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Mobile edge computing (MEC) is a well-known technique to support delay-sensitive 
applications at the edge of mobile networks. MEC has shown its potential in real-world 
computation but is still not fully mature. MEC's main feature is pushing computing 
resources to the network edges. In MEC environment, cloudlets that represent a relatively 
powerful computing resource can be collocated with the base station to enable good 
coverage of computing service due to the high demand and random distribution of users. 
The problem of Cloudlet Deployment and Task Offloading (CDTO) involves deploying 
a set of cloudlets in an environment and assigning user tasks to optimize various metrics, 
including energy consumption, quality of service (QoS) and cost. Typically, approaches 
deal with them separately, which might cause sub-optimality. Furthermore, assuming the 
fixed location of the cloudlets will limit the dynamic adaptability of the problem. 
Enabling more optimality and adaptability to the dynamic nature of CDTO, we propose 
a novel Variable-Length multi-objective Whale optimization Integrated 
with Differential Evolution designated as VL-WIDE for joint cloudlet deployment and 
tasks offloading. Unlike the existing optimization algorithm, VL-WIDE features the 
capability of searching different lengths of solutions to cover the variable number of 
cloudlets for deployment. It provides an application-oriented solutions repair operator 
for repairing non-valid solutions and assuring that all solutions are generated in the 
feasible region. Furthermore, it enables non-dominated evaluation of solutions based on 
four objectives using crowding distance for selection. The proposed algorithm with its 
variable length solution encoding enables moving the cloudlets among pre-defined 
locations, adding or removing them in order to increase the quality of service according 
to the change in the user density caused by user mobility. VL-WIDE was also integrated 
with the solution selection model based on the Analytical Hierarchical Process (AHP) 
that considers decision-maker preference for the optimized objectives. Comparing this 
developed algorithm with other algorithms shows its superiority in multi-objective 
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optimization (MOO) evaluation metrics. VL-WIDE has accomplished a higher median 
value for the domination over state-of-the-art algorithms with a higher number of non-
dominated solutions value than all other benchmarks.  Three hundred scenarios involving 
various parameters related to base stations, cloudlets, users, and wireless 
communications were generated. Additionally, a simulator is used to evaluate the 
proposed methodology under different deployment scenarios and network conditions. 
The simulator provides a realistic environment to test the system, and the results are 
compared with the benchmarks. The improvement percentage in terms of hyper-volume, 
delta-metric, and the number of non-dominated solutions are (8%), (5%), and (6%), 
respectively, over the baseline approach. Furthermore, the AHP VL-WIDE solutions 
were more fulfilling to the desire of the decision-maker compared with other algorithms. 
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EVOLUSI BERBEZA SERTA PROSES HIRARKI ANALITIK UNTUK 

