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A B S T R A C T

Outlier detection and classification algorithms play a critical role in statistical analysis. The reweighted fast
consistent and high breakdown point (RFCH) estimator is an outlier-resistant estimator of multivariate location
and dispersion. Still, some difficulties hamper the application of the RFCH in high-dimensional settings. One
main difficulty is that the RFCH cannot be applied when the dimension exceeds the sample size. We propose
a modified reweighted fast consistent and high breakdown point (MRFCH) estimator to make it applicable
to high-dimensional settings. The basic idea of our proposed method is to modify the Mahalanobis distance
so that it uses only the diagonal elements of the scatter matrix in the computation of the RFCH algorithm.
The proposed method preserves the robustness properties of the RFCH estimator. As a result, we achieve a
robust and efficient high-dimensional procedure for computing location and scatter matrix estimates and a
powerful outlier detection method. One of the main advantages of our proposed procedure over the existing
RFCH is that it can be applied to both low and high-dimensional datasets. Based on the real-life datasets
and simulation study, our proposed method showed promising results irrespective of sample size, dimensions,
amount of contamination, computational time, and distance of the contamination. Thus, the new proposed
algorithm can be applied to solve the problem of regression outliers in high-dimensional data (HDD) and
serve as a better alternative to the minimum regularized covariance determinant (MRCD) estimator.
. Introduction

Most real-world application datasets contain outliers, especially in
iomedical and chemometrics research, where multiple features are
sed to monitor a dynamic or complex system. The presence of outliers
inders the use of data in modeling processes, analysis, and control [1–
]. The reliable way to tackle the problem of outliers is to allow each
bservation to speak for itself by considering all the data points with
ull measurement. Excluding data points may lead to the wrong result
nd a misrepresentation of the study. There are a number of statistical
rocedures that can be used to test for outliers, depending on the
cenario.

In general, many scholars have explored the problems and solu-
ions of outlier detection by providing different methods, methodolo-
ies, datasets, tools, and challenges, in addition to some open re-
earch questions and directions. Among them, several review papers
re nonspecific and provide a comprehensive synopsis of outlier de-
ection methods [5–8]. While some focus on low-dimensional methods
nd applications, others only center on high-dimensional data with
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specific types of techniques, application areas, and datasets. The out-
lier detection techniques can be categorized into unsupervised learn-
ing [9] and supervised learning algorithms [10]. The unsupervised in-
clude distance-based, density-based, and model-based procedures [11].
Closely linked to our proposal are those concerned with distance-based
and high-dimensional datasets. The traditional Mahalanobis have been
employed [12–16].

It is now evident that classical outlier detection techniques are
not robust [17–20]. As an alternative, the minimum volume ellipsoid
(MVE) [21,22] and minimum covariance determinant (MCD) [23,24]
are put forward. Comparisons between the MCD and reweighted fast,
consistent, and high breakdown points [25] show that the MCD is less
robust and time-consuming, especially where the data points are large.
Additionally, these procedures do not work well when the data is sparse
and the dimension is high. [26,27] deliberated extensively on these
limitations. [28,29] conducted a review of studies on outlier detection
in high-dimensional settings. [30] proposed a procedure based on
the transformed distance using the principal component analysis to
detect outliers in high-dimensional space. [31] converted the minimum
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covariance determinant estimator into the regularized minimum covari-
ance determinant (MRCD). [32] proposed the minimum diagonal prod-
uct (MDP) estimators to detect outliers in high-dimensional datasets.
Producing satisfactory results in terms of Type II error compared to the
Stahel–Donoho outlyingness procedure of [33], the principal compo-
nent outlier detection of [30], and the regularized minimum covariance
determinant of [34]. [35] combined the ideas in [31,32] to detect
outliers in high-dimensional space. It is worth noting that selecting a
suitable threshold is another big challenge facing both the traditional
and robust distance procedures [15,36,37]. The threshold based on the
quantile is the most frequently used, and this proved to be less robust
against outliers, especially when the data is large and the dimension is
high [35,38]. A clear shortcoming of this method is that it uses a fixed
quantile for outlier detection, which reveals too many, if not all, points
as outliers. [39,40] propose alternative cut-off points based on high
leverage potential and Mahalanobis distances to tackle the problem.
For a detailed explanation, see [41].

To address these shortcomings, a cut-off point introduced in [41]
is used to classify observations as inliers or outliers. Owing to the
fact that the Mahalanobis distance based on MRCD is either very
expensive to compute, inconsistent, or has a low breakdown, it has
become paramount to provide fast, consistent, and high breakdown
multivariate estimators that can be used to detect and classify outliers
in high-dimensional space.

[25] introduced a reweighted fast consistent and high breakdown
(RFCH) estimator of location and scatter matrix, which proved to
be faster and more resistant to outliers than the robust MCD con-
structed by [23]. The RFCH estimator can be used to calculate correla-
tion estimates [42,43] and perform outlier diagnostics in multivariate
space [44,45]. Its major drawback is that it is difficult to compute when
𝑝 ≫ 𝑛. In this way, there is no guarantee that the reweighting step can
be achieved since it involves calculating the inverse of the covariance
matrix, which leads to singularity. The curse of dimensionality poses
difficulties across numerous disciplines [46,47], especially in big data
analytics and high-dimensional space. Understanding these difficulties
and applying appropriate procedures is critical to providing generalized
and robust techniques. These drawbacks create a gap in the availability
of consistent and high breakdown estimators in high-dimensional data
where the number of predictor variables exceeds the number of ob-
servations. Additionally, to our knowledge, no work has extended the
reweighted fast, consistent, and high breakdown estimator to make it
applicable in high-dimensional settings. Inspired by these limitations,
we provide a modification of the RFCH based on the Mahalanobis
distances, using only the diagonal elements of the covariance matrix
to make it applicable to high dimensions [32]. Our specific objectives
in this paper are threefold: (i) to modify the reweighted fast, consistent,
and high breakdown estimator to be used to estimate location and
scatter matrix in high dimensions. (ii) to develop an outlier detection
method based on the modified reweighted fast, consistent, and high
breakdown estimator in high dimensions; (iii) to show using simulation
and real data examples that the modified method performs and scales
well for both low and high-dimensional datasets.

