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DIAGONALLY IMPLICIT MULTISTEP BLOCK METHOD FOR 
SOLVING DELAY VOLTERRA INTEGRO-DIFFERENTIAL 

EQUATION

By

NUR AUNI BINTI BAHARUM

May 2023

Chairman : Professor Zanariah Abdul Majid, PhD
Institute : Mathematical Research

In this study, two points diagonally implicit multistep block (2DIMB) methods 
are constructed for the numerical solution of the first and second order delay 
Volterra integro-differential equation (DVIDE). The second order of DVIDE is 
solved directly without reducing the problem in the system of the first order of 
DVIDE. Two distinct types of DVIDE are solved, namely unbounded and bounded 
time lag cases. Furthermore, the constant and pantograph delay types indicate that 
the delay conditions for DVIDE are also considered in this study. The strategy 
of the constant step size is implemented for finding the numerical solution to DVIDE.

When finding the approximate solution to DVIDE, three components must be 
considered: the initial value problem of DVIDE, the delay solution, and the integral 
part. The 2DIMB method is formulated for the numerical solution of initial value 
problem of DVIDE and computed two solutions simultaneously in block form. This 
method is built on a predictor-corrector formula.

The previously calculated solutions are used to obtain the delay solution for the con-
stant delay type. Meanwhile, Lagrange interpolation polynomial is implemented to 
approximate the delay solution for the pantograph delay type. Since an integral part 
of DVIDE cannot be solved explicitly and analytically, the idea of approximating 
the solution is discussed. The appropriate order of the numerical integration method 
is chosen to approximate the solution of the integral part of DVIDE, which include 
trapezoidal rule, Simpson’s rule, and Boole’s rule.
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Analysis on order, error constants, consistency, zero-stability, and convergence
of the proposed method are given in this study. Moreover, the stability region is
discussed based on the stability polynomial of the 2DIMB method paired with the
appropriate numerical integration method. All the computational procedures were
undertaken using the C programming language in a CODE::BLOCKS platform.

Numerical results showed that where the proposed methods are reliable and suitable
for solving the unbounded and bounded time lag of the DVIDE for the constant and
pantograph delay types. Three advantages in terms of the total steps taken, func-
tion evaluations and the execution time taken by these methods have been identified
when comparing the numerical results with the Runge-Kutta and Adam-Bashforth-
Moulton methods.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH BLOK MULTILANGKAH TERSIRAT PEPENJURU
DIGUNAKAN UNTUK MENYELESAIKAN PERSAMAAN

PERBEZAAN LENGAH KAMIRAN VOLTERRA

Oleh

NUR AUNI BINTI BAHARUM

Mei 2023

Pengerusi : Professor Zanariah Abdul Majid, PhD
Institut : Penyelidikan Matematik

Dalam kajian ini, kaedah blok multilangkah dua titik tersirat pepenjuru (BM2TTP)
dibangunkan untuk penyelesaian berangka bagi peringkat pertama dan kedua per-
samaan perbezaan lengah kamiran Volterra (PPLKV). Peringkat kedua PPLKV perlu
diselesaikan secara langsung tanpa menurunkan kepada sistem peringkat pertama
PPLKV. Dua jenis PPLKV yang berbeza diketengahkan untuk diselesaikan: kes
lengah masa yang tidak terbatas dan terbatas. Seterusnya, jenis lengah pemalar dan
pantograf yang menunjukkan keadaan lengah untuk PPLKV juga dipertimbangkan
dalam kajian ini. Strategi ukuran langkah yang tetap dilaksanakan untuk mencari
penyelesaian berangka bagi PPLKV.

Tiga komponen mesti dipertimbangkan semasa mencari penyelesaian berangka bagi
PPLKV: masalah nilai awal PPLKV, penyelesaian lengah dan bahagian kamiran.
Kaedah BM2TTP dirumuskan untuk mencari penyelesaian berangka bagi masalah
nilai awal PPLKV dan mengira dua penyelesaikan secara serentak dalm bentuk
blok. Kaedah ini dibina berdasarkan formula peramal-pembetulan.

