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In literature, there are various studies that incorporate censoring mechanisms to the
generalized exponential model (GEM). This research aims to analyse generalized
exponential models in the presence of right and interval-censored data with fixed
covariates. The analysis starts with the extension of the GEM to incorporate fixed
covariates in the presence of right and interval censored data. Parameters of the
models under both censoring were estimated using the maximum likelihood estima-
tion (MLE) method. The performance of these estimates were assessed at various
sample sizes (n) and censoring proportion (cp) via the bias, standard error (SE) and
root mean square error (RMSE). Next the model was extended to incorporate inter-
val censored data with covariate. The performance of the MLE using the midpoint,
right, left, random imputations were compared at various sample sizes and censoring
proportions via a simulation study.

In addition, three asymptotic confidence interval procedures which included Wald,
likelihood ratio, and score confidence intervals procedures were investigated through
a coverage probability study when the data were both right and interval censored
at various n and cp. Then, five alternative confidence intervals procedures, which
included the jackknife, bootstrap-normal, bootstrap-t, bootstrap-p, bias correction
acceleration bootstrap procedures were studied via a coverage probability study. This
simulation study showed that overall, the Wald asymptotic and bootstrap normal
alternative confidence intervals methods are recommended as a suitable inferential
to estimate the parameters of the model using different sample sizes, interval length
and censoring proportions.
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In summary, the simulation studies for each category indicate that the bias, standard
error, and root mean square error are large when the cp is high, which indicates
that the estimators perform better when the sample size is large, and the cp is low.
Furthermore, the performance of the asymptotic confidence interval estimate indi-
cates that the Wald confidence interval for the parameter β1 in the generalized expo-
nential model, under both right and interval censoring, represent the most effective
approach. In comparison to alternative confidence intervals, the bootstrap normal
(b-n) method yields results significantly closer to the nominal error probability for
parameters β0 and β1.

Finally, to further support the findings of the simulation studies, we employ two real
datasets with right and interval-censored data from lung and breast cancer datasets,
respectively. The first dataset is an interval censored data from a breast cancer study
with age as the covariate. The second dataset consists of right censored lung cancer
data with age as the covariate. The results indicated that the GEM was a better fit
for both datasets compared to the exponential distribution. The confidence interval
estimation techniques were obtained for the covariate parameter of both models. Ad-
ditionally, the findings of the real data indicate that the Wald method for the covariate
β1 is significant within the context of the lung cancer data. For the breast censer data
with age as the covariate, the bootstrap normal, bootstrap-t, BCa and the jackknife
have a similar confidence interval for µ , α , β0 and β1. The results indicate that the
generalized exponential model outperforms the submodel based on the exponential
distribution.
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PROSEDUR INFERENSI BAGI MODEL EKSPONEN TERITLAK
MEMPUNYAI KOVARIAT, DENGAN DATA TERTAPIS KE KANAN DAN

SELANG TERTAPIS

Oleh

ALHARBI NADA MOHAMMEDSAEED M

Mai 2023

Pengerusi: Prof Madya Dr. Jayanthi a/p Arasan
Institut: Fakulti Sains

Dalam tinjauan literatur, terdapat pelbagai kajian yang menggabungkan mekanisma
tapisan kepada taburan eksponen umum. Penyelidikan ini bertujuan untuk menganal-
isis model eksponen teritlak terhadap kehadiran data tertapis kanan dan selang den-
gan kovariat tetap. Analisis dimulakan dengan melanjutkan model eksponen teritlak
bagi menggabungkan kovariat tetap dengan kehadiran data tertapis kanan. Parame-
ter bagi model bagi tertapis kanan dianggar dengan menggunakan kaedah anggaran
kebolehjadian maksimum (MLE). Prestasi anggaran ini dinilai pada pelbagai saiz
sampel (n) dan kadaran data tertapis (cp) melalui pincang, ralat piawai (SE) dan
punca min ralat kuasa dua (RMSE). Seterusnya, model tersebut dilanjutkan bagi
mengabungkan data tertapis selang dengan kehadiran kovariat. Prestasi MLE yang
menggunakan imputasi titik tengah, kanan, kiri, rawak dibandingkan pada pelbagai
saiz sampel dan kadaran data tertapis menerusi kajian simulasi.