In the rest of this paper, we present the basic concept of multivariate
Mahalanobis distance and detail explanations of the reweighted fast
consistent high breakdown point estimator in Section 2. Description
of the modified reweighted fast, consistent, and high breakdown point
estimator algorithm and the new methodology for the outlier detection
algorithm are given in Sections 3 and 4. We report the simulation study
in Section 5. As for Section 6, it introduces several real-life datasets
for the application of the proposed technique in high-dimensional
space. Summary, conclusion, and directions for future research and
applications are highlighted in Section 7.
2

2. Multivariate distance measure

Multivariate distance measures are widely applied to quantify the
similarity and dissimilarity between two or more sets of multivari-
ate data points. These measures are important in various fields [48,
49] such as image processing [50], fraud detection [51], and fault
identification in industrial process and control [52]. Some common
multivariate distance measures in statistics include the Euclidean dis-
tance, the Mahalanobis distance, the correlation distance, and the
Minkowski distance. Among them, Mahalanobis distance is widely used
in multivariate outlier detection and classification. Therefore, this pa-
per will focus mainly on developing Mahalanobis distance-based outlier
detection in high-dimensional settings.

2.1. Robust mahalanobis distance measures

In statistics, the Mahalanobis distance is used to calculate the dis-
tance between a particular point and the center of a dataset with
a mean and covariance matrix. For example, in a multivariate set-
ting, we assume that the observations are in the 𝑛 × 𝑝 data matrix
𝑋 = (𝑥𝑖1,… , 𝑥𝑖𝑝), where 𝑥𝑖 = (𝑥1,… , 𝑥𝑛) represents the 𝑖th data
point, 𝑛 stands for sample size, and 𝑝 is the number of variables. The
Mahalanobis distance (MD) can be calculated using the formula:

𝐌𝐃𝑖 =
√

(

𝑥𝑖 − 𝑇 (𝑋)
)𝑇 𝐶(𝑋)−1

(

𝑥𝑖 − 𝑇 (𝑋)
)

(1)

here 𝑇 (𝑋) is the classical mean vector and 𝐶(𝑋) represents the
lassical variance covariance matrix. Despite its numerous applications
nd popularity, the Mahalanobis distance is known to be sensitive to the
resence of outliers in a dataset [49,53]. This problem is related to the
fficiency and robustness of the mean and covariance matrix estimates
nd the nature of the cut-off point formula. It is interesting to note that
utliers can be seen as a cause of bias or considered a potential data
oint that allows researchers to understand the process under investi-
ation. This implies that employing a robust and systematic procedure
o detect and classify outliers is critical. [54] proposed a minimum
ovariance determinant (MCD) algorithm for outliers to replace the
(𝑋) and 𝐶(𝑋) in Eq. (1). The MCD was developed in order to achieve
robust Mahalanobis distance-based outlier detection procedure. The

dea behind MCD is to search for ℎ data points out of 𝑛 observations
hose covariance has the minimum determinant. [23] have shown

hat Mahalanobis distance based on MCD is highly time-consuming
nd substituted it with the fast MCD estimator. The fast MCD that is
btained calculates a minimum covariance determinant subset with a
aster runtime, making it applicable for large datasets. Thus, the robust
ahalanobis distance (RMD) based outlier detection [23] is calculated

y:

𝐌𝐃𝑖 =
√

(

𝑥𝑖 − 𝜇𝑀𝐶𝐷
)𝑇 𝛴−1

𝑀𝐶𝐷
(

𝑥𝑖 − 𝜇𝑀𝐶𝐷
)

(2)

where 𝜇𝑀𝐶𝐷 is a vector of robust mean and 𝛴𝑀𝐶𝐷 is the robust
covariance matrix obtained from the minimum covariance determinant
estimators. Several other robust Mahalanobis distance-based outlier
detection algorithms have been proposed to handle the problem of out-
liers [41,55,56]. In another way, a fast, consistent, and high breakdown
point estimator is proposed by [25] to find the location and scatter
matrix as well as to compute the robust Mahalanobis distance-based
outlier detection procedure. Its primary objective is to provide robust-
ness against contaminated observations and realize high breakdown
point estimates while achieving maximum computational efficiency.
The Mahalanobis distance based on the reweighted fast, consistent, and
high breakdown estimator is given by:

𝐑𝐌𝐃𝑖,𝑅𝐹𝐶𝐻 =
√

(

𝑥𝑖 − 𝜇𝑅𝐹𝐶𝐻
)𝑇 𝛴−1

𝑅𝐹𝐶𝐻
(

𝑥𝑖 − 𝜇𝑅𝐹𝐶𝐻
)

(3)

where 𝜇𝑅𝐹𝐶𝐻 is a vector of robust mean and 𝛴𝑅𝐹𝐶𝐻 is the robust
covariance matrix obtained from the reweighted fast consistent and
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high breakdown point estimator. The efficiency and robustness of the
RFCH algorithm have been discussed [44,57,58].