Penyelesaikan yang dikira sebelum ini digunakan untuk menyelesaikan masalah
lengah bagi jenis lengah pemalar. Sementara itu, polinomial interpolasi Lagrange
diimplementasikan untuk mengira masalah lengah bagi jenis lengah pantograf.
Disebabkan bahagian kamiran PPLKV tidak dapat diselesaikan secara jelas dan
analitik, satu idea anggaran penyelesaian dibincangkan. Formula kamiran berangka
yang mempunyai urutan yang sesuai dipilih bagi mencari penyelesaian untuk
bahagian kamiran PPLKV yang merangkumi petua trapezium, petua Simpson dan
petua Boole.
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Analisis yang merangkumi ciri-ciri peringkat, pemalar ralat, konsistensi, kestabilan-
sifar dan penumpuan kaedah yang dicadangkan dikaji dalam kajian ini. Tambahan
pula, rantau kestabilan dibincangkan berdasarkan kestabilan polinomial untuk
kaedah BM2TTP yang digandingkan dengan kaedah pengamiran berangka yang
sesuai. Semua prosedur pengiraan dilakukan dengan menggunakan bahasa pen-
gaturcaraan C dalam perisian CODE::BLOCKS.

Keputusan berangka menunjukkan penemuan penting di mana kaedah yang dicadan-
gkan boleh dipercayai dan sesuai untuk menyelesaikan masalah PPLKV bagi kes
penundaan masa yang tidak terbatas dan terbatas untuk jenis penundaan pemalar
dan pantograf. Tiga kelebihan dari segi jumlah bilangan langkah, penilaian fungsi
dan masa pelaksaaan yang diambil oleh kaedah ini telah dikenal pasti apabila mem-
bandingkan keputusan berangka dengan kaedah Runge-Kutta dan Adam-Bashforth-
Moulton.
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CHAPTER 1

INTRODUCTION AND PRELIMINARY MATHEMATICAL CONCEPT

1.1 Background

Numerous real-life phenomena in physics, engineering, biology, medicine, and eco-
nomics can be modelled using an initial value problems (IVP) for the ordinary dif-
ferential equations (ODE) of the type;

y′(x) = F
(
x,y(x)

)
, x ≥ x0,

y(x0) = y0,
(1.1.1)

where y′ is the derivative of unknown function x and F is a continuous function. The
function y(x), referred to as the state variable, reflects an evolving physical quantity
over time, x. However, it is occasionally essential to make changes to the right-hand
side of the equation (1.1.1) to make the model more consistent with the real-life
phenomena.

Delay differential equations (DDE) have gained significant interest in scientific ar-
eas over the decades. Delays (hereditary, memories, retarded arguments post-actions,
dead times, or time delays) are innate to many physical and engineering systems. It
has developed into a potent instrument for probing the intricacies of real-life prob-
lems, including infectious illness, population dynamics, neuronal networks, and even
economics and finance. DDE is described in mathematics as a differential equation
in which the derivatives of certain unknown functions at present depend on the val-
ues of the functions at the previous time. The other names for this equation include a
time-delay system, deviating argument equations, differential-difference equations,
and an ODE with a time lag. The standard form of DDE is denoted as;

y′(x) = F
(
x,y(x),y(x− τ)

)
,

y(x) = φ(x),
(1.1.2)

where φ(x) is the arbitrary initial function. The τ = τ
(
x,y(x)

)
represents a delay

term, while (x − τ) indicates a delay argument and y(x − τ) denotes the delay
solution.

In mathematics, ODE and DDE are considered to share a similarity in that they both
seek unique solutions, and both arise from the study of precisely solvable physical
phenomena. Despite the apparent similarities, there are some essential differences
between ODE and DDE, emphasized in Table 1.1.

1
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Table 1.1: The distinctions between first order ODE and DDE.

ODE DDE
Standard form: Standard form:

y′(x) = F
(
x,y(x)

)
, y′(x) = F

(
x,y(x),y(x− τ)

)
,

an equation without the presence of delays an equation with the presence of delays

Initial value: Initial value and initial function:
at point y(a) = y0, at point y(a) = y0,

to determine a unique solution y(x). to determine a unique solution y(x).
y(x) = φ(x),

to determine a unique solution for y(x− τ).

Solution: Solution:
The unique solution of y(x) is evaluated at
a specific time of x.

The unique solutions of y(x) are evaluated
at both particular times of x and the previous
time for the location of the delay.

