α

 (22)

for u = 1, 2, . . . , l.
The linguistic terms are employed based on the hierarchical degree of staff authority,

and experts possess the ability to discern these terms without resorting to numerical scoring.

Step 2: Aggregate the fuzzy evaluations of alternatives via the equation provided:

ξ̃ijk =
1
l

[
ξ̃
(1)
ijk (+)ξ̃

(2)
ijk (+) . . . (+)ξ̃

(l)
ijk

]
. (23)

In this study, it is worth mentioning that the preference of each expert is assumed to
be equal since they have an equal level of knowledge.
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Table 1. Linguistic terms that represent fuzzy numbers used for evaluating each alternative.

Linguistics Terms Fuzzy Numbers

Excellent (α) (9, 10, 10)
Medium Excellent (β) (8, 9, 10)

Very Good (γ) (7, 8, 9)
Good (δ) (6, 7, 8)

Medium Good (ϵ) (5, 6, 7)
Fair (ζ) (4, 5, 6)

Medium Fair (η) (3, 4, 5)
Poor (θ) (2, 3, 4)

Very Poor (ι) (1, 2, 3)
Medium Terrible (κ) (0, 1, 2)

Terrible (λ) (0, 0, 1)

Step 3: Normalize the fuzzy decision matrix.
Normalization aims to eliminate the difference between the attributes in magnitude

and dimension, in which the normalized value is in the range of [0, 1]. Hence, the technical
problems generated by distinct measurement categories can be eliminated. The preliminary
data corresponding to each criterion is normalized by dividing it by the most dominant
criterion value. The element of a normalized decision matrix r̃ijk resulting from TFN

ξ̃
(u)
ijk =

(
fijk, gijk, hijk

)
is given by:

r̃ijk =

(
fijk

hmax
jk

,
gijk

hmax
jk

,
hijk

hmax
jk

)
, i = 1(1)m; j = 1(1)n; k = 1(1)p, for benefit criteria, and (24)

r̃ijk =

(
f min
jk

hijk
,

f min
jk

gijk
,

f min
jk

fijk

)
, i = 1(1)m; j = 1(1)n; k = 1(1)p, for cost criteria. (25)

Step 4: Define the fuzzy positive-ideal solution (PIS) and negative-ideal solution (NIS) with
regard to the decision matrix’s normalized values.

The PIS (Z̃+) and NIS (Z̃−) are as follows:

Z̃+ = {ζ̃+11, ζ̃+12, . . . , ζ̃+np}, where ζ̃+jk = max
i

{r̃ijk}, i = 1(1)m; j = 1(1)n; k = 1(1)p, and (26)

Z̃− = {ζ̃−11, ζ̃−12, . . . , ζ̃−np}, where ζ̃−jk = min
i
{r̃ijk}, i = 1(1)m; j = 1(1)n; k = 1(1)p. (27)

The positive ideal solution is typically determined by selecting the highest value
for each criterion in the dataset for benefit criteria and the lowest value for each crite-
rion for cost criteria. The negative ideal solution refers to the worst possible values for
each criterion in the dataset. The construction process involves selecting the lowest value
for each criterion in the dataset for benefit criteria and the highest value for each crite-
rion for cost criteria. These serve as benchmarks against which the alternatives are assessed.

Step 5: Construct the fuzzy interval for the decision matrices of normalized values, PIS
and NIS.

By using α-cut of triangular fuzzy number, the fuzzy interval of decision matrices for
the normalized values, PIS and NIS are given as follows:

• The interval decision matrix for the normalized values:
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C1 C2 . . . Cn
C11 C12 · · · C1a C21 C22 · · · C2b Cn1 Cn2 · · · Cnp

F̃ =

A1
A2
...

Am


ξ̃
(u)
111 ξ̃

(u)
112 · · · ξ̃

(u)
11a ξ̃

(u)
121 ξ̃

(u)
122 · · · ξ̃

(u)
12b · · · ξ̃

(u)
1n1 ξ̃

(u)
1n2 · · · ξ̃

(u)
1np

ξ̃
(u)
211 ξ̃

(u)
212 · · · ξ̃

(u)
21a ξ̃

(u)
221 ξ̃

(u)
222 · · · ξ̃

(u)
22b · · · ξ̃

(u)
2n1 ξ̃

(u)
2n2 · · · ξ̃

(u)
2np

...
...

. . .
...

...
...

. . .
...

. . .
...

...
. . .