Recently, [45] notes that the RFCH is fast and consistent, even faster
than the MCD algorithm. Unfortunately, all the above-mentioned Ma-
halanobis distance-based outlier detection algorithms cannot be applied
to high-dimensional datasets. To fill this gap, we proposed modifying
Eq. (2) to make it suitable for high-dimensional datasets. Our new
Mahalanobis distance-based outlier detection method will use the di-
agonal elements of the covariance matrix instead of the entire matrix
(see [32]).

The chi-squared distribution criteria introduced by [59] are well
known to be sensitive to outliers. Three key limitations are attached
to this cut-off formula: (i) It assumes that the dimension of variable
p follows a multivariate normal distribution; (ii) It takes into consid-
eration only the dimension of the variables but does not consider the
number of observations; and (iii) It is not robust against outlying ob-
servations. [60] introduced a non-parametric cut-off point using robust
Mahalanobis distances. [41] applied this criteria with the diagnostic
robust generalized potentials instead of the chi square criteria based on
roust Mahalanobis distances. In recent years, much emphasis has been
placed on applying outlier detection procedures to high-dimensional
data [5,28,61,62]. [32] constructed a threshold rule-based normal
distribution for outlier classification in high-dimensional space. [31]
adopted the [59] cut-off point formula. [35] combined the regularized
minimum covariance determinant (MRCD) estimator and minimum di-
agonal product (MDP) estimator to provide Mahalanobis distance-based
outlier detection for high-dimensional datasets. Although a wide range
of robust Mahalanobis distance-based outlier detection procedures are
available (see, for example, [63,64]), this paper focuses on modifying a
reweighted fast, consistent, and high breakdown estimator introduced
by [25] in high-dimensional settings. This procedure was selected be-
cause of the clear intuition behind its construction. It provides estimates
close to the classical mean and covariance matrix and avoids using
outlying observations in its calculations. For the threshold criteria, the
robust non-parametric cut-off point is applied [41,60].

2.2. RFCH estimators

Many practical outlier resistant estimators generate a sequence
of 𝑘 trial fits called attractors (𝑇1, 𝐶1), (𝑇2, 𝐶2),… , (𝑇𝑘, 𝐶𝑘). Then the
attractor (𝑇𝐴, 𝐶𝐴), which minimizes some criterion, is employed to
achieve the final estimator. These procedures utilize the classical es-
timator of mean and covariance matrix (𝑇−1,𝑗 , 𝐶−1,𝑗 ) at the beginning
and compute the 𝑛 Mahalanobis distances 𝐷𝑖(𝑇−1,𝑗 , 𝐶−1,𝐽 ). At the next
iteration, the classical estimator of mean and covariance matrix (𝑇0, 𝐶0)
is calculated from 𝑐𝑛 = 𝑛∕2 cases corresponding to the smallest Ma-
halanobis distances. This iteration continues for 𝑘 steps, resulting in
the sequence of estimators ((𝑇−1,𝑗 , 𝐶−1,𝑗 ), (𝑇0,𝑗 , 𝐶0,𝑗 ),… , (𝑇𝑘,𝑗𝐶𝑘,𝑗 )). Then
(𝑇𝑘,𝑗 , 𝐶𝑘,𝑗 ) = (𝑥̄, 𝑆) is the 𝑗𝑡ℎ attractor for 𝑗 = 1,… , 𝑘. Note that the
FCH, DGK, and MB estimators converge at 𝑘 = 5. [25] introduced
a practical outlier-resistant

√

𝑛 consistent estimator that is called the
ast Consistent and High Breakdown (FCH) estimator. This proce-
ure utilizes the [65] DGK and the median ball (MB) estimators. The
GK utilizes the classical mean and covariance matrix at the begin-
ing point to get the final attractor (𝑇𝑘,𝐷, 𝐶𝑘,𝐷), while the MB utilizes

the classical mean and covariance calculated from the cases with
𝐷𝑖(𝑀𝐸𝐷(𝑋), 𝐼𝑝) ≤ 𝑀𝐸𝐷𝐷𝑖(𝑀𝐸𝐷(𝑋), 𝐼𝑝) as an initial to get the final
attractor (𝑇𝑘,𝑀 , 𝐶𝑘,𝑀 ), where 𝑀𝐸𝐷(𝑋) is the coordinatewise median. If
the DGK location estimator 𝑇𝑘,𝑀 has a greater Euclidean distance from
𝑀𝐸𝐷(𝑋) than half of the data, then FCH utilizes the MB attractor. The
FCH utilizes the minimum determinant as the dispersion criterion to
select the attractor if ‖𝑇𝑘,𝐷,−𝑀𝐸𝐷(𝑋)‖ ≤ 𝑀𝐸𝐷(𝐷𝑖(𝑀𝐸𝐷(𝑋), 𝐼𝑝)).

Let (𝑇𝐴, 𝐶𝐴) be the attractor used. Then the FCH estimator (𝑇𝐹 , 𝐶𝐹 )
takes 𝑇𝐹 = 𝑇𝐴 and

𝐶𝐹 =
𝑀𝐸𝐷(𝐷2

𝑖 (𝑇𝐴, 𝐶𝐴))
2

(4)

𝜒𝑝,0.5

3

here 𝜒2
𝑝,0.5 is the 50th percentile of the chi squared distribution with

𝑝 degree of freedom. Furthermore, the RFCH utilizes two reweighting
steps. Let (𝜇̂1, 𝛴̃1) be the classical estimator applied to 𝑛1 cases with