Meanwhile, Volterra began exploring integral equations in 1844 and took the study
seriously in 1896 (Wazwaz, 2011). Volterra investigated hereditary influences while
researching a population growth model. The research produced a specific topic in
which differential and integral operators coexisted in the same equation. This novel
type of equation was termed Volterra integro-differential equations (VIDE) as,

y′(x) = f
(
x,y(x)

)
+
∫ x

0
K(x,u)y(u)du, (1.1.3)

where K(x,u) is a known function of two variables x and u, called the kernel
function. VIDE emerged in many scientific and engineering applications, including
electrical circuit analysis, viscoelastic and heat transfer.

VIDE is classified into two categories based on the homogeneity and linearity
concepts. The concepts of homogeneity and linearity considerably impact the
solution structures. The equation is homogeneous if the function f (x) in VIDE
is identically zero, otherwise inhomogeneous. When the power of y(u) within
the integral component is one, VIDE is classified as linear. However, a nonlinear
function of VIDE arises when the power of the unknown function y(u) in the integral
part exceeds one or when it contains nonlinear functions of y(u) such as e(y), sin(y),
cosh(y) and ln(1+ y).

Nonetheless, this study explores a unique equation where the DDE and VIDE appear
in the same equation. Volterra introduced this unique equation when he studied
some delay models in his work on population dynamics in the early 1920s and
1930s. While it is widely acknowledged that delays play a crucial role in population
dynamics (and biology in general), VIDE models with delays have been developed
and examined increasingly frequently in recent years, as indicated by the growing

2
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presence of literature on the subject (Cushing, 1977). The equation that unifies the
theories of DDE and VIDE is referred to as the delay Volterra integro-differential
equation (DVIDE), or VIDE with deviating argument.

Incorporating the delay element in the integro-differential equation to model real-
life phenomena has increased dramatically during the last few decades. Such models
have a wide variety concerning the integro-differential equation and how the delay
element appears in the underlying equation. DVIDE encompasses a broad spectrum
of fields, from biology to control problems, materials science, and economics (Kol-
manovskii and Myshkis, 2012; Baker, 2000; Baker et al., 1999). The delay term
makes the DVIDE too complex to hope for analytical solutions. The analytical so-
lution is sometimes impracticable and needs to be improved in giving the required
solution. Therefore, reliable numerical schemes are needed to obtain solutions to
such equations and come to intrigue researchers in numerical computation and anal-
ysis.

1.2 Delay Volterra Integro-differential Equation

Consider the delay Volterra integro-differential equation,

y′(x) = F
(

x,y(x),y(x− τ),
∫ x

a(x)
K(x,u)y(u)y(u− τ)du

)
. (1.2.1)

The classification of equation (1.2.1) can be naturally expanded with numerous delay
types to DVIDE. This study considers the delay Volterra integro-differential equation
with definite integral. The general form of the first order DVIDE with definite inte-
gral is considered as,

y′(x) = F
(
x,y(x),y(x− τ),z(x)

)
, a ≤ x ≤ b,

where z(x) =
∫ x

a(x)
K(x,u)y(u)y(u− τ)du,

with φ(x) = y(x), x ∈ [−τ,x0].

(1.2.2)

Consequently, two cases of the DVIDE with definite integral are introduced, which
depend on the value of the delay argument at the limit of integration. The general
form of delay Volterra integro-differential equation is

1. Unbounded time-lag
The delay argument does not occur at the integration limit, i.e., a(x) = 0 and
has fixed values at the limit of integration, (Rihan et al., 2009),

y′(x) = F
(

x,y(x),y(x− τ),
∫ x

0
K(x,u)y(u)y(u− τ)du

)
. (1.2.3)
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2. Bounded time-lag
The delay argument does occur at the integration limit, i.e., a(x) = x− τ and
has unfixed values at the limit of integration, (Rihan et al., 2009),

y′(x) = F
(

x,y(x),y(x− τ),
∫ x

x−τ

K(x,u)y(u)y(u− τ)du
)
. (1.2.4)

In this case, the delay or lag, τ is measurable as a physical quantity that is a scalar in
a function. It is always a continuous function and non-negative values. The arbitrary
initial function, φ(x) is understood to be defined in [ρ,x0], where,

ρ = min
1≤i≤n

{
min
x≥x0

(x− τ)

}
.