...
ξ̃
(u)
m11 ξ̃

(u)
m12 · · · ξ̃

(u)
m1a ξ̃

(u)
m21 ξ̃

(u)
m22 · · · ξ̃

(u)
m2b · · · ξ̃

(u)
mn1 ξ̃

(u)
mn2 · · · ξ̃

(u)
mnp

 (28)

where (r̃ijk)α = (rL
ijk, rU

ijk) = (α(bijk − aijk) + aijk, cijk − α(cijk − bijk)) and α ∈ [0, 1].

• The interval decision matrix for the PIS and NIS, respectively:

Z̃+
α = {(ζ̃+11)α, (ζ̃+12)α, . . . , (ζ̃+np)α}, (29)

Z̃−
α = {(ζ̃−11)α, (ζ̃−12)α, . . . , (ζ̃−np)α}, (30)

where (ζ̃+jk)α = ((ζ+jk)
L, (ζ+jk)

U) = (α(b+jk − a+jk) + a+jk , c+jk − α(c+jk − b+jk)), (ζ̃
−
jk)α =

((ζ−jk)
L, (ζ−jk)

U) = (α(b−jk − a−jk) + a−jk , c−jk − α(c−jk − b−jk)) and α ∈ [0, 1].

The level of confidence in the expert’s fuzzy evaluation is measured by the α value;
the greater the α number, the more confident the expert is. This means that the experts’
evaluations of the ideal alternative and alternatives are closer to the a2 feasible value for the
corresponding triangular fuzzy number (a1, a2, a3), as represented by the related linguistic
phrases. Their confidence level is a reflection of their understanding of the credentials
and expertise of potential alternatives, as determined by the information provided. It is
anticipated that the proposed solution for this issue will lessen the burden placed on the
experts during the alternative selection process.

Step 6: Compute the weights of the sub-criteria.
This step presents the criteria weights in an MCDM problem utilizing a modified

technique of the fuzzy Method based on the Removal Effects of Criteria (MEREC) adapted
from [43]. To determine the weights of criteria, the fuzzy MEREC uses the removal effect of
each criterion on the performance of the alternatives. The criteria with the greater impact
on performance have received more weight. The fuzzy MEREC method for determining
objective weights is described in detail as follows.

Step 6.1: Defuzzify the fuzzy decision matrix.
The element of decision matrix is in TFN notation. When executing the algorithm,

the fuzzy values must be appropriately defuzzified in order to generate crisp values. De-
fuzzification turns fuzzy values towards crisp values. Different defuzzification procedures
result in distinct formulas or processes that provide diverse defuzzified values that could
be used in the generation of varied ranking outcomes. Defuzzification techniques include
the centroid method, center of mass, graded mean integration representation (GMIR), and
mean of maxima. In this study, the GMIR technique is used to determine the crisp value,
Crisp(ã), for TFN ã = (a1, a2, a3), which is defined as follows:

Crisp(ã) =
a1 + 4a2 + a3

6
. (31)

Step 6.2: Evaluate the overall performance of the alternatives.
The improved logarithm function is used to compute the performance of the alterna-

tives as a whole. It is developed from a non-linear function introduced by Shannon and
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Weaver [32] and has been revised by other scholars [51–53]. The following equation is used
in the computation:

Si =
1

np

n

∑
j=1

p

∑
k=1

ln(1 − rijk), i = 1(1)m. (32)

Step 6.3: Evaluate the performance of the alternatives by removing every criterion.
Based on the preceding, this step employs the logarithm function. As contrast to

Step 6.2, the performance of the alternatives is assessed by eliminating every criteria
separately. Given m sets of performances and p sub-criteria in n main criteria, let S

′
ijk

represent the overall performance of i-th alternative with respect to the elimination of the
jk-th criterion. The following equation is used to compute this step:

S
′
ijk =

1
np

n

∑
j=1

p

∑
h=1,h ̸=k

ln(1 − rijh), i = 1(1)m; j = 1(1)n; k = 1(1)p. (33)

Step 6.4: Determine the cumulative amount of the absolute deviations.
In this step, we compute the removal effect of the jk-th criterion based on the val-

ues given by Steps 6.2 and 6.3. Let djk denote the effect of removing the jk-th criterion.
The formula that follows can be utilized for computing djk values:

djk =
m

∑
i=1

|S′
ijk − Si|. (34)

Step 6.5: Determine the final weights of the criteria.
In this step, eliminating effects, djk from Step 6.4, are used to establish the objective

weight of each criterion. The symbol wjk represents the weight of the jk-th criterion.
The following equation can be used to calculate wjk:

wjk =
djk

∑
p
k=1 djk

, j = 1(1)n. (35)

Step 7: Compute the separation measures d+i and d−i of interval values of fuzzy (r̃ijk)α

from fuzzy intervals of PIS and NIS, respectively, using the given divergence measures as
in Equations (18)–(21).