Di samping itu, tiga prosedur selang keyakinan asimptotik termasuk Wald, nis-
bah kebolehjadian dan prosedur selang keyakinan skor disiasat menerusi kajian
kebarangkalian liputan apabila data tertapis secara kanan dan selang pada pelba-
gai n dan cp. Seterusnya, lima prosedur selang keyakinan alternatif, iaitu prose-
dur selang keyakinan jackkni f e, bootstrap−normal, bootstrap− t, bootstrap− p,
dan bootstrap pembetulan kepincangan telah dikaji menerusi kajian kebarangkalian
liputan. Hasil kajian simulasi ini menunjukkan bahawa secara keseluruhan, selang
keyakinan Wald dan selang keyakinan bootstrap-normal disyorkan sebagai inferensi
yang sesuai untuk menganggar parameter model menggunakan sampel saiz, panjang
selang dan kadaran tertapis yang berbeza.
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Secara ringkasnya, kajian simulasi untuk setiap kategori menunjukkan bahawa pin-
cang, ralat piawai, dan punca ralat kuasa dua adalah besar apabila cp adalah tinggi,
yang menunjukkan bahawa penganggar berfungsi lebih baik apabila saiz sampel be-
sar, dan cp adalah rendah. Selain itu, prestasi anggaran selang keyakinan asimptotik
menunjukkan bahawa selang keyakinan Wald untuk parameter β1 dalam model ek-
sponen teritlak, di bawah kedua-dua tapisan kanan dan selang, mewakili pendekatan
yang paling berkesan. Berbanding dengan selang keyakinan alternatif, kaedah boot-
strap normal (b-n) memberikan hasil yang lebih hampir secara signifikan dengan
kebarangkalian ralat nominal untuk parameter β0 dan β1.

Akhirnya, untuk menyokong penemuan kajian simulasi ini, kami menggunakan dua
set data tertapis kanan dan selang sebenar kanser paru-paru dan kanser payudara,
masing-masing. Set data pertama adalah data yang tertapis selang dari kajian kanser
payudara dengan usia sebagai pembolehubah kovariat. Set data kedua terdiri dari-
pada data kanser paru-paru yang tertapis kanan dengan usia sebagai pembolehubah
kovariat. Keputusan menunjukkan bahawa GEM adalah lebih padan untuk kedua-
dua set data berbanding dengan taburan eksponen. Teknik penentuan selang keyak-
inan diperoleh untuk parameter kovariat kedua-dua model. Selain itu, penemuan
data sebenar menunjukkan bahawa kaedah Wald untuk kovariat β1 adalah signifikan
dalam konteks data kanser paru-paru. Bagi data kanser payudara dengan usia seba-
gai kovariat, penganggaran selang keyakinan yang diperolehi adalah hampir sama
untuk µ , α , β0 dan β1 menggunakan kaedah bootstrap normal, bootstrap− t, BCa,
dan jackkni f e. Hasil menunjukkan bahawa model eksponen teritlak adalah lebih
baik berbanding submodel berdasarkan taburan eksponen.
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CHAPTER 1

INTRODUCTION

1.1 Survival Analysis

Survival analysis is described as a collection of statistical methods used for a dataset,
which is estimated using a well-defined time variable denoted as T until the occur-
rence of a specific event for an individual or observation. In survival studies, the time
variable T is a non-negative continuous or discrete variable representing failure, du-
ration, or survival time. According to Kleinbaum and Klein (2012) this period is
usually measured in days, weeks, months, or years from the time the individual joins
the study until the occurrence of significance, such as death, recurrence, or disease
incidence, occurs. Lawless (2011) pointed out that the time variable needs a well-
defined reference point that refers to as the time origin; t = 0; the starting time from
which the individual’s survival is measured, which means results in the incidence of
the event of interest and, eventually, a reason for the observation time to be ended.