The delay terms for DVIDE are estimated first before approximating the unique so-
lution y(x). The delay argument, (x− τ) lies within the interval [x0,X ], where if
(x− τ) ≤ x0, then the initial function y(x− τ) = φ(x− τ) need to be applied. Else-
ways, when (x− τ)> x0, an interpolation polynomial must be applied in finding the
solution of the delay argument. These are four conditions by which the delay can be
represented;

1) Constant delay, where τ = R.
Example:

y′(x) = 1− x4

3
+
∫ x

0
xuy(u−1)du,

y(0) = 1, 0 ≤ x ≤ 1,

where x− τ(x) = x−1, thus τ(x) = 1 ∈ R.

2) Proportional delay (Pantograph delay), where τ is a function of x but the coef-
ficient of x ∈ [0,1].
Example:

y′(x) = y2
( x

2

)
− ex +1+

∫ x

0
y2
(u

2

)
du, x ∈ [0,1],

φ(x) = ex, x ≤ 0,

where x− τ(x) =
x
2

, thus τ(x) = x− x
2
=

x
2

.

3) Time-dependent delay, where τ is a function of x.
Example:

y′(x) = xex − e−x +
∫ x

x−ex
xexp(2u)y(u)y′(u)du,

φ(x) = e−x, x ≤ 0,
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where x− τ(x) = x− ex, thus τ(x) = ex.

4) State-dependent delay, where τ is a functions of both x and y(x).
Example:

y′(x) =
∫ y(x)

0
y(u)du, x ≥ 2,

φ(x) = 1, x ≤ 2,

where x− τ(x) = y(x), thus τ(x) = x− y(x).

The first and second order DVIDE with constant and pantograph delay conditions
have been studied in this study. A standard form of the second order DVIDE is
considered as follows,

y′′(x) = F
(

x,y(x),y(x− τ),y′(x),y′(x− τ),
∫ x

0
K(x,u)y(u)y′(u)y′(u− τ)du

)
,

where x ∈ [x0,X ],

y(x) = φ(x), x ≤ x0, y′(x) = φ
′(x), x ≤ x0.

(1.2.5)

Numerical solution for solving the second order DVIDE directly using the 2O2DDI
is described. The provided initial function or Lagrange interpolation polynomial
estimates the delay terms.

1.3 Linear Multistep Method

Typically, numerical methods for solving the IVP problem of ordinary differential
equations fall into one or two broad categories: one-step methods (e.g., Euler
method or Runge-Kutta method) or linear multistep methods (e.g., Adam methods).
The one-step method is a self-starting method that approximates the solution at
xn+1 using information from one of the previous points, xn. The starting point for
the numerical solution of this method depends only on the initial condition, and
there is no iterative procedure involved in obtaining an approximation of the solution.

Several researchers, including Gragg and Stetter (1964), Butcher (1965), Gear
(1965) and Lambert (1973), proposed the modified linear multistep method, which
was demonstrated to be capable of overcoming the Dahquist barrier theorem. Incor-
porating off-step points into the derivation process yielded this method. The general
linear multistep method, (LMM) can be defined as,

k

∑
j=0

α jyn+ j = h
k

∑
j=0

β j fn+ j, (1.3.1)
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where the coefficient α0, . . . ,α j and β0, . . . ,β j are real constants and assume that
αk ̸= 0 and that α0 and β0 are not both equal to zero in order to avoid degenerate
cases.

This approach is the multistep method because it depends on the approximation at
multiple previous mesh points to determine the approximation at the subsequent
point. This method’s numerical solution depends on the initial values and neces-
sitates an iterative process to reach a sufficiently comparative value. This method is
also referred to as a predictor-corrector method. The method is said to be explicit
(predictor) when βk = 0 and if βk ̸= 0, then the method is called implicit (corrector).

Definition 1.1 (Linear difference operator)
The linear difference operator L associated with the linear multistep method (1.3.1)
is defined by,

L[y(x) : h] =
k

∑
j=0

[
α jy(x+ jh)−hβ jy′(x+ jh)

]
, (1.3.2)

where y(x) is an arbitrary function and continuously differentiable on [a,b].
Source: Lambert (1973).

Expanding the function y(x+ jh) and its derivative y′(x+ jh) as Taylor series about
x;

y(x+h) = y(x)+hy′(x)+
h2

2!
y′′(x)+

h3

3!
y′′′(x)+ · · ·+ hn

n!
y(n)(x). (1.3.3)

Hence, collecting terms in (1.3.2) gives,

L[y(x) : h] =C0y(x)+C1hy(1)(x)+ . . .+Cphpy(p)(x), (1.3.4)

where the C0, C1, C2, . . ., Cp are constants. The Taylor series expansion will be
truncated based on the order of the method and substituted in equation (1.3.4) to
determine the proposed multistep method.