Step 8: Compute the relative closeness coefficient, CCi.
The closeness coefficient CCi for alternatives is calculated by using given equation:

CCi =
d−i

d−i + d+i
. (36)

The closeness coefficient quantifies the proximity of an alternative to the NIS in rela-
tion to the overall distance between the NIS and PIS. Alternatives with a higher closeness
coefficient value indicate better performance in relation to the worst-case scenario, as they
are viewed as being nearer to the PIS and further away from the NIS.

Step 9: Rank the alternatives.
Sort the alternatives from top to bottom based on their performance, with the greatest

value of CCi being the best alternative.

6. Application of Staff Performance Appraisal

Through a process of comparative analysis, the outcomes of the fuzzy divergence
measure are validated and demonstrated to be consistent with those of the Multi-Criteria
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Decision-Making (MCDM) methods currently in use. Microsoft software, specifically Visual
C++ and Excel, were utilized for evaluating the suggested method and conducting the
necessary statistical tests. To scrutinize and verify the efficacy of the proposed approach,
data from [42,56] and a real case study involving staff performance reviews at educational
institutes are referenced as Case Studies 1 and 2, respectively.

(i) Case Study 1:
Let A = {A1, A2, . . . , A25} represent the university’s selected candidates, who are eval-
uated using four primary criteria C = {C1, C2, C3, C4} and 13 sub-criteria
S = {C11, C12, . . . , C41}.

(ii) Case Study 2:
Let A = {A1, A2, . . . , A20} represent the university’s selected candidates, who are evalu-
ated using four primary criteria C = {C1, C2} and eight sub-criteria S = {C11, C12, . . . , C22}.

For each case study, an expert group E = {E1, E2} was formed to evaluate the al-
ternatives from a linguistic perspective. Figures 2 and 3 illustrate the primary criteria,
sub-criteria, and alternatives involved in these assessments, while Appendix A provides
the performance assessments of the alternatives from each expert. The proposed method
was employed to measure and rank all candidates based on the defined criteria.

Figure 2. The structural hierarchy for staff performance review for Case Study 1.



Mathematics 2024, 12, 714 17 of 28
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                               

      

 

 

 

 

 

 

 

 

 

Identifying the 
best staff 

Work Execution 
( 1C )  

Personal 
Attributes ( 2C ) 

Execution of Research 
13( )C  

Publication in Academic 
Journal 

14( )C   

Knowledge and Expertise 
15( )C  

Ethics and Personal     
Behaviour 

21( )C  

Initiative for Objective 
Achievement 

22( )C   

Contributions other than Office 
Duties 16( )C  

Teaching of Student 11( )C   

Supervision of Student
12( )C  

Candidate 20 20( )A  

 

Candidate 9 9( )A  

 Candidate 10 10( )A  

 

Candidate 7
7( )A  

 Candidate 8 8( )A  

 

Candidate 5 5( )A  

 Candidate 6 6( )A  

 

Candidate 3 3( )A  

 Candidate 4 4( )A  

 

Candidate 1 1( )A  

 Candidate 2 2( )A  

 

Figure 3. The structural hierarchy for staff performance review for Case Study 2.

The results for the criteria weights, performance scores of staff, and their rankings
within the institution are obtained through the application of the fuzzy divergence measure,
as described in Section 5. Tables 2 and 3 present the findings of the primary criteria weights
established by the university management, while Tables 4 and 5 display the results of the
sub-criteria weights generated using the fuzzy MEREC.

Table 2. Expert assessment regarding the primary criteria weights for Case Study 1.

Main Criteria Weight

C1 0.50
C2 0.25
C3 0.20
C4 0.05

Table 3. Expert assessment regarding the primary criteria weights for Case Study 2.

Main Criteria Weight

C1 0.80
C2 0.20

The rankings of alternatives corresponding to the closeness coefficient for α = 0.1, 0.5,
and 0.9 are displayed in Tables 6 and 7, and the rankings of the alternatives in descending
order are shown in Tables 8 and 9.



Mathematics 2024, 12, 714 18 of 28

Table 4. Sub-criteria weights utilizing the fuzzy MEREC for Case Study 1.

Primary Criteria Sub-Criteria Weight, wjk

C1

C11 0.2892
C12 0.1776
C13 0.1818
C14 0.1742
C15 0.1772

C2

C21 0.3437
C22 0.3317
C23 0.3246

C3

C31 0.2619
C32 0.2529
C33 0.2490
C34 0.2362

C4 C41 1.0000

Table 5. Sub-criteria weights utilizing the fuzzy MEREC for Case Study 2.