2
𝑖 (𝑇𝐹𝐶𝐻 , 𝐶𝐹𝐶𝐻 ) ≤ 𝜒2

𝑝,0.5 and let 𝛴̂1 =
𝑀𝐸𝐷(𝐷2

𝑖 (𝜇̂1 ,𝛴̃1))
𝜒𝑝,0.5

𝛴̃1. Let 𝑇𝑅𝐹𝐶𝐻 , 𝛴̃2

be the classical estimator applied to the cases with 𝐷2
𝑖 (𝜇̂1, 𝛴̂1) ≤ 𝜒2

𝑝,0.5
and defined

𝐶𝑅𝐹𝐶𝐻 =
𝑀𝐸𝐷(𝐷2

𝑖 (𝑇𝑅𝐹𝐶𝐻 , 𝛴̃2))

𝜒2
𝑝,0.5

𝛴̃2 (5)

By the assumption E1 of [44], the RFCH estimator can be seen as
a highly outlier-resistant

√

𝑛 consistent estimator. Following [43], we
summarized the modified RFCH (MRFCH) algorithm in the next section:

3. The modified RFCH estimator

Our motivation comes from the fact that applying the original RFCH
algorithm involves computing the covariance matrix and Mahalanobis
distances. But where the number of predictor variables exceeds the
sample size, computing the inverse of the covariance matrix and its cor-
responding Mahalanobis distances may not be feasible. To compute the
inverse of the covariance matrix and, in turn, Mahalanobis distances,
we need to combine the ideas of [25,32] and then propose a modified
reweighted fast consistent and high breakdown (MRFCH) point esti-
mator that uses only the diagonal elements of the covariance matrix
in its computations [32]. Following [43,45], our modified algorithm is
summarized as follows:

Algorithm 1
Step 1. Modified DGK algorithm

a To calculate the MDGK location 𝑇𝑀𝐷𝐺𝐾 and scatter matrix
𝐶𝑀𝐷𝐺𝐾 estimators for high dimensions, we start by calculating
the classical mean vector 𝑥̄ and covariance matrix 𝑐𝑜𝑣(𝑥) as ini-
tial estimators (𝑇0, 𝐶0) to obtain the initial Mahalanobis distances
according to the next formula:

𝑀𝐷𝑖0,𝑀𝐷𝐺𝐾 =

∑𝑝
𝑗=1(𝑋𝑖𝑗 − 𝑇0𝑗 )2

𝜎𝑖𝑗
(6)

where 𝜎𝑖𝑗 = 𝑑𝑖𝑎𝑔(𝐶0)
b Let 𝐶0,𝑀𝐷𝐺𝐾 = 𝐶0, where the variance covariance matrix 𝐶0

is calculated from the original dataset. Compute the variance
covariance matrix of 𝑋̃1,𝑀𝐷𝐺𝐾 to obtain the MDGK attractor
(𝑇1,𝑀𝐷𝐺𝐾 , 𝐶1,𝑀𝐷𝐺𝐾 )

c If the diagonal of 𝐶1,𝑀𝐷𝐺𝐾 = 𝐶0 stops, else repeat (a-c) until
convergence to obtain the final attractor (𝑇𝑘,𝑀𝐷𝐺𝐾 , 𝐶𝑘,𝑀𝐷𝐺𝐾 ),
where 𝑘 is the convergence step.

a Begin by calculating the initial estimator of the mean and vari-
ance covariance matrix as (𝑇0,𝑀𝑀𝐵 , 𝐶0,𝑀𝑀𝐵) = (𝑀𝑒𝑑(𝑋), 𝐼𝑝) and
use the initial estimators to compute the initial Mahalanobis
distances as follows:

𝑀𝐷𝑖0,𝑀𝑀𝐵 =

∑𝑝
𝑗=1(𝑋𝑖𝑗 −𝑀𝑒𝑑(𝑋))2

𝜎𝑖𝑗
(7)

b Compute the location criterion cut-off values as 𝑙𝑢𝑐𝑡 = 𝑀𝑒𝑑
(𝑀𝐷𝑖0,𝑀𝑀𝐵) where 𝑙𝑢𝑐𝑡 ≠ 0.5 and the quartile value of 𝑀𝐷0,𝑀𝐵
can be used as the cut-off point.

c Find half the dataset such that 𝑋̃1,𝑀𝑀𝐵 = {𝑋𝑖𝑗 ∶ 𝑀𝐷𝑖0,𝑀𝑀𝐵 ≤
𝑀𝑒𝑑(𝑀𝐷𝑖0,𝑀𝑀𝐵)}

d Compute the average and variance covariance matrix with re-
spect to the 𝑋1,𝑀𝑀𝐵 dataset.

e For better concentrations, calculate the Mahalanobis distances,
then repeat Steps (a-d) until convergence is achieved to get
the final attractor (𝑇𝑘,𝑀𝑀𝐵 , 𝐶𝑘,𝑀𝑀𝐵) where k is the convergence
step.
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Step 3: The Modified RFCH algorithm

a Following [25,43,45], we determine the modified FCH attrac-
tor (𝑇𝑀𝐹𝐶𝐻 , 𝐶𝑀𝐹𝐶𝐻 ) based on the MDGK and MMB attractors
obtained in steps 1 and 2 as follows:

𝑇𝑀𝐹𝐶𝐻 =

⎧

⎪

⎨

⎪

⎩

𝑇𝑘,𝑀𝐷𝐺𝐾 , if
√

|𝐶𝑘,𝑀𝐷𝐺𝐾 | <
√

|𝐶𝑘,𝑀𝑀𝐵|

𝑇𝑘,𝑀𝑀𝐵 , otherwise
(8)

and

𝐶𝑀𝐹𝐶𝐻 =

⎧

⎪

⎨

⎪

⎩

𝑀𝑒𝑑(𝐷2
𝑖 (𝑇𝑘,𝑀𝐷𝐺𝐾 ,𝐶𝑘,𝑀𝐷𝐺𝐾 ))