Definition 1.2 (Order)
The linear multistep method (1.3.1) is said to be of order p if,

C0 =C1 = . . .=Cp+D−1 = 0,

and Cp+D ̸= 0 is called as error constant of the method and D is the order of the
equation.
Source: Lambert (1973) and Fatunla (1995).

The general formulae for constants Cp for the first order problem is developed as
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follows;

Cp =
k

∑
j=0

[
jpα j

p!
−

j(p−1)β j

(p−1)!

]
, p = 0,1,2, . . . . (1.3.5)

While for the second order problem, the calculation of the error constant is deter-
mined as follows,

Cp =
k

∑
j=0

[
jpα j

p!
−

j(p−1)β j

(p−1)!
−

j(p−2)γ j

(p−2)!

]
, p = 0,1,2, . . . . (1.3.6)

Definition 1.3 (Consistency)
The linear multistep method (1.3.1) is said to be consistent if it has order p ≥ 1 and
the method is consistent if and only if,

k

∑
j=0

α j = 0, and
k

∑
j=0

jα j =
k

∑
j=0

β j.

Source: Lambert (1973).

Associated with the general linear multistep method (1.3.1) given is a polynomial,
the characteristic polynomial of the method is called as a first characteristic polyno-
mial,

ρ(ξ ) =
k

∑
j=0

α jξ
j, σ(ξ ) =

k

∑
j=0

β jξ
j. (1.3.7)

From (1.3), the linear multistep method is consistent if and only if,

ρ(1) = 0, ρ
′(1) = σ(1). (1.3.8)

Definition 1.4 (Zero stability for linear multistep method)
The linear multistep method (1.3.1) is said to be zero-stable if no root of the first
characteristic polynomial (1.3.7) has modulus greater than one.
Source: Lambert (1973).

Definition 1.5 (Zero stability for block method)
The block method is zero stable provided the roots Rm, m = 1(1)k of the first char-
acteristic polynomial ρ(R) specified as,

ρ(R) = det

[
k

∑
n=0

A(n)Rk−n

]
= 0, A(0) =−I, (1.3.9)

satisfied with | Rm |≤ 1 and those roots with |R|= 1, the multiplicity must not exceed
two.
Source: Fatunla (1991).
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Theorem 1.1 (Convergence of linear multistep method)
The linear multistep method is said to be convergent if and only if the method are
consistent and zero-stable.
Source: Lambert (1973).

Definition 1.6 (Convergence of the method)

lim
n→∞

y(xi) = Y (xi),

is the convergence condition for the approximate where y(xi) is the approximate
solution and Y (xi) is the exact solution.
Source: Brunner and Lambert (1974).

1.4 Lipschitz Condition

Let,

R1 = (x,y,yd ,z) : 0 ≤ x ≤ b, |y|< ∞, |yd |< ∞, |z|< ∞,

R2 = (x,u,y,yd) : 0 ≤ x ≤ b, |y|< ∞, |yd |< ∞.
(1.4.1)

Equation (1.2.2) defines points in R1 and R2 and the following conditions is consid-
ered as,

1. F and K are uniformly continuous in each variable.

2. For the F function and all (x,y,yd ,z) and (x, ỹ, ỹd ,z) in R1,∣∣∣F(x,y,yd ,z)−F(x, ỹ,yd ,z)
∣∣∣≤ L1|y− ỹ|,∣∣∣F(x,y,yd ,z)−F(x,y, ỹd ,z)
∣∣∣≤ L2|yd − ỹd |,∣∣∣F(x,y,yd ,z)−F(x,y,yd , z̃)
∣∣∣≤ L3|z− z̃|.

(1.4.2)

3. For the K function and all (x,u,y,yd) and (x,u, ỹ, ỹd) in R2,∣∣∣K(x,u,y,yd)−K(x,u, ỹ,yd)
∣∣∣≤ L4|y− ỹ|,∣∣∣K(x,u,y,yd)−K(x,u,y, ỹd)
∣∣∣≤ L5|yd − ỹd |.