Primary Criteria Sub-Criteria Weight, wjk

C1

C11 0.1989
C12 0.1181
C13 0.2022
C14 0.1722
C15 0.1039
C16 0.2048

C2
C21 0.4637
C22 0.5363

Table 6. Ranking of alternatives corresponding to closeness coefficient for α = 0.1, α = 0.5,
and α = 0.9 for Case Study 1.

Alternative
Ranking

α = 0.1 α = 0.5 α = 0.9

A1 7 7 7
A2 6 6 6
A3 4 4 4
A4 7 7 7
A5 3 3 3
A6 5 5 5
A7 7 7 7
A8 13 13 13
A9 16 16 17
A10 20 20 20
A11 13 13 13
A12 22 22 22
A13 19 18 18
A14 23 23 23
A15 25 25 25
A16 17 17 16
A17 18 19 19
A18 12 12 12
A19 7 7 7
A20 2 2 2
A21 1 1 1
A22 7 7 7
A23 13 13 13
A24 24 24 24
A25 21 21 21
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Table 7. Ranking of alternatives corresponding to closeness coefficient for α = 0.1, α = 0.5, and
α = 0.9 for Case Study 2.

Alternative
Ranking

α = 0.1 α = 0.5 α = 0.9

A1 1 1 1
A2 14 14 14
A3 3 3 3
A4 8 8 8
A5 2 2 2
A6 18 17 17
A7 6 6 6
A8 10 10 10
A9 15 15 15
A10 4 4 4
A11 5 5 5
A12 20 20 20
A13 17 18 18
A14 19 19 19
A15 7 7 7
A16 9 9 9
A17 16 16 16
A18 13 13 13
A19 11 11 11
A20 12 12 12

Table 8. Rankings of the alternatives in descending order for α = 0.1, 0.5, and 0.9 for Case Study 1.

α Value Ranking

0.1 A21 ≻ A20 ≻ A5 ≻ A3 ≻ A6 ≻ A2 ≻ A1 ≻ A1 ≻ A1 ≻ A1 ≻ A1 ≻ A18 ≻ A8 ≻
A8 ≻ A8 ≻ A9 ≻ A16 ≻ A17 ≻ A13 ≻ A10 ≻ A25 ≻ A12 ≻ A14 ≻ A24 ≻ A15

0.5 A21 ≻ A20 ≻ A5 ≻ A3 ≻ A6 ≻ A2 ≻ A1 ≻ A1 ≻ A1 ≻ A1 ≻ A1 ≻ A18 ≻ A8 ≻
A8 ≻ A8 ≻ A9 ≻ A16 ≻ A13 ≻ A17 ≻ A10 ≻ A25 ≻ A12 ≻ A14 ≻ A24 ≻ A15

0.9 A21 ≻ A20 ≻ A5 ≻ A3 ≻ A6 ≻ A2 ≻ A1 ≻ A1 ≻ A1 ≻ A1 ≻ A1 ≻ A18 ≻ A8 ≻
A8 ≻ A8 ≻ A16 ≻ A9 ≻ A13 ≻ A17 ≻ A10 ≻ A25 ≻ A12 ≻ A14 ≻ A24 ≻ A15

Table 9. Rankings of the alternatives in descending order for α = 0.1, 0.5, and 0.9 for Case Study 2.

α Value Ranking

0.1 A1 ≻ A5 ≻ A3 ≻ A10 ≻ A11 ≻ A7 ≻ A15 ≻ A4 ≻ A16 ≻ A8 ≻ A19 ≻ A20 ≻
A18 ≻ A2 ≻ A9 ≻ A17 ≻ A13 ≻ A6 ≻ A14 ≻ A12

0.5 A1 ≻ A5 ≻ A3 ≻ A10 ≻ A11 ≻ A7 ≻ A15 ≻ A4 ≻ A16 ≻ A8 ≻ A19 ≻ A20 ≻
A18 ≻ A2 ≻ A9 ≻ A17 ≻ A6 ≻ A13 ≻ A14 ≻ A12

0.9 A1 ≻ A5 ≻ A3 ≻ A10 ≻ A11 ≻ A7 ≻ A15 ≻ A4 ≻ A16 ≻ A8 ≻ A19 ≻ A20 ≻
A18 ≻ A2 ≻ A9 ≻ A17 ≻ A6 ≻ A13 ≻ A14 ≻ A12

As observed in the tables for Case Study 1, the optimal alternative for α = 0.1, 0.5, and
α = 0.9 belongs to A21. Conversely, the least favorable alternative is consistently identified
as A15 for all values of α. For Case Study 2, the optimal and least favorable alternatives
for all values of α are A1 and A12, respectively. These results enable experts to discern the
variations in rankings corresponding to their level of confidence during the evaluation of
alternatives. The values of α = 0.1, 0.5, and 0.9 signify the confidence levels of the experts,
representing very low, moderate, and very high confidence, respectively.