𝜒2
𝑝,0.5

𝐶𝑘,𝑀𝐷𝐺𝐾 , if
√

|𝐶𝑘,𝑀𝐷𝐺𝐾 | <
√

|𝐶𝑘,𝑀𝑀𝐵|

𝑀𝑒𝑑(𝐷2
𝑖 (𝑇𝑘,𝑀𝑀𝐵 ,𝐶𝑘,𝑀𝑀𝐵 ))

𝜒2
𝑝,0.5

𝐶𝑘,𝑀𝑀𝐵 , otherwise

(9)

By theorem 1 of the [43], the modified FCH (MFCH) estimator
can be considered a consistent estimator.

b Use the location and scatter matrix obtained from Eqs. (8) and
(9) to select observations with 𝐷2

𝑖 (𝑇𝑀𝐹𝐶𝐻 , 𝐶𝑀𝐹𝐶𝐻 ) ≤ 𝜒2
𝑝,0.5

c Compute the classical estimators of the mean and variance co-
variance matrix based on the selected data points in step 3 (b)
to obtain the RFCH attractor:

𝐶1,𝑀𝑅𝐹𝐶𝐻 =
𝑀𝐸𝐷(𝐷2

𝑖 (𝑇𝑀𝐹𝐶𝐻 , 𝐶𝑀𝐹𝐶𝐻 ))
𝜒𝑝,0.5

𝐶𝑀𝐹𝐶𝐻 (10)

Subsequently, find the half data so that 𝑋̃1,𝑀𝑅𝐹𝐶𝐻 = {𝑋𝑖𝑗 ∶
𝐷2

𝑖 (𝑇1,𝑀𝑅𝐹𝐶𝐻 , 𝐶1,𝑀𝑅𝐹𝐶𝐻 )} ≤ 𝜒2
𝑝,0.5, then compute Eq. (11):

𝐶2,𝑀𝑅𝐹𝐶𝐻 =
𝑀𝐸𝐷(𝐷2

𝑖 (𝑇1,𝑀𝐹𝐶𝐻 , 𝐶1,𝑀𝐹𝐶𝐻 ))
𝜒𝑝,0.5

𝐶1,𝑀𝐹𝐶𝐻 (11)

d Repeat (a-c) with new Eqs. (10) and (11) until convergence
is achieved to obtain the final MRFCH attractor (𝑇𝑘,𝑀𝑅𝐹𝐶𝐻 ,
𝐶𝑘,𝑀𝑅𝐹𝐶𝐻 ), where 𝑘 is the convergence step.

4. Proposed outlier detection algorithm

Our proposed Mahalanobis distance-based outlier detection proce-
dure consists of two major parts. The first part computes the location
and scatter matrix from the modified algorithm and uses them to
calculate the Mahalanobis distances. In the last step, we utilize the
Mahalanobis distance values and the cut-off point criteria to detect and
classify outliers, which is implemented by applying the next algorithm:

Algorithm 2
Let 𝑋 be a data matrix with dimensions 𝑝 ≫ 𝑛

a Perform the modified RFCH algorithm on dataset 𝑋𝑖𝑗 to get the
location vector and scatter matrix (𝑇̂𝑀𝑅𝐹𝐶𝐻 , 𝐶̂𝑀𝑅𝐹𝐶𝐻 )

b Compute the robust Mahalanobis distances based on location
and scatter matrix estimates obtained in (a) as follows:

𝑅𝐷𝑖,𝑀𝑅𝐹𝐶𝐻 =

∑𝑝
𝑗=1

(

𝑋𝑖𝑗 − 𝑇̂𝑗,𝑀𝑅𝐹𝐶𝐻

)2

𝜎𝑖𝑗
(12)

where 𝜎𝑖𝑗 = 𝑑𝑖𝑎𝑔
(

𝐶̂𝑀𝑅𝐹𝐶𝐻

)

c Following [41], determine the cut-off point as

𝐶𝑃 = 𝑀𝑒𝑑
(

𝑅𝐷𝑖,𝑀𝑅𝐹𝐶𝐻
)

+ 3(𝑀𝐴𝐷(𝑅𝐷𝑖,𝑀𝑅𝐹𝐶𝐻 )) (13)

d Delare any observation having 𝑅𝐷𝑖,𝑀𝑅𝐹𝐶𝐻 > 𝐶𝑃 as an outlier,
otherwise non-outlier.

In the coming section, we will assess the efficiency of the MRFCH
estimate of the scatter matrix using the median mean square error
formula [31]. A plot of time against sample size 𝑛 and time against the
 w

4

Fig. 1. Average computation time for varying 𝑝 at 10% contamination with 𝑛 = 100.

number of variables 𝑝 is given in Figs. 1 to 4 to demonstrate the time
efficiency of our proposed method compared to existing methods. Fur-
thermore, we evaluate the detection and classification accuracy of our
proposed Mahalanobis distance-based outlier detection procedure by
taking the average of the false negatives (FN) and false positives (FP),
which represent outliers that were not identified or masked and non-
outliers that were classified as outliers or swamped. The calculation of
FN and FP requires the actual and predicted values of the instances and
the use of a confusion matrix.

5. Simulation study

In this section, we considered two simulation examples to assess
the empirical performance of our proposed methods. We designed
simulation Example 1 to demonstrate the robustness of the modified
algorithm in the computation of the scatter matrix. Simulation Example
2 is designed to illustrate the outlier detection and classification power
of the proposed Mahalanobis distance-based outlier detection method
described in Algorithm 2.