Kalbfleisch and Prentice (2011) emphasized that, in any survival study, the investi-
gator should verify the starting point and the study endpoint. In other words, survival
analysis can be described as the study of time-dependent data sets i.e., time to fail-
ure of a mechanical or physical component from time of installation in a particular
machine or time to death for a patient diagnosed with leukemia. So also, survival
analysis equally plays an essential role in industrial or reliability studies, although
the methodologies involved are most commonly used in the biomedical field (Jenni-
son and Turnbull, 1999). The aim of clinical research is often to identify and estimate
the survival distribution of time T , by estimating the probability that an individual
survives from a specified time t or beyond (Kleinbaum and Klein, 2012). Mathemat-
ically, the survival of these patients can be expressed as a function S(t) = Pr(T ≥ t).
Due to the instantaneous risk at failure time t, the conditional probability of dying
given that patients have survived up to time t can be obtained using the hazard func-
tion, h(t). Furthermore, because some individuals may be diagnosed with a disease,
for instance lung cancer disease, at random time points after the study begins, a
straightforward method is to shift the start time to the time origin, t = 0 (Klein and
Moeschberger, 2006).

The presence of incomplete observation of the survival times due to censoring and
truncation mechanisms is another unique feature of survival data. If censoring is
present in a survival study, the exact survival time or time to failure of a randomly
selected individuals remains unknown to the researcher. For instance, in the cancer
study discussed earlier, some individuals may have survived death even after the end
of the study.
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Therefore, the exact death time for these individuals will be unknown, because these
times are longer than the end time point of the study. Additionally, some of these
individuals maybe sampled from a medical registry records due to cost or time con-
straints. The observation times of these individuals might be truncated due to a selec-
tion mechanism applied to select only individuals who are free from failure into the
study. If no assumptions are made on the distribution of T , a non-parametric method
can be applied to estimate the survival probabilities of the observations in the study.
The non-parametric methods that are most commonly used are the Kaplan-Meier
and the Nelson Aalen estimators. Also, a semi-parametric model known as Cox’s
proportional hazard model or parametric regression models can be applied (Mitra,
2013).

1.2 Basic Formulation in Survival Analysis

Survival time, T , is a non-negative random variable which has a continuous distribu-
tion function. The survival, hazard, and cumulative hazard function can be defined
as follows:

1.2.1 Survival Function

The essential quantity employed to describe failure time phenomena is the survival
function, the probability of an individual survives beyond time t. It is defined as,

S(t) = Pr(T ≥ t) = 1−F(t),

where F(t) is the cumulative distribution function (CDF). Meanwhile, the survival
function is given by,

S(t) = Pr(T ≥ t) =
∫

∞

t
f (u)du,

thus,

f (t) =−dS(t)
dt

,

where f (t) is the probability distribution function (pdf) for the random variable T .

The survival function is fundamental to a survival analysis because obtaining survival
probabilities for different values of t provides crucial summary information from
survival data (Kleinbaum et al., 2012). As t ranges from 0 to ∞, the survival function
has the following properties:

• For t = 0 :
S(0) =

∫
∞

0
f (x)dx = 1

• For t = ∞ :
S(∞) = lim

t→∞
S(t) = lim

t→∞

∫
∞

t
f (x)dx = 0
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• S(t) is a decreasing continuous function.

1.2.2 Hazard Function

The hazard function of T is also fundamental in survival analysis. Hazard function is
also known as the conditional failure rate in reliability and can be defined as follows:

h(t) = lim
△t→0

1
△t

P(t ≤ T < t +△t | T ≥ t)

=
f (t)
S(t)

.

Furthermore, Breslow (1975) emphasized that the relationship between the hazard
and the survival functions can be derived as follows:

h(t) =
f (t)
S(t)

=
− d

dt S(t)
S(t)

=− d
dt

logS(t) for t ≥ 0.

Also,

S(t) = exp(−
∫ t

0
h(u)du) for t ≥ 0. (1.1)

1.2.3 Cumulative Hazard Function

The cumulative hazard function, H(t), is define as

H(t) =
∫ t

0
h(u)du for t ≥ 0. (1.2)

By substituting (1.1) in (1.2), the relationship between the survival function and the
cumulative hazard function can be written as follows:

S(t) = exp(−H(t)).

1.3 Censoring

In any medical survival study, a researcher must determine the start and endpoint of
the study based on the fact that survival studies do not last indefinitely. Subsequently,
this results in the incomplete observation of failure times, and the recorded time for
these individuals is categorized as censored survival or failure time. In most clinical
studies, three types of censoring, right, left, and interval censoring, are encountered
(Bogaerts et al., 2017). These censoring mechanisms are given in more detail in the
following sections.