6.1. Comparison with Existing Methods

To observe the variations in ranking, the alternatives were additionally assessed
and sorted using other divergence measure techniques and fuzzy TOPSIS. The results of
this study are subsequently compared with those from other studies employing different
methodologies, as outlined in Tables 10 and 11 below.
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Table 10. Ranking order of alternatives using various methods for Case Study 1.

Methods Principal Measure Ranking Order

Fuzzy TOPSIS by
Kabak et al. [57]

Fuzzy sets and Euclidean dis-
tance

A21 ≻ A20 ≻ A3 ≻ A6 ≻ A5 ≻ A1 ≻ A1 ≻ A1 ≻ A1 ≻ A1 ≻
A16 ≻ A2 ≻ A18 ≻ A9 ≻ A13 ≻ A8 ≻ A8 ≻ A8 ≻ A17 ≻ A10 ≻
A25 ≻ A12 ≻ A14 ≻ A24 ≻ A15

Fuzzy Divergence Measures
by Joshi and Kumar [39]

Intuitionistic fuzzy sets and
divergence measure

A21 ≻ A20 ≻ A5 ≻ A3 ≻ A6 ≻ A2 ≻ A1 ≻ A1 ≻ A1 ≻ A1 ≻
A1 ≻ A18 ≻ A8 ≻ A8 ≻ A8 ≻ A9 ≻ A16 ≻ A17 ≻ A13 ≻ A10 ≻
A25 ≻ A12 ≻ A14 ≻ A24 ≻ A15

Fuzzy Divergence Measures
by Rani et al. [40]

Fuzzy sets and divergence
measure

A21 ≻ A20 ≻ A5 ≻ A3 ≻ A6 ≻ A2 ≻ A18 ≻ A1 ≻ A1 ≻ A1 ≻
A1 ≻ A1 ≻ A8 ≻ A8 ≻ A8 ≻ A9 ≻ A16 ≻ A17 ≻ A13 ≻ A10 ≻
A14 ≻ A25 ≻ A12 ≻ A24 ≻ A15

Proposed Method Fuzzy sets, α-cut, and diver-
gence measure

A21 ≻ A20 ≻ A5 ≻ A3 ≻ A6 ≻ A2 ≻ A1 ≻ A1 ≻ A1 ≻ A1 ≻
A1 ≻ A18 ≻ A8 ≻ A8 ≻ A8 ≻ A9 ≻ A16 ≻ A13 ≻ A17 ≻ A10 ≻
A25 ≻ A12 ≻ A14 ≻ A24 ≻ A15

Table 11. Ranking order of alternatives using various methods for Case Study 2.

Methods Principal Measure Ranking Order

Fuzzy TOPSIS by
Kabak et al. [57]

Fuzzy sets and Euclidean dis-
tance

A1 ≻ A5 ≻ A3 ≻ A10 ≻ A11 ≻ A7 ≻ A15 ≻ A16 ≻ A4 ≻ A8 ≻
A20 ≻ A9 ≻ A19 ≻ A18 ≻ A2 ≻ A17 ≻ A13 ≻ A6 ≻ A14 ≻ A12

Fuzzy Divergence Measures
by Joshi and Kumar [39]

Intuitionistic fuzzy sets and
divergence measure

A1 ≻ A5 ≻ A3 ≻ A10 ≻ A11 ≻ A7 ≻ A15 ≻ A4 ≻ A19 ≻ A16 ≻
A8 ≻ A2 ≻ A20 ≻ A18 ≻ A9 ≻ A13 ≻ A17 ≻ A6 ≻ A14 ≻ A12

Fuzzy Divergence Measures
by Rani et al. [40]

Fuzzy sets and divergence
measure

A1 ≻ A5 ≻ A3 ≻ A10 ≻ A11 ≻ A7 ≻ A15 ≻ A4 ≻ A19 ≻ A16 ≻
A8 ≻ A2 ≻ A18 ≻ A9 ≻ A6 ≻ A20 ≻ A17 ≻ A13 ≻ A14 ≻ A12

Proposed Method Fuzzy sets, α-cut, and diver-
gence measure

A1 ≻ A5 ≻ A3 ≻ A10 ≻ A11 ≻ A7 ≻ A15 ≻ A4 ≻ A16 ≻ A8 ≻
A19 ≻ A20 ≻ A18 ≻ A2 ≻ A9 ≻ A17 ≻ A6 ≻ A13 ≻ A14 ≻ A12

The rankings of fuzzy divergence measures, fuzzy TOPSIS, and the proposed tech-
nique for staff performance rating exhibit a slightly different order. Despite these variations,
all approaches converge to the same result, identifying the similar optimal alternatives for
the departments.