5.1. Simulation example 1

This example considered low and high-dimensional datasets, in
which the datasets were generated following the simulation design
of [35]. For low-dimensional data, two samples of different sizes (200
and 400) and the number of predictor variables 𝑝 = 5 were considered.

hile for the high-dimensional data, we set the sample size 𝑛 = 200
with the number of predictor variables 𝑝 = (400 and 800).

As per [35] 𝑋 was generated from a normal distribution, that is, 𝑋 ∼
𝑁𝑝(0, 𝛴). To contaminate the data, we replaced the good observations

ith 10% and 20% of contaminated points. The distance 𝑘 between the
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Fig. 2. Average computation time for varying 𝑝 at 20% contamination with 𝑛 = 100.

mean of the good and the contaminated observations is set at 5, 50,
and 100 for small, moderate, and large contamination, respectively.
For each method, we repeat the simulation 100 times (𝑀 = 100) to
compute the median mean square error (MMSE) based on the following
formulas:

𝑒𝛴 = 𝑀𝑀𝑆𝐸 = 𝐌𝐄𝐃
(

1
𝑝2

𝑝
∑

𝑘=1

𝑝
∑

𝑙=1
(𝑆𝑚 − 𝛴𝑚)2𝑘,𝑙

)

, (14)

𝑚 = 1,. . . ,M, where 𝛴𝑚 denotes the true covariance matrix and 𝑆𝑚 is the
estimated scatter matrix obtained at each iteration. Tables 1 and 2 give
the median mean squared errors. The MRCD, OGKQn, OGKmad, and
MRFCH were measured for 10% and 20% contamination and different
sample sizes. A good method is one that has the lowest values of MMSE.
The results of the simulation for both low and high-dimensional settings
show that our proposed algorithm is computationally most efficient,
having the lowest MMSE values as compared to the other three meth-
ods. Furthermore, to evaluate the computational speed of our method,
we generated a dataset in the same manner as described earlier. Two
scenarios are considered: first, we fixed 𝑛 = 100 while the number of
variables is set to 𝑝 = (150, 250, 350, and 450), and secondly, the number
of variables is set to 𝑝 = 250, while the number of observations is set
to 𝑛 = (20, 40, 60, 80 and 100), each with 10% and 20% outliers and
𝑘 = 50. The experiment is reiterated 25 times (to save time) using a
computer with an Intel (Intel(R) Core(TM) i3-7020U CPU @ 2.30 GHz
2.30 GHz). It can be observed from Figs. 1 and 2 that at 10% outliers,
the running time of our proposed method is much faster than the
other existing methods. The OGKQn performs poorly compared to the
MRCD. However, the OGKQn outperforms the MRCD and OGKmad at
20% outliers, which indicates that the speed of the OGKQn, OGKmad,
and MRCD depends on the percentage of contamination as well as the
number of predictor variables and sample sizes. Thus, our proposed
 M

5

Fig. 3. Average computation time for varying 𝑛 at 10% contamination with 𝑝 = 250.

Table 1
Low dimensional scenarios with 𝑛 = 200 and 400 and 𝑝 = 5.
𝑘 con 𝑛 MMSE

MRCD OGKQn OGKmad MRFCH

5 0.1 200 0.0229 0.0621 0.0477 0.0070
400 0.0163 0.0737 0.0494 0.0048

0.2 200 0.0294 0.9423 0.3811 0.0142
400 0.0160 0.3907 0.1921 0.0107

50 0.1 200 0.0263 0.0857 0.0495 0.0085
400 0.0139 0.0804 0.0400 0.0036

0.2 200 0.0275 0.4429 0.2471 0.0130
400 0.0122 0.4312 0.2678 0.0115

100 0.1 200 0.0241 0.0826 0.0309 0.0067
400 0.0282 0.4675 0.2244 0.0129

0.2 200 0.0128 0.0725 0.0328 0.0050
400 0.0159 0.3426 0.2018 0.0110

method is the fastest and most consistent irrespective of contamination
level (10% and 20%), number of predictor variables, and sample sizes
compared to its competitors.

5.2. Simulation example 2

In this example, we investigate the classification accuracy of our
proposed method as described in Section 4. Following [32,35], for 𝑛 =
50, and 100, we simulated clean observations from 𝑁𝑝(0, 𝛴) and outliers
are simulated from 𝑁𝑝(𝑘𝑏𝑖, 𝛴) where 𝑏𝑖 is a vector of 𝑝 dimensional
independent random variables generated from 𝑈𝑛𝑖𝑓 (0, 1) with 𝐿2 norm,
𝑘 = 𝑝

1
2 and 𝛴 denoted the autoregressive correlation matrix with

𝑖𝑗 = 0.5|𝑖−𝑗|. The outlier proportions are used as 0.1 and 0.2. The
umber variables 𝑝 are set to 200, 400 and 800 respectively. The
RCD, MDP, and MRFCH methods were then applied to the datasets.
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Fig. 4. Average computation time for varying 𝑛 at 20% contamination with 𝑝 = 250.