(1.4.3)

4. Fy, Fyd , Fz, Ky and Kyd functions are continuous and satisfy by the following
condition;

Fy(x,y,yd ,z)≥ 0, Fyd (x,y,yd ,z)≥ 0, Fz(x,y,yd ,z)≥ 0,

Ky(x,y,yd ,z)≥ 0, Kyd (x,y,yd ,z)≥ 0,
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for all (x,y,yd ,z) in R1 and (x,u,y,yd) in R2.

It is well-known that, under these conditions, equation (1.2.2) possesses a unique
solution y(x) ∈C1[0,b].

1.5 Diagonally Implicit Multistep Method

There are two types of implicit multistep methods: the fully implicit multistep
method and the diagonally implicit multistep method. Since the fully implicit
multistep method requires extra information or points to approximate the solution,
thus the problem of evaluating the steps becomes much more complicated and
potentially more costly.

Diagonally implicit multistep methods were introduced by Butcher (1993). A
method must also have a diagonally implicit structure to be the diagonally implicit
multistep method. This means the s× s matrix A has the form;

A =


λ 0 0 · · · 0

a21 λ 0 · · · 0
a31 a32 λ · · · 0

...
...

...
...

as1 as2 as3 · · · λ

 ,

where λ ≥ 0. This restriction on this coefficient matrix is based on the fact that the
steps can be computed sequentially or in parallel if the lower triangular component
of A is zero. This will lead to a considerable saving over a method in which A has a
general implicit structure, (Butcher, 2008).

1.6 Preliminary Mathematical Concept

Consider the general linear multistep method for DVIDE as;

k

∑
i=0

αiyn+i = h
k

∑
i=0

βiF (xn+i,yn+i,yn−m+i,zn+i) , (1.6.1)

where the class of appropriate quadrature formulae is

zn = h
n

∑
i=0

ωniK(xn,xi,yi). (1.6.2)
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Definition 1.7 (Order of the method)
The difference operators L and M associated with the combination method are given
as,

L[y(xn);h] =
k

∑
i=0

(
αiy(xn+i)−hβiy′(xn+i)

)
, n = 0,1, . . . ,N − k,

and

M[y(xn);h] =
k

∑
i=0

(
αiy(xn+i)−hβiF

(
xn+i,y(xn+i),y(xn−m+i),z(xn+i)

))
.

The order of L is defined as the order of (ρ,σ).
Source: Brunner and Lambert (1974).

Definition 1.8 (Order of the method)
Let L be in order p, let quadrature rule have order q. Then we define the order r of
the combination method by r = min(p,q).
Source: Brunner and Lambert (1974).

1.7 Motivation

Delay Volterra integro-differential equation has a wide range of applications, and as
a result, finding the solution to DVIDE has received considerable attention. Numer-
ical methods have become more prevalent as computer technology has progressed.
However, numerous numerical methods exist and must be more appropriate for
locating DVIDE solutions.

The development of the multistep block method for solving numerous initial
value problems or differential equations is widely recognized. Nevertheless, the
implementation and performance of the multistep block method in DVIDE have yet
to be thoroughly studied.

Consequently, the motivation of this thesis is to generate the two points diagonally
implicit multistep block method with the same order between the first and second
points of the method. The development of the numerical scheme based on a diag-
onal formula demonstrates that the diagonally implicit multistep block method is
significantly cheaper in computational effort and competes favorably with the exist-
ing methods. The proposed method is practical to retain the high accuracy of the
computed results.
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1.8 Problem Statement

The analytical solution to the delay Volterra integro-differential equation is exces-
sively complicated. Qualitative results require a reliable numerical method (Yüzbaşı
and Karaçayır, 2018) since DVIDE is challenging to solve analytically. Most nu-
merical methods for solving delay Volterra integro-differential equations, such as the
Runge-Kutta method, Galerkin’s method and the spline collocation method, produce
only one new approximation value at each step. Also, the multistep block method
for solving the delay Volterra integro-differential equation has yet to be studied in
detail. Hence, by taking this golden opportunity to investigate DVIDE with the di-
agonally implicit multistep block method. The proposed method is also known as
an implicit method, and theoretically, the implicit method is more accurate than the
explicit method.

1.9 Objectives of Study

The objectives can be specified as follows:

1. To derive two points diagonally implicit multistep block method (2DIMB)
using Taylor series polynomial to solve the first order delay Volterra integro-
differential equation.