3



© C
OPYRIG

HT U
PM

1.3.1 Right Censoring

In some survival study, all the individuals may have the same fixed and known cen-
soring times. Usually this occurs when individuals enter the study at the same time
origin t = 0 and the study terminates later at a time. In other words, the study comes
to an end at a pre-determined end time and individuals can leave the study only
through failure (Lawless et al., 2003). The right censoring are of three forms. They
are:

1.3.1.1 Type I Censoring

Fixed type I censoring occurs when a study is designed to end after C years of follow-
up. In this case, everyone who does not have an event observed during the course
of the study is censored at C years. In a simple generalization of this scheme, each
unit has a potential maximum observation time ψi for i = 1, . . . ,n which may differ
from one case to the next but is nevertheless fixed in advance. The probability that
unit i will be alive at the end of her observation time is S(ψi), and the total number
of deaths is again random (Lawless et al., 2003).

1.3.1.2 Random Censoring

In random type I censoring, the study is designed to end after C years, but censored
subjects do not all have the same censoring time. It is the most common type of right-
censoring use in several studies. In addition to the grounds that random censoring
occurs because the study has come to an end, an observation is equally censored for a
reason that individuals drop out of the study because the patient wishes to discontinue
treatment or lost to the study at a random point due to migration or death related to
other possibilities regardless of the event being observed (Bogaerts et al., 2017).

1.3.1.3 Fixed Type II Censoring

In type II censoring, a study ends when there is a pre-specified number of events.
A sample of n units is followed as long as necessary until d units have experienced
the event. In this design the number of deaths d, which determines the precision of
the study, is fixed in advance and can be used as a design parameter. Unfortunately,
the total duration of the study is then random and cannot be known with certainty in
advance. Other forms of Type-I and Type-II right censoring includes the generalized
Type-I, progressive Type-I and progressive Type-II right censoring, see (Lawless,
2011; Klein and Moeschberger, 2006).

1.3.2 Left Censoring

Left censoring is also a common censoring mechanism that takes place in any med-
ical setting. Under this type of censoring, an event of interest has already occurred
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or has been experienced by an individual even before he/she is enrolled in the study.
Thus, the exact survival time for this individual remains unknown. Left censoring is
most likely to occur when you begin observing a sample at a time when some of the
individuals may have already experienced the event. The survival times for the ith

individual is left-censored (LC) when ti < ci and ti ∈ (0, li] with li the left-censored
survival times.

1.3.3 Interval Censoring

Interval censoring arises when the exact event time is unknown except to fall between
pre-specified interval. Since death is not the only event to be observed in medical
settings, disease progression has equally gained interest or concern among medical
practitioners. There are several different types of interval-censored data. They are as
follows:

1. Case I interval-censored data, also called current status data, arises when each
individual is subjected to observation only at a single follow-up time, and thus,
the event of interest (failure) is only observed either to have or have not oc-
curred before the observation time. That is, the failure time of interest is either
left- or right-censored data (Keiding, 1991; Groeneboom and Wellner, 1992;
Koul and Yi, 2006).

Case I interval-censored data usually occur in tumorigenicity tests. In these
tests, the tumor start time of animals is always of prime interest but not ob-
servable. Instead, tumor status is commonly known at death (either natural
death for scientific study). Hence, the tumor start time is expected to be less or
greater than the death time. There are many authors who discussed the current
status data arising from survival studies such as (Huang and Wellner, 1995;
Huang et al., 1996; Rossini and Tsiatis, 1996; Lin et al., 1998; Shen, 2000;
Ghosh, 2001; Martinussen and Scheike, 2002; Xue et al., 2004; Sun, 2007).

2. Case II interval-censored data, also known as general interval-censored data, is
defined as data which refers to a situation when the event of interest cannot be
immediately observed and is only known to have appeared through a random
interval of time. Left (right) censoring is a special case of interval censoring
in which the left (right) endpoint is 0(∞).

Case II interval-censored data arises in several medical and health studies.
For example, in a study which compares time to cosmetic deterioration of
breasts for breast cancer patients treated with radiotherapy and radiotherapy
plus chemotherapy, patients were examined at each clinical visit for breast
retraction. The breast retraction is only known to occur between two clini-
cal visits or right-censored at the end of the study. The study objective is to
compare the patients who received adjuvant chemotherapy to those who did
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not and to decide whether chemotherapy affects the rate of deterioration of the
cosmetic state (Finkelstein, 1986; Pan, 2000; Lim and Sun, 2003; Huang et al.,
2008).