The proposed divergence measure approach presents several advantages. To stream-
line the evaluation process for experts, language variables are initially used for alternative
assessments, eliminating the need for numerical scaling. Subsequently, the fuzzy MEREC
method is employed to assess criteria weights, representing one of the most effective ap-
proaches for determining objective weights. This eliminates the subjectivity associated with
arbitrary decisions made by experts, who may occasionally make errors or assign grades
dishonestly. Furthermore, when experts utilize the α-cut approach to provide ratings, they
can discern the range of rankings as their confidence levels shift. The degree of confidence
is contingent on the experts’ awareness of the credentials and experience of alternatives
based on the provided information. Lastly, the introduction of a generalized divergence
measure is proposed. Some of the preceding divergence measures have the limitation
that they can only be used after the defuzzification procedure has been concluded. If the
defuzzification procedure is disregarded, divergence measures cannot evaluate the value
in the fuzzy interval when the value is either 0 or 1. Unlike previous existing measures,
the generalized divergence measure can evaluate any rating of an alternative and prevents
results from becoming anomalous. This adds robustness to the methodology, ensuring its
applicability across diverse rating scenarios.

As per Tables 12 and 13, notable relationships are evident in the correlation coefficients
across alternative rankings assessed using various Multi-Criteria Decision-Making (MCDM)
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techniques and the proposed approach. The changes in ranking for each alternative based
on these techniques are minimal, as all correlation coefficient values exceed 0.93. For a
comprehensive comparison, we chose to contrast the findings using a technique that
adheres to the conventional TOPSIS concept, as discussed by Kabak et al. [57], since the
proposed approach aligns with TOPSIS principles. In the context of the TOPSIS concept,
the alternative rankings of the proposed approach are deemed acceptable.

Subsequently, the outcomes of the proposed approach are compared to those of
techniques employing divergence measure concepts. Here, we examine the CPU time,
which represents the duration a CPU is utilized for the operational assessment process,
as displayed in Tables 14 and 15. Given that the proposed approach requires the least CPU
time when compared to the other two techniques, it is reasonable to conclude that it is the
superior approach.

Table 12. Correlation coefficient values between alternative rankings computed using different
MCDM methods for Case Study 1.

Fuzzy TOPSIS by
Kabak et al. [57]

Fuzzy Divergence
Measures by Joshi and

Kumar [39]

Fuzzy Divergence
Measures by

Rani et al. [40]
Proposed Method

Fuzzy TOPSIS by
Kabak et al. [57] 1.0000

Fuzzy Divergence
Measures by Joshi and

Kumar [39]
0.9521 1.0000

Fuzzy Divergence
Measures by

Rani et al. [40]
0.9314 0.9869 1.0000

Proposed Method 0.9550 0.9993 0.9861 1.0000

Table 13. Correlation coefficient values between alternative rankings computed using different
MCDM methods for Case Study 2.

Fuzzy TOPSIS by
Kabak et al. [57]

Fuzzy Divergence
Measures by Joshi and

Kumar [39]

Fuzzy Divergence
Measures by

Rani et al. [40]
Proposed Method

Fuzzy TOPSIS by
Kabak et al. [57] 1.0000

Fuzzy Divergence
Measures by Joshi and

Kumar [39]
0.9654 1.0000

Fuzzy Divergence
Measures by

Rani et al. [40]
0.9459 0.9820 1.0000

Proposed Method 0.9850 0.9865 0.9759 1.0000

Table 14. Average CPU time for MCDM methods for Case Study 1.

Methods Average CPU Time (ms)

Fuzzy Divergence Measures by Joshi and Kumar [39] 142.187
Fuzzy Divergence Measures by Rani et al. [40] 106.250
Proposed Method 79.688

Table 15. Average CPU time for MCDM methods for Case Study 2.