2. To formulate two points direct diagonally implicit multistep block method
(2O2DDI) for directly solving the second order delay Volterra integro-
differential equation using Lagrange interpolation polynomial.

3. To conduct detailed analysis of the method’s properties, including order, sta-
bility, consistency, and convergence.

4. To develop the algorithm and C programming language for the 2DIMB and
2O2DDI methods to solve the first and second order DVIDE with constant
and pantograph delays in unbounded and bounded time lags.

1.10 Scope of the Study

The delay Volterra integro-differential equation with retarded type is the subject of
this thesis. The following two cases of DVIDE are discussed in detail: unbounded
time lag and bounded time lag. Furthermore, the constant and proportional delay
conditions are the objective of the study.

This thesis provides in-depth details on developing new algorithms to solve the first
and second order DVIDE numerically. Three orders of the 2DIMB method, i.e.,
third, fourth and fifth orders, have been derived and implemented to solve the first
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order DVIDE. Meanwhile, the second order DVIDE has been solved directly using
the fourth order 2O2DDI. This thesis investigated the analysis of these methods,
including order, consistency, zero-stability, convergence, and stability. The constant
step size strategy is adapted while developing the C language algorithm for DVIDE.

1.11 Outline of the Thesis

This thesis is comprised of eight chapters and is structured as follows.

Chapter 1 introduces the delay Volterra integro-differential equation briefly. DVIDE
is discussed in detail in terms of its cases and types. This thesis also discusses the
study’s motivation, problem statement, objectives, and scope. Furthermore, this
chapter emphasizes the relevant mathematical concept of DVIDE and discusses
the fundamental definitions and theorems underlying the numerical method. The
numerical formulae are derived using the theories of Taylor series polynomials.

Chapter 2 briefly reviews the prior works as the chronological studies that led to
the research roadmap and focus on the three parts of the literature reviews, such as
the block method, DVIDE of the unbounded time-lag and DVIDE of the bounded
time-lag.

Chapter 3 concentrates on deriving the three, four, and five-order of two points
diagonally implicit multistep block method for the constant step size strategy. The
analysis of these multistep block methods has been discussed in detail, including
the proposed method’s order, consistency, zero stability and convergence analysis.
The Lagrange interpolation polynomial introduced in this chapter will be used to
determine the delay solution of the problem. Meanwhile, the numerical integration
method is introduced to tackle the integral part of DVIDE.

Chapter 4 deals with the numerical solution for the third, fourth and fifth order
methods of 2DIMB to solve the delay Volterra integro-differential equation with
unbounded time-lag of constant delay condition. Considering the appropriate nu-
merical integration method for handling the solution of the integral part of DVIDE
will be emphasized. The algorithm that has been designed will be implemented
in the constant step size strategy. Therefore, this chapter discusses the numerical
results of the tested problems and their comparison with other methods.

Chapter 5 focuses on the bounded time-lag of DVIDE with constant delay condi-
tions. Moreover, this chapter discusses the numerical treatment of the third, fourth
and fifth orders of 2DIMB using the constant step size strategy. In this case, the
integral part of DVIDE follows the law of definite integral and transforms the
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integral into two parts. Hence, these parts are solved using the appropriate numerical
integration based on the order of the derived method. Several numerical problems
are evaluated and compared to prior methods.

Chapter 6 discusses the DVIDE of unbounded time-lag with proportional delay
conditions. This chapter explores implementing the derived methods of orders three,
four, and five to solve this problem. The implementation of Lagrange interpolation
polynomial is needed to find the delay solution in the problems. The appropriated
numerical integration adapts to the DVIDE to solve the integral part. Several
numerical problems are solved and compared with the established methods.

Chapter 7 emphasizes the derivation of the two points direct diagonally implicit
multistep block method for the fourth order method. This derived method directly
solves the second order of DVIDE using the constant step size. Besides, this
chapter presents the strategy to choose the appropriate numerical integration method
for the integral part of DVIDE. All the analyses needed for the 2O2DDI have
been described, including order, consistency, zero stability and convergence. The
discussion of numerical results for the constant and proportional delay conditions
has been investigated.

Chapter 8 summarizes the essential findings of this research study. At the same time,
some potential recommendations for further research work are highlighted in this
chapter.
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Tunç, C. (2016a). New stability and boundedness results to Volterra integro-
differential equations with delay. Journal of the Egyptian Mathematical Society,
24(2):210–213.
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