3. Mixed interval-censored data refers to the survival time of interest, which is
observed either to belong to an interval, or to be in right-censoring (Zhao and
Sun, 2004).

4. Partly interval-censored data arise when the exact failure times are observed
of some subjects but, for the remaining subjects, the failure time of interest is
not observable, but is only known to be bracketed between two examination
times (Huang, 1999). Example of partly interval-censored data is given by the
Framingham Heart Disease study. In this research, times of the first occurrence
of the subcategory angina pectoris in coronary heart disease patients are of
interest. For some patients, the event time is recorded precisely, but for the
remaining patients, time is recorded only between two clinical examinations
see (Feinleib et al., 1975; Odell et al., 1992).

1.3.4 Independent Random Censoring

A more realistic and common postulation in a clinical study is to assume that the
censoring times are random and independent of the survival or failure times. In other
words, the random censoring mechanism is non-informative or contains no informa-
tion of the survival/failure times of all observations in a survival study. Thus, under
independent random censoring, all individuals in the study have the same probabil-
ity being censored despite the fact that the risk/hazard of failure for some individuals
may be higher than the others.

Subsequently for RC data, let the failure time T be independent continuous random
variable with common survival function, density function and hazard function given
as S(t), f (t) and h(t) respectively. Also, let the censoring time C be continuous
random variable with common survival function G(t) and density function g(t). As-
suming that the censoring times are non-informative of the failure times, we know
that the distribution of G(t) does not rely on any parameters in S(t) (Lawless, 2011).

Independent interval censoring is the condition whereby the method that generates
the censoring is independent of the subject’s failure time distribution. For instance, T
is failure time of interest and L and R are the two observed values such that T ∈ (L,R].
Then the independent random censoring process for interval-censored data can be
expressed by,

P(L < T ≤ R | L = l,R = r) = P(l < T ≤ r). (1.3)

That is, the joint survival function of the two observed values L and R is free from any
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parameters contributory in the survival function of T . More importantly, it should be
noted that the independent interval censoring is non- informative interval censoring
while the opposite is not always true (Betensky, 2000; Oller et al., 2004; Sun, 2007).

1.4 Survival Models

In any survival study, estimation of the survival or hazard function is crucial in pro-
viding an overview of failure/hazard rate of an individual following the event of
interest being studied. Furthermore, it is common in clinical studies to have condi-
tions where several (known) covariates or risk factors such as age and blood pressure
level possibly affect patient diagnosis and are recorded to investigate the effect of
these variables on the survival times of an individual (Clark et al., 2003). The mod-
eling can be achieved using either the non-parametric, semi-parametric or parametric
approaches. In this research, the parametric approach is considered.

1.5 Parametric Approach

Parametric regression often remain a useful tool as it is fitted much faster compared
to the semi-parametric models (Venables and Ripley, 2013). Also, under conditions
such as the dependency of the survival times on the covariates, either fixed or time-
dependent, and when parameter values are far from zero, an asymptotically ade-
quate parametric model offers more efficient estimates as they are based on fewer
parameters compared to a semi-parametric model (Cox and Oakes, 1984; Nardi and
Schemper, 2003). Some of the advantages of the parametric models are the existence
of straightforward methods to obtain the maximum likelihood estimation (MLE) of
the parameters, confidence intervals (CI) and hypothesis testing procedures. Also, in
a parametric framework, the survival times T is a continuous random variable with
a specified distribution function f (t). Sometimes it is vital to extend the existing
parametric distributions to incorporate information on the censoring mechanism and
covariates. Some of the most commonly used parametric regression models are the
extensions of the Weibull, exponential, and the log-normal, which differs from each
other with different hazard functions (Bradburn et al., 2003).

1.6 Types of Covariates

Sometimes it is necessary to measure the effect of covariates in survival analysis
study. The two types of covariates that are usually encountered in any survival study
are the fixed and time-dependent covariates. Fixed covariates are commonly mea-
sured at the beginning time point of the study, but these covariates can be equally
measured at the middle or end of the study. The covariates are constant throughout
the study. Examples of such covariates are the gender and ethnicity of individuals.
On the other hand, time-dependent covariates vary over time and are measured on
regular basis for an individual in a study. By accessing the record of a time-dependent
covariate up to a specified time t, a researcher is able to study the continuous effect
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of these variables on the survival time T . For instance, accounting for the change
in the level of covariates such as age, glucose level, blood pressure, or tumor sizes
provides an up-to-date effect of these variables on the hazard and survival rate of the
individuals in the study. It provides a more reliable prognosis of the future life ex-
pectancy comparatively when these covariates are measured only at the time origin
(Collett, 2015).