Methods Average CPU Time (ms)

Fuzzy Divergence Measures by Joshi and Kumar [39] 132.813
Fuzzy Divergence Measures by Rani et al. [40] 101.563
Proposed Method 75.521



Mathematics 2024, 12, 714 22 of 28

6.2. Sensitivity Analysis

The present study used sensitivity analysis to examine the impact of varying criteria
weights on ranks, with a particular focus on the influence of specific criterion weight
modification. Since the weights assigned to criteria have a substantial impact on the
outcomes of rankings, it is necessary to assess the changes made to the values of these
weights. Initially, the weight of every single criterion is modified by increasing or lowering
it by 5%, 10%, 20%, 50%, and 100%. To ensure that the criteria weights are set to a value of
1, it is necessary to proportionally decrease the weights of the other criteria when a specific
criterion weight is increased. In other words, when a criterion changes ∆, the weights of
the other criteria should be adjusted accordingly using the provided formula [58]:

w′
j =

wj

∑n
j=1 wj

(
n

∑
j=1

wj ± ∆

)
. (37)

Figures 4–7 depict the correlation coefficient values between the initial ranking and
the ranking obtained by decreasing and increasing the criteria weight for Case Studies 1
and 2, respectively. Based on the figures, the criterion that has the greatest impact on the
ranking of alternatives for each case study is shown in Table 16.

Figure 4. Correlation coefficient value between original ranking and the ranking with decreasing
criteria weight for Case Study 1.

Figure 5. Correlation coefficient value between original ranking and the ranking with increasing
criteria weight for Case Study 1.
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Figure 6. Correlation coefficient value between original ranking and the ranking with decreasing
criteria weight for Case Study 2.

Figure 7. Correlation coefficient value between original ranking and the ranking with increasing
criteria weight for Case Study 2.

Table 16. The most affecting criterion when varying its weight for different case studies.

Category Changes in Criterion Weight Most Affecting Criterion

Case Study 1 Decreasing C13
Increasing C14

Case Study 2 Decreasing C12
Increasing C15

For Case Study 1, when the weight assigned to each criterion is reduced, it becomes
clear that criterion C13 exerts the most influence on the ranking of staff performance.
While increasing the weight of each criterion, it turns out that criteria C14 gives the most
impact on the ranking of staff performance. Criterion C13 and C14 are defined as the
quantity of work regarding efforts and initiatives to attain work perfection and time
management, respectively. It reflects that the execution of work in terms of its quality
represents an important responsibility that staff members must fulfill with exceptional
proficiency. Implementing effective time management can help staff enhance productivity,
decrease stress, and attain a healthier work–life balance.

For Case Study 2, changing the weight assigned to each criterion reveals that criteria
C12 and C15 exert the greatest influence on the ranking of staff performance when reducing
and increasing criterion weight, respectively. Criterion C12 refers to the supervision of
students, while criterion C15 is related to the knowledge and expertise of the staff. The dec-
laration stresses the importance of supervising students as staff members, emphasizing that
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neglecting this responsibility might have a detrimental impact on the achievement score of
a staff member. Similarly, the influence of knowledge and expertise on the achievement
score of a staff member should be considered.

7. Conclusions

The evaluation of an employee’s performance and an understanding of their potential
for future development constitute integral aspects of performance assessment, crucial for
the growth of any organization or institution. To execute performance appraisal, diverse
decision-making strategies have been developed. This study introduced the generalized
divergence measure, a modified technique enhancing current distance measures. It syn-
ergizes with the TOPSIS approach to address MCDM challenges. Given that evaluations
often rely on qualitative measurements, fuzzy linguistic variables are employed to cal-
culate alternative scores. In this paper, an illustrative example is presented to showcase
the effectiveness of the proposed method. Despite the modification in the perspective of
performance calculation, the study’s outcomes align consistently with current distance
measures. At this level, the suggested approach exhibits a heightened capacity to address
MCDM issues in fuzzy sets, particularly when alternatives are evaluated using fuzzy values.
The incorporation of various fuzzy intervals in this research could further broaden the
scope of this technique.

The results of the proposed approach are compared with fuzzy TOPSIS by Kabak et al. [57]
and fuzzy divergence measures by Joshi and Kumar [39] and Rani et al. [40] using a
numerical example. Correlation coefficient values of the results indicate that the alternative
rankings of the suggested approach are more likely to align with the pattern of present
distance measures. Consequently, the proposed approach operates consistently with other
techniques. The CPU test is employed to determine the most efficient method among
those under consideration. The test reveals that the proposed approach’s alternative
ranking generation consumes the least CPU time compared to other divergence measures.
In essence, the proposed approach is deemed credible, reliable, and the most efficient
methodology among all those compared for determining alternative rankings. Finally, this
study provided sensitivity analysis for examining the impacts of criterion weights on the
performance ranking of the alternatives.