Table 2
High dimensional scenarios with 𝑛 = 200 and 𝑝 = 400 and 800.
𝑘 con 𝑝 MMSE

MRCD OGKQn OGKmad MRFCH

5 0.1 400 0.0078 0.0199 0.0136 0.0060
800 0.0069 0.0188 0.0139 0.0060

0.2 400 0.0080 0.1279 0.0754 0.0067
800 0.0078 0.0996 0.0669 0.0069

50 0.1 400 0.0075 0.0118 0.0099 0.0059
800 0.0065 0.0121 0.0100 0.0058

0.2 400 0.0080 0.0451 0.0318 0.0066
800 0.0075 0.0409 0.0282 0.0067

100 0.1 400 0.0077 0.0138 0.0114 0.0059
800 0.0079 0.0355 0.0283 0.0066

0.2 400 0.0068 0.0128 0.0113 0.0061
800 0.0074 0.0310 0.0240 0.0068

We considered MRCD and MDP because they are the most popular
and most recent methods in the literature. The results in Table 3 show
that our method performs excellently well, with less misclassification
error. To further evaluate the performance of our proposed algorithm,
Figs. 5 to Fig. 8 display the misclassification error (MCL) of the three
considered methods: MRCD, MDP, and MRFCH, based on the varying
number of predictors 𝑝 and number of samples 𝑛. Figs. 5 and 6 clearly
show that the MDP performs better than the MRCD for varying 𝑝 at 10%
and 20% contamination levels, except in Fig. 5 when 𝑝 = 600. Similarly,
in Figs. 7 and 8, the MRCD exhibits poor performance compared to the
MDP, except in Fig. 8 when 𝑛 = 100. This shows that the MRCD and

DP have, to a lesser extent, less detection and classification accuracy
ompared to our proposed procedure, which performs well over all
ts competitors, maintaining satisfactory misclassification errors even
hen the percentage of the outliers increases with an increase in
6

Table 3
False positive (FP) and false negative (FN) values of the simulation example 2.
𝑛 con 𝑝 MRCD MDP MRFCH

FP FN FP FN FP FN

50 0.1 200 7 0 4.16 0 0.36 0
400 7 0 4.60 0 0.36 0
800 7 0 0.12 0 0.12 0

0.2 200 2.04 0.04 4.64 0 0.44 0
400 2 0 3.16 0 0.44 0
800 2 0 2.88 0 0.16 0

100 0.1 200 15 0 5.24 0 1.36 0
400 15 0 4.88 0 1.60 0
800 15 0 4.52 0 2.68 0

0.2 200 5.08 0.08 3.20 0 0.24 0.04
400 5 0 3.36 0 0.24 0
800 5 0 2.72 0 0.32 0

Fig. 5. Average MCL for varying 𝑝 at 10% contamination with 𝑛 = 50.

sample size and dimensions. In the latter section, we will illustrate
the performance of the proposed method using four high-dimensional
real-life datasets.

6. Real life examples

Four high-dimensional real-life datasets are used to compare our
proposed Mahalanobis distance-based outlier detection algorithm to the
MRCD and MDP methods.

6.1. Octane dataset

The octane dataset contains 39 samples and two hundred and
twenty-six variables, out of which 𝑥25 − 𝑥26 and 𝑥36 − 𝑥39 are known
outliers. Several researchers, such as [26,27,31,66] have used this
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Fig. 6. Average MCL for varying 𝑝 at 20% contamination with 𝑛 = 50.

ataset to demonstrate the robustness and efficiency of their methods.
e considered this dataset because of our prior knowledge about

he exact number of outliers and their positions. This will ease the
valuation process of comparing our proposed method with other
xisting approaches. Besides, the dataset is high-dimensional, which
onforms to the aim of developing our method. Fig. 9 displays the
ahalanobis distance values based on MRFCH for detecting outliers.

n Fig. 9 𝑥-axis represents the number of gasoline samples, 𝑦-axis
enotes the RD_MRFCH, and the level line indicates the cut-off value,
.e., 𝑀𝑒𝑑(𝑅𝐷𝑖,𝑀𝑅𝐹𝐶𝐻 ) + 3(𝑀𝐴𝐷(𝑅𝐷𝑖,𝑀𝑅𝐹𝐶𝐻 )). The result in Fig. 9
hows that Mahalanobis distance-based MRFCH algorithm successfully
etects six (6) outliers (𝑥25−𝑥26 and 𝑥36−𝑥39) as indicated in the original
ataset and does not misclassify. Our results are consistent with those
n [27,31,66], confirming our proposed method as a viable method.

.2. Glass vessels dataset

The glass vessel dataset arises from a study of electron-probe X-ray
icroanalysis (EXPMA). Resulting in 1920 frequency measures on each

f 180 glass vessels following an experiment conducted on 16th–17th-
entury archaeological glass vessels in a laboratory at the University of
ntwerp. This experiment aimed to learn more about the production of

hese vessels, especially regarding their foundation and possible trade
inks between known producers. The number of predictor variables 𝑝 in
his dataset exceeds the sample size 𝑛. Several analytical methods have
een applied to this dataset, which led to an accurate determination
f the presence of outlying points in the data. [67] used this data to
emonstrate the advantage of the partial robust M estimators over the
artial least squares. Recently, [68,69] applied the dataset to a robust
7

Fig. 7. Average MCL for varying 𝑛 at 10% contamination with 𝑝 = 400.

linear regression model for high dimensions. Although these authors
acknowledged that the glass vessel data contains some outlier points,
no researcher clearly pointed out which observations are outliers and
which are not. [30] categorically tagged the last 38 observations as
clear multivariate outliers using the distance diagnostics plot. These
issues are of broad interest in the application of robust Mahalanobis
distance-based outlier detection in high-dimensional datasets. How-
ever, our aim is to use this dataset to validate the results of the
simulation given in Table 3, since the exact position and number
of outliers in the data are known. Following [30], we removed all
columns with MAD equal to zero, leaving the remaining 1905 columns
of predictors for outlier investigation. We applied the MDP, MRCD,
and MRFCH to the data. The results of classification performance for
each method are presented as diagnostic plots in Figs. 10 to 12. It
can be seen that all three methods (MDP, MRCD, and MRFCH) can
detect all the last 38 observations as outliers, showing zero masking
error (FN). On the other hand, all methods detect some points that are
not outliers as outliers (FP), which are all evident from the results in
Table 3. The MDP detects 44 points that are non-outliers as outliers,
with most of the non-outliers merely at the boundary. The MRCD
detects all the non-outliers as outliers without detecting even a single
inlier correctly. Our proposed detection method incorrectly detects only
27 outliers with a clear cut-off line between the inliers and the outliers,
except for a few points that are close to the cut-off line. Our result
also confirmed that the non-parametric cut-off point criteria used in
this paper are more robust than the other benchmark cut-off values.
Therefore, we conclude that our proposed outlier detection algorithm

achieves optimal accuracy among all the benchmark methods.
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Fig. 8. Average MCL for varying 𝑛 at 20% contamination with 𝑝 = 400.