PEMBUATAN KEPUTUSAN 
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Pengkomputeran tepi mudah alih (MEC) merupakan satu teknik yang terkenal untuk 
menyokong aplikasi peka-kelewatan pada pengkomputeran tepi mudah alih. MEC telah 
menunjukkan potensinya dalam pengkomputeran dunia nyata tetapi masih belum 
sepenuhnya matang. Ciri utama MEC adalah mendorong sumber pengkomputeran ke 
pinggiran rangkaian. Dalam persekitaran MEC, 'cloudlets' yang mewakili sumber 
pengkomputeran yang cukup kuat boleh diletakkan bersama stesen pangkalan untuk 
membolehkan liputan perkhidmatan pengkomputeran yang baik disebabkan permintaan 
yang tinggi dan taburan rawak pengguna. Masalah Penempatan dan Pelucutan Tugas 
Cloudlet (CDTO) melibatkan penempatan set 'cloudlets' dalam suatu persekitaran dan 
menugaskan tugas pengguna untuk mengoptimumkan pelbagai metrik, termasuk 
penggunaan tenaga, kualiti perkhidmatan (QoS), dan kos. Secara umumnya, pendekatan 
mengendalikan mereka secara berasingan, yang mungkin menyebabkan sub-optimaliti. 
Selain itu, menganggap lokasi tetap 'cloudlets' akan membataskan adaptabiliti dinamik 
masalah ini. Untuk membolehkan lebih optimal dan kebolehan ubai suai kepada sifat 
dinamik ‘CDTO’, kami mencadangkan satu kaedah terbaru Optimum Berbagai-Objektif 
Panjang-Berubah ikan paus yang Digabungkan dengan Evolusi Beza yang dikenali 
sebagai ‘VL-WIDE’ untuk penempatan bersama 'cloudlets' dan pelucutan tugas. Berbeza 
dengan algoritma optimal yang sedia ada, ‘VL-WIDE’ mempunyai keupayaan mencari 
peluang penyelesaian yang berbeza untuk merangkumi jumlah 'cloudlets' yang berubah-
ubah untuk penempatan. Ia menyediakan operator pembaikan penyelesaian 
berorientasikan aplikasi untuk membaiki penyelesaian yang tidak sah dan memastikan 
bahawa semua penyelesaian dihasilkan dalam kawasan yang boleh dilaksanakan. Selain 
itu, ia membolehkan penilaian yang tidak dikuasai oleh penyelesaian berdasarkan empat 
objektif menggunakan jarak keramaian untuk pemilihan.  Algoritma yang dicadangkan 
dengan kod penyelesaian panjang yang berubah membolehkan pemindahan 'cloudlets' di 
antara lokasi yang telah ditentukan, menambah atau mengurangkan untuk meningkatkan 
kualiti perkhidmatan mengikut perubahan dalam ketumpatan pengguna yang disebabkan 
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oleh mobiliti pengguna. VL-WIDE juga telah digabungkan dengan model pemilihan 
penyelesaian berdasarkan Proses Hirarki Analitik (AHP) yang mengambil kira 
keutamaan pembuat keputusan untuk objektif yang dioptimalkan. Membandingkan 
algoritma yang dibangunkan ini dengan algoritma lain menunjukkan keunggulannya 
dalam metrik penilaian optimasi objektif berganda (MOO). VL-WIDE telah mencapai 
nilai median yang lebih tinggi untuk dominasi berbanding dengan algoritma terkini 
dengan jumlah nilai penyelesaian yang tidak dikuasai yang lebih tinggi daripada semua 
penanda ukur lain. Tiga ratus senario yang melibatkan pelbagai pemboleh ubah berkaitan 
dengan stesen pangkalan, 'cloudlets', pengguna, dan komunikasi tanpa wayar telah 
dihasilkan. Selain itu, satu simulasi digunakan untuk menilai metodologi yang 
dicadangkan dalam pelbagai senario penempatan dan keadaan rangkaian yang berbeza. 
Simulator ini menyediakan persekitaran realistik untuk menguji sistem, dan hasilnya 
dibandingkan dengan penanda ukur. Peratusan peningkatan dari segi isipadu-tinggi, 
metrik delta, dan bilangan penyelesaian yang tidak dikuasai adalah (8%), (5%), dan (6%) 
masing-masing, berbanding dengan pendekatan asas. Selain itu, penyelesaian ‘AHP VL-
WIDE’ lebih memuaskan kehendak pembuat keputusan berbanding dengan algoritma 
lain. 
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CHAPTER 1 
 

1 INTRODUCTION 
 

1.1 Overview 
 

Mobile edge computing (MEC) is a well-known technique to support delay-sensitive 
applications at the edge of mobile networks. In recent years MEC has received significant 
attention from the academic and industrial communities [1]. MEC alleviate the 
shortcomings of traditional cloud computing by minimizing the delay of computation 
services and saving energy for mobile devices. One of MEC's critical challenges is 
selecting an efficient placement of the cloudlet [2] and task offloading decision [3].  
 

In the Mobile Edge Computing Environment (MECE), cloudlets can be collocated with 
the base station in the wireless metropolitan area network (WMAN) [4]. The latter is a 
wide area network consisting of many base stations (BSs) that allow mobile devices to 
access their needed services. On the one hand, the deployment of the base station is not 
a random process; rather, it is based on conducting certain optimization for selecting the 
best location for the base station to accomplish the maximum coverage [5]. On the other 
hand, deploying cloudlets at a certain base station should also result from an optimization 
algorithm aiming to maximize or minimize several factors. Hence, researchers have 
considered the problem of cloudlet deployment as one of the sub-problems of MEC [6]. 
However, a minority of studies have considered mobile cloudlets in order to enable 
dynamic deployment by moving cloudlets based on the temporal condition of MEC [7].  
 