While the evaluation procedure in this research was limited to a single MCDM appli-
cation, the extension of the proposed technique with interval-valued intuitionistic fuzzy-
divergence measures to real-world problems, such as establishing transportation systems,
selecting financial goods, choosing suppliers, and addressing transportation options, war-
rants consideration.
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Appendix A

Table A1. Performance assessments of the alternatives by each of the experts for Case Study 1.

C11 C12 C13 C14 C15 C21 C22 C23 C31 C32 C33 C34 C41

A1
E1 α β β β β β β β α α β β β

E2 α β β β β β β β α α β β β

A2
E1 α β β β β α β β β α β β β

E2 α β β β β α β β β α β β β

A3
E1 α β β β β β β β β β β β β

E2 α β β β β β β β β β β β β

A4
E1 α γ β β β β β β β β β γ γ

E2 α γ β β β β β β β β β γ γ

A5
E1 α β β γ β β β γ γ γ γ β γ

E2 α β β γ γ β β γ γ γ γ β γ

A6
E1 α β β β γ β β β α β β β β

E2 α β β β γ β β β α β β β β

A7
E1 α β β β β α α α β α α α β

E2 α β β β β α α α β α α α β

A8
E1 α β β β β β β β β γ β β γ

E2 α β β β β β β β β γ β β γ

A9
E1 α β γ γ β β β β β β β β β

E2 α β γ γ β β β β β β β β β

A10
E1 β γ γ γ β β β β α β β β β

E2 β γ γ γ β β β β α β β β β

A11
E1 β β β β β β β β β β β β β

E2 β β β β β β β β β β β β β

A12
E1 α α α α α α α α α α α α β

E2 α α α α α α α α α α α α γ

A13
E1 β β β β β β β β β β β β γ

E2 β β β β β β β β β β β β γ

A14
E1 α β β β β β β α α α α α β

E2 α β β β β β β α α α α α β

A15
E1 α γ γ γ β β β β β β β β γ

E2 α γ γ γ β β β β β β β β γ

A16
E1 α α α β β α α α α α α β β

E2 α α α β β α α α α α α β β

A17
E1 α β β β β β β β α β β α β

E2 α β β β β β β β α β β α β

A18
E1 α β β β β β β β α α α β γ

E2 α β β β β β β β α α α β γ

A19
E1 α γ β β β β β β β β β β γ

E2 α γ β β β β β β β β β β γ

A20
E1 α β β β β α α β β β β α β

E2 α β β β β α α β β β β α β

A21
E1 β γ β β β β β β β β β β γ

E2 β γ β β β β β β β β β β γ

A22
E1 α β β β β β β γ β β α β β

E2 α β β β β β β γ β β α β β

A23
E1 α β β β γ β β β β β β β β

E2 α β β β γ β β β β β β β β

A24
E1 α β β β β α β β β β β β α

E2 β β β β β α β β β β β β α

A25
E1 α β β β β β β β α α α β β

E2 α β β β β β β β α α α β β
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Table A2. Performance assessments of the alternatives by each of the experts for Case Study 2.

C11 C12 C13 C14 C15 C16 C21 C22

A1
E1 α α α α β α α α

E2 α α α α β α α α

A2
E1 α γ α α ϵ γ α α

E2 α γ α α ϵ γ α α

A3
E1 α β α α β α α α

E2 α β α α β α α α

A4
E1 α γ α α γ α β α

E2 α γ α α γ α β α

A5
E1 α α α α β α β α

E2 α α α α β α β α

A6
E1 γ γ α α δ ϵ α α

E2 γ γ α α δ ϵ α α

A7
E1 α α α γ β α α α

E2 α α α γ β α α α

A8
E1 α δ α α β α β α

E2 α δ α α β α β α

A9
E1 α α α ϵ γ α α α

E2 α α α ϵ γ α α α

A10
E1 β α α β α α α α

E2 β α α β α α α α

A11
E1 α γ α α β α β α

E2 α γ α α β α β α

A12
E1 α ϵ θ α β α γ α

E2 α ϵ θ α β α γ α

A13
E1 β δ δ γ β α α β

E2 β δ δ γ β α α β

A14
E1 α η α η β α β α

E2 α η α η β α β α

A15
E1 α γ α α γ α α α

E2 α γ α α γ α α α

A16
E1 α δ α α β α α α

E2 α δ α α β α α α

A17
E1 α δ α γ ζ α α α

E2 α δ α γ ζ α α α

A18
E1 α δ α α ϵ α β β

E2 α δ α α ϵ α β β

A19
E1 β γ α β β α γ β

E2 β γ α β β α γ β

A20
E1 α α α α ζ α α α

E2 α α α α ζ α α α
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