6.3. NCI60 dataset

This dataset is high-dimensional, consisting of the expression levels
of 6830 genes obtained from 64 cancer cell lines. The dataset was
formally analyzed by [35] to illustrate behavior and an outlier de-
tection problem. The dataset was obtained from the ISLR package in
the R programming language. Following [35], we reduced the original
dimension of the data to 320 by 64 to save computational time. The
contaminated observations are planted by replacing 10% and 20% of
the good observations by 50 to ensure that the data contains outlying
points. We applied our proposed detection method and two other
benchmark procedures to the modified dataset. The results in Table 4
show that our proposed method has detected outliers that are added
with 100% success. The MRCD and the MDP also achieved 100%
success. All at 10% and 20% contamination. The MRCD incorrectly
identified 23 and 15 observation outliers for 10% and 20% contamina-
tion. MDP incorrectly detected 10 and 7 points, and our method, which
achieves optimal accuracy among all the tested methods, identified
only 3 and 1 outlying observations at 10% and 20%, showing the
strength of the newly developed detection algorithm in solving outlier
classification problems.

6.4. Brain dataset

The brain cancer dataset contains microarray expression observa-
tions for 42 brain cancer samples. The number of expressions on each
array is 5597. Detailed information about this dataset can be obtained
8

Fig. 9. Diagnostic plot for octane dataset based on the MRFCH algorithm.

Table 4
False Positive (FP) and False Negative (FN) for NCI60 (𝑛 = 64) and Brain (𝑛 = 42)
datasets.

Data con MRCD MDP MRFCH

FP FN FP FN FP FN

NCI60 0.1 23 0 10 0 3 0
0.2 15 0 7 0 1 0

Brain 0.1 16 0 15 0 3 0
0.2 12 0 6 0 1 0

from the rda package in the R programming language. The brain dataset
was previously analyzed in [35]. Similar to the NCI60 dataset, we
reduced the number of observations from 5597 to 210 to save computa-
tional cost and add 10% and 20% outliers to the reduced dataset [35].
We applied all the methods used in the previous example. Table 4 dis-
plays the results for brain datasets. Also, we observed that our proposed
Mahalanobis distance-based outlier detection worked well for detection
and outlier classification, as it continued to maintain its position among
all benchmark methods in this paper. The results of both the NCI60 and
Brain datasets show consistency with the simulation results in Section 5
since the proposed algorithm and all benchmark methods detect zero
(0) false negatives at 10% and 20% contamination levels.

7. Conclusion

In this paper, we developed a modified reweighted fast consistent
and high break-down point estimator for a high-dimensional dataset.
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Fig. 10. Diagnostic plot for Glass vessels dataset based on the MDP algorithm.

odeling multivariate, high-dimensional data poses numerous chal-
enges that may lead to misleading interpretations and conclusions.
ome common challenges related to high-dimensional data include
omputational complexity, the curse of dimensionality, and singularity,
n addition to the outlier problem. Our modified algorithm attempts to
ddress these problems. First, we apply the idea of [32] to compute
he Mahalanobis distances used within the MRFCH algorithm. The
inal attractors from the MRFCH algorithm were used to construct a
ahalanobis distance-based outlier detection method. The Mahalanobis

istance values were used to determine the threshold criteria for the
dentification of outliers and classification. The resulting procedure
njoys the inherent robustness properties of the original reweighted
ast, consistent high break-down point estimator. The modified algo-
ithm is tested on two simulation examples and four high-dimensional
eal-life datasets. The median mean squared error and misclassification
rror metrics were used to evaluate the performance of our proposed
ethod. Our numerical results indicate that as the contamination level

ncreases with increased dimension, our method consistently outper-
orms its competitors. This becomes more prevalent, especially for
igh-dimensional datasets where the number of variables is greater
han the sample size. Compared to the MRCD and OGK, our modified
lgorithm performs relatively well in terms of computing speed. Real-
ife data results have shown that the new modified method is able to
eal with high-dimensional datasets while achieving a small misclassi-
ication error rate. Our modified algorithm can be seen as a substantive
lternative to MRCD and MDP in computing multivariate estimates
f location and scatter matrix. Additionally, our method can be ap-
lied to calculating correlation coefficients and a robust Mahalanobis

istance-based outlier detection technique. Specifically, several modern

9

Fig. 11. Diagnostic plot for Glass vessels dataset based on MRCD algorithm.

pplications of Mahalanobi’s distance-based outlier detection method
xist in the literature; among them are anomaly detection, cluster
nalysis, image analysis, and remote sensing. Our modified algorithm is
useful tool to explore the structure of a dataset. It can also be applied

o commonly used multivariate statistics such as discriminant analy-
is, principal component analysis, regression analysis, and correlation
nalysis. A sparse modified reweighted fast consistent and high break-
own point estimator and a cellwise MRFCH outlier detection-based
lgorithm will be nice contributions to knowledge. Robust diagnostic
eneralized potentials based MRFCH for the identification of high
everage points in a high-dimensional space can be proposed. Finally,
obust outlier maps in a high-dimensional setting will be excellent
uture research topics in this area.
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