Cloudlet is a new computing paradigm introduced to the Mobile Edge Computing (MEC) 
service framework. It allows computing resources to be closer to mobile devices [8]. 
Cloudlets can be placed close to the end device to reduce communication delays of 
mobile devices. The cloudlets location is essential to the delay tolerance of mobile 
devices, primarily in a large-scale Wireless Metropolitan Area Network (WMAN) that 
consists of hundred Base Stations (BSs) [9], where mobile devices can access the 
cloudlets. The capacity of cloudlet is much smaller than cloud computing as edge 
computing is supplied with one or a few servers due to the limitation of space and cooling 
requirements [10]. Cloudlets can contain one or more servers collocated with the BSs.  
 

Offloading is a technique used in the MEC environment to increase the effectiveness of 
mobile device applications by moving resource-intensive activities to nearby cloudlets 
[7]. Offloading in MEC mostly refers to running resource-intensive applications on 
behalf of local mobile devices to minimize workloads, overhead, and processing costs 
compared to local computing. To perform compute offloading, mobile devices and 
cloudlets must operate offloading frameworks [11].  
 

In the MEC context, computation offloading problems are a very difficult challenge [12]. 
The primary drawback of offloading work to a remote cloud is the latency, which disrupts 
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user experiences in interactive applications like mobile gaming [13]. Cloudlets get 
around this problem by giving users low-latency access to network-edge computing 
resources, which significantly boosts the efficiency of mobile applications [14]. The 
primary issue with WMAN is the deployment of fewer cloudlets with good services to 
end user. From the perspective of network management, it is costly to place a cloudlet at 
each BS to service end users [20], [16].  
 

In the real-world problems, optimization often involves minimizing or maximizing the 
objective functions. The optimization algorithm provides systematic and efficient 
methods for producing and comparing new solutions to achieve the optimal solution [17]. 
Optimizing one aspect of a certain system is irregular in real-world applications due to 
more than one user satisfaction perspective [18]. This has led researchers to develop the 
concept of Pareto-optimization, which assesses a certain decision regarding the system 
using a set of satisfaction metrics, e.g., delay, cost, energy and quality of service. 
Consequently, instead of dealing with one optimal solution, we consider a set of non-
dominated solutions that are provided to the decision maker or to an automated process 
for selecting one of them to be enabled according to certain criteria [19]. Some famous 
algorithms for multi-objective optimization are the non-dominated sorting genetic 
algorithm (NSGA-II) [20], NSGA-III [21], and multi-objective evolutionary algorithm 
(MOEA) [22].  
 

Multi-objective optimization techniques are an excellent approach in this situation. In 
multi-objective optimization, as opposed to single-objective optimization, the search is 
for a collection of non-dominated solutions known as the Pareto optimal set rather than 
a single optimal solution, which must be optimized [23]. The non-dominated objective 
solutions are the ones that provide the best potential compromises between the many 
objectives of the problem (i.e., these solutions cannot enhance one objective without 
affecting another). The decision-makers, in this case, the service providers, are given 
access to such non-dominated solutions so that they may choose the one that caters to 
their specific demands and requirements in the most effective manner [24]. The 
computational methods that are currently available to solve multi-objective optimization 
problems include meta-heuristics and high-level strategies governing underlying 
techniques. These computational methods are the most effective for searching for 
optimal or near-optimal solutions to a specific optimization problem [25]. 
 

Traditional meta-heuristic optimization algorithms consider a fixed length of solution 
space, but this does not apply to many real-world problems.  The reason is that certain 
values of some decision variables might generate or disable other decision variables, 
which causes the variable-length nature of solution space caused by different lengths of 
solutions [25]. Dealing with such types of problems requires a special type of operators 
that are aware of the length variability of the solution space and capable of covering all 
dimensions of solutions while searching. Variable-length algorithms are better since their 
solution vectors can vary in length [25]. 
 

The outcome of multi-objective optimization is a set of non-dominated solutions 
designated as the Pareto front. It contains a set of non-dominated solutions, all of which 
are considered to be optimal [24]. However, the process has to select one of them to be 
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operated in the system at one time. Accordingly, selecting one solution requires prior 
knowledge about the preference of the decision-makers [26]. The decision maker will 
provide the system with preference relative weighting of the objectives. Hence, using 
this information is required to be combined with the outcome of the optimization to select 
one solution to operate in the system. 
 