Fixed-time covariates are those whose values are fixed throughout the study, exam-
ples are sex, and race, among others. It is typical in many survival studies that indi-
viduals are monitored for the duration of the study, and some explanatory variables
are recorded whose values may change during the study. For example, the status
of neutrophil recovery of patients with leukemia after transplantation (discrete-time)
and the number of CD4 T-cells of HIV/AIDS patients measured at irregular intervals
(continuous).

Also, some external covariates may influence the survival time of an individual at
time t which however exist independently. Such covariate may exist in respira-
tory survival studies, where the presence of air pollutant may affect the life span
of individuals with heart disease or lung cancer where the change in the air quality
is independent of any particular individual in the study (Collett, 2015; Kalbfleisch
and Prentice, 2011; Kiani, 2012). Another approach is to extend parametric models
where the covariates are often modeled through the mean function by incorporating
in the hazard function as proposed by (Sparling et al., 2006; Arasan and Lunn, 2008;
Kiani, 2012) among others.

1.7 Multiple Imputation

Missing data usually occur in various fields of study due to several reasons. The
most popular method used in estimating the missing values is the imputation. For
example, in medical and health studies, it is required for the participants to undergo
periodic follow-ups for the examination of characteristics related to the condition of
interest. In handling the missing observations various imputation methods, such as
single imputation, multiple imputation, etc are used (Sterne et al., 2009).

Single imputation is often applied because it is intuitively attractive. In single im-
putation, we fill in each missing value by a single predicted value. The obvious
shortcoming of single imputation is that we replace the missing value with a single
value. Hence, single imputation ignores uncertainty and always underestimates the
variance. Multiple imputation method on the other hand, rectify the shortcoming
of single imputation by taking into account both within imputation uncertainty and
between imputation uncertainty. In other words, multiple imputations use multiple
values to estimate the unknown missing observation. In survival analysis, the mul-
tiple imputation method is used in estimating missing interval-censored failure time
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data. The method reduces the interval-censored data to right-censored data, which
can be handled using specified methods for right-censored data (Pan, 2000; Chen
and Sun, 2010; Kiani, 2012; Manoharan, 2018). Some of the research in the litera-
ture that employed the imputation methods for interval-censored data are the works
of (Dorey et al., 1993; Satten et al., 1998; Betensky and Finkelstein, 1999; Bebchuk
and Betensky, 2000; Pan, 2001).

Imputation is a common approach to dealing with missing data. A straightforward
method is to use right limit for the period in which the infection time is censored to
impute the infection time. The procedure is called the right end imputation. Further-
more, another method called the left-end imputation method involves considering
the first inspection time for the imputations. Lastly, a random imputation in which a
random time is selected within the interval between the first inspection time, and the
last inspection time.

1.8 The Generalized Exponential Distribution

The two parameter exponential distribution has been applied in real-life studies in the
literature. A random variable T is assumed to follow the two-parameter exponential
distribution if T has the cumulative distribution function as,

F(t;λ ,µ) = (1− e−(t−µ)/λ ), t > µ,α > 0,λ > 0, (1.4)

with corresponding probability density function,

f (t;λ ,µ) =
1
λ

e−(t−µ)/λ , t > µ,λ > 0. (1.5)

The two parameter exponential distribution was generalized by the introduction of
a shape parameter (also called exponent parameter) by Gupta and Kundu (1999) to
have a three-parameter generalised exponential (GE) distribution. This shape param-
eter enables the distribution to have different shapes which makes it more flexible
when used in fitting lifetime data. The GE distribution has the following cumulative
distribution function (CDF),

F(t;α,λ ,µ) = (1− e−(t−µ)/λ )α , t > µ,α > 0,λ > 0, (1.6)

and probability density function (pdf),

f (t;α,λ ,µ) =
α

λ
(1− e−(t−µ)/λ )α−1e−(t−µ)/λ , t > µ,α > 0,λ > 0, (1.7)

where α , λ , and µ are respectively the shape, scale, and location parameters of
the distribution. Figure 1.1 shows the plots of pdf of GE distribution with different
parameter values.
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Figure 1.1: Graph of the pdf of GE with various parameter values Good Morn-
ing