In the Mobile Edge Computing (MEC) environment, it is essential to consider various 
scenarios and parameters related to base stations, cloudlets, users, and wireless 
communications [27]. These scenarios help assess how well the algorithms perform 
under different conditions and deployments. In order to evaluate the proposed 
methodology effectively, a simulator should be employed. This simulator should be 
designed to replicate real-world conditions and network environments [28]. It should be 
capable of testing the system's performance in comparison of the proposed algorithm 
with the benchmark algorithms, such as MGW [29], NSGA-II, NSGA-III, MOEAD, and 
PSO [30]. One important aspect to consider is the use of a variable-length approach for 
deploying cloudlets. This means that the number of the deployed cloudlets can vary 
based on the computing requirements of the mobile users in the MEC environment. This 
adaptability ensures that the system can efficiently allocate resources where they are 
needed most which optimizing performance and resource utilization. 
 

1.2 Problem Statement 
 

The problem of cloudlet computing optimization involves deploying set of servers 
named cloudlets in a geographical region and managing user computing requests by 
offloading them through base-station and assigning them to cloudlets for execution. The 
result is evaluated based on different factors such as execution time, energy consumption 
for both user and cloudlet, and cost. This problem is considered as non-convex 
optimization problem with dynamic nature. Two factors are considered as significantly 
important in cloudlet computing optimization. The first one is the deployment of cloudlet 
which is when deployed in a static way, it will limit the performance from the perspective 
of dynamic handling. In other words, the nature of computing demands is that they are 
subject to dynamical changes in their source and volume which might be in-efficient to 
keep the cloudlet deployed in the same location. The second one is the heterogeneity and 
composite nature of tasks which might require off-loading one task on more than one 
cloudlet for load balancing between cloudlets.  
 

Unfortunately, based on literatures (see Table 2.3 and Table 2.4), none-of the existing 
approaches have jointly and dynamically addressed the cloudlet deployment and task 
offloading. More specifically, the joint of cloudlet deployment and task-offloading has 
been addressed by only a few previous works, such as [2], [31] and [29]. However, they 
have not considered cloudlet mobility, only [7] considered cloudlet mobility but used a 
fixed number of cloudlets.  Furthermore, enabling joint optimization of cloudlet 
deployment, deactivation and activation by moving, task offloading, and inter-cloudlet 
flow is an optimization problem with the variable number of decision variables. Hence, 
this optimization is regarded as a special class of optimization algorithm that needs 
careful study. Furthermore, it becomes more complex when considering its multi-
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objective nature due to various performance criteria, including energy consumption, cost 
and latency with a self-conflict nature.  
 

Tackling the variable number of cloudlets and the multi-objective nature of problem, it 
is found that the optimization algorithm should support it. However, majority of the 
previous algorithms (see Table 2.5) were developed to support a single objective except 
for the work of [32], which suffers from weak interclass interaction between the solutions 
and the work of [33] that is based on an evolutionary algorithm and was applied only on 
a bi-objective real-world problem. Hence, the literature lacks a multi-objective swarm-
based algorithm with variable-length feature. We fill this research gap by developing a 
novel variable-length whale optimization algorithm with supportability of multi-
objective aspects.  
 

The last aspect of the problem is selecting one from the set of solutions generated from 
the optimization. Typically, a multi-objective optimization algorithm provides a set of 
non-dominated solutions named Pareto front. Ultimately, one of the provided solutions 
must be operated or enabled. The selection of one of the Pareto solutions is another 
problem that has been tackled in the literature by using Multi-Criteria Decision Making 
(MCDM) models. It is found that Simple additive weighting SAW is the most used one 
as it is shown in Table 2.6. However, SAW assumes the availability of an absolute 
description of the weights of the objectives, which is not feasible. The decision maker 
can generally provide a relative importance matrix between the criteria or objectives. In 
order to handle this, the solution selection should be based on the representation of 
relative importance between the objectives. 
 

1.3 Research Questions 
 

The following questions are forwarded in this research to optimize cloudlet computing 
in the MEC environment: 
  

1. How to optimize cloudlet computing in the MEC environment? 

2. What new approach is needed to provide new solutions for best optimization 
with enabling adequate degree of freedom by changing the number of cloudlets 
and satisfying multi-aspects of performance? 

3. How to select one solution out of the set of non-dominated solutions in order to 
fulfill the decision maker preference? 

 

1.4 Research Objectives 
 

The ultimate goal of this research is accomplished cloudlet computing optimization. This 
goal is accomplished by the following objectives:  
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1. To design a novel framework for Cloudlet Deployment and Task Offloading in 
the MEC environment. The framework supports dynamic environment and 
multi-criteria decision-making. 

2. To solve the optimization given in the framework based on variable-length 
multi-objective optimization algorithm that support changing in the number of 
deployed Cloudlets based on computing requirements in the environment.  

3. To provide the possibility of selecting the appropriate solution from the set of 
non-dominated solutions using multi-criteria decision-making method based on 
the decision-maker’s preferences. 

 

1.5 Research Motivation 
 

The demand for computing resources at the network edge is growing annually. Previous 
studies have underscored the significance of computing requirements at the edge of the 
network. As depicted in Figure 1.1, almost all service providers in the Heavy Reading 
survey [34] either have worked or are working on a distributed cloud strategy at the edge. 
The number of mobile devices at the network edge is constantly increasing, with billions 
of such devices now in use. These devices generate massive amounts of data that require 
processing. Furthermore, modern applications have high processing demands. Mobile 
devices can save time and reduce energy by offloading their tasks to nearby cloudlets for 
processing, which is more efficient than processing on the device itself or sending the 
data to a remote Cloud. Consequently, optimizing Cloudlet computing in the MEC 
environment has become increasingly important, and has attracted the attention of many 
researchers in recent years. 
 

 

Figure 1.1: Status of Distributed Cloud Strategy (Infrastructure at the Edge). [34] 
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1.6 Research Contributions 
 

This research offers the following contributions: 
 

1. This research enables to solving the problem of cloudlet-based computing with 
an additional degree of freedom that enables not only deploying the cloudlets 
in optimal locations but also moving them according to the geographical 
demands information and integrating this with task offloading between more 
than one cloudlet for better load balancing.  

2. It presents a novel formulation of the optimization problem of cloudlet-based 
computing using the variable-length of solution space. This enables reserving a 
compact representation of the decisions regarding the variables needed for 
locating the cloudlets and offloading the tasks from the user to the cloudlets.  

3. It provides an application-oriented solution repairing operator for fixing non-
valid solutions and assuring that all solutions are generated in the feasible 
region. 

4. It incorporates variable-length searching within a hybrid framework combined 
with multi-objective whale optimization and differential evolution. Hence, it 
provides the literature with the first variable-length searching of multi-objective 
hybrid whale-differential evolution optimization.  

5. It provides one solution selection from the multi-objective optimization 
algorithm using MCDM approach that relies on the relative importance between 
the objectives, i.e., AHP. This is distinguished from the existing approaches in 
the literature that ignores this information in the solution selection. 
Furthermore, this enables the online operation of the algorithm without the need 
for human-based decision-making, which supports real-time operation. 

 

In Figure 1.2, we present a block diagram that illustrates the interplay between the 
problem statement, the objectives, and our research contributions. The diagram provides 
a visual representation of how these parts are interconnected. 
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1.7 Scope of the Research 
 

This research is scoped down to optimize cloudlet computing in the MEC environment. 
It determines the maximum number of cloudlets to be inserted given budget range. 
Furthermore, determine which base station to link the inserted cloudlet, subset of 𝐵𝑆 is 
selected to deploy mobile cloudlet, and each cloudlet is allowed to move for 𝑁𝑚 times 
within one day where, 𝑁𝑚 ≥ 0. The cloudlet associate users given task nature and user 
mobility. The users are walking in the environment in the random walk model. Each 
inserted cloudlet is connected to each other via the network connection. The task flow 
depends on the state of the cloudlets, and the user applications are dynamically 
partitioned into discrete off-loadable tasks that can be processed at any of the cloudlets 
where the user will offload tasks to a nearby base station with a cloudlet, and the cloudlet 
can either choose to add the task to its own queue (if the cloudlet is under loaded) or to 
redirect it to another cloudlet (if the cloudlet is overloaded) in the network. 
 

Another scope of this research is to enable satisfaction of decision maker preference by 
proposing method for selecting solution from the Pareto front based on the desire relative 
importance of all performance aspects by decision maker.  
 

1.8 Thesis Organization 
 

The rest of this thesis is structured as follows. Chapter 2 provides an overview of cloudlet 
deployment and task offloading in the MEC environment. It also discusses the algorithms 
and techniques used to address different objectives, such as cost, energy, and latency. 
Chapter 3 describes the research methodology, including the framework, formulation, 
algorithm and technique used to address the objectives. Chapter 4 provides the obtained 
results, their analysis, and related discussions. Chapter 5 provides a conclusion to the 
research and offers suggestions for possible future research directions. 
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