Meanwhile, the survival function and hazard function are given respectively by:

S(t;α,λ ,µ) = 1−F(t;α,λ ,µ) = 1− (1− e−(t−µ)/λ )α ,

t > µ,λ ,α > 0. (1.8)

h(t;α,λ ,µ) =
f (t;α,λ ,µ)

S(t;α,λ ,µ)
=

α

λ

(1− e−(t−µ)/λ )α−1e−(t−µ)/λ

1− (1− e−(t−µ)/λ )α
,

(t > µ). (1.9)

Figure 1.2 shows the plots of hazard function of GE distribution with different pa-
rameter values.

Figure 1.2: Graph of the hazard function of GE with various parameter values
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1.9 Problem Statement

Many statistical approaches have been developed to solve the problems that arise
in the survival analysis. But these methods still face some problems such as the
following :

• The three-parameter GE distribution was shown to perform better than the
three-parameter Weibull and Gamma distributions in some cases. However,
no work has been conducted to check the performance of the model with co-
variates.

• The performance of the GE distribution and GE distribution with covariates
and mixed case interval-censored data has never been explored as well.

• There is no existing literature on the confidence interval estimation procedures
for the GE distribution with covariates and mixed case interval-censored data.
Alternative inferential procedures via the bootstrap and jackknife have also not
been applied to these distributions and their extensions.

1.10 Research Objectives

• To extend the Generalized exponential distribution to incorporate fixed covari-
ate with right censored data (GEMR model) and fixed covariate with interval
censored data (GEMI model).

• To estimate the parameters of the GEMR and GEMI models via simulation
studies by evaluating the values of bias, standard error and root mean square
error of the parameter estimates at various sample sizes and censoring propor-
tions.

• To assess the performance of the parameter estimates for the GEMI model
using midpoint imputation by evaluating the values of bias, standard error and
root mean square error of the parameter estimates at various sample sizes,
interval lengths and censoring proportions.

• To investigate the performance of confidence interval methods (Wald, likeli-
hood ratio, and score) asymptotic and alternative inferential procedures (jack-
knife and bootstrap intervals) for the parameters estimates of GEMR and
GEMI models with fixed covariate. The evaluation will be conducted through
a coverage probability study at various sample sizes, censoring proportions,
and nominal levels.

• To apply the proposed models and inferential procedures to real data namely
the breast cancer and the lung cancer studies to see how the proposed models
work with real-life data.
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1.11 Outline of the Thesis

This thesis is organized into seven chapters. Chapter 1.1 provides a brief introduction
to survival data, basic functions in survival analysis, types of censoring, censoring
mechanisms, and fixed covariates. This chapter equally discusses parametric survival
models that are commonly applied to survival data. The objectives of this research
are also discussed in this chapter. Chapter 2 provides a review of related literature
to the current work. Special consideration in this literature review is the research
conducted on parametric models with RC and IC data with fixed covariates.

Chapter 3 begins with the GE model’s extension to incorporate both the right-
censored and interval-censored data with fixed covariates. Furthermore, the interval-
censored with fixed covariates of the generalized exponential distribution with differ-
ent forms of imputations were considered. These models’ performance is compared
at different sample sizes, censoring proportions through a simulation study. Chap-
ter 4 focuses on inferential procedures by evaluating the performance of asymptotic
confidence intervals: Wald, likelihood ratio, and score intervals on the parameters
of the (GEMR) and (GEMI) models through a coverage probability study at various
sample sizes, nominal levels, censoring proportions and interval widths.

Chapter 5 focuses on inferential procedures by evaluating the performance of al-
ternative confidence intervals: jackknife and bootstrap intervals (Normal Bootstrap,
Bootstrap Percentile (B-p), Bootstrap-t (B-t), Bias Corrected and Accelerated (BCa)
CI estimate methods) on the parameters of the (GEMR) and (GEMI) models through
a coverage probability study at various sample sizes, nominal levels, censoring pro-
portions and interval widths.

Chapter 6 discusses the applications of the (GEMR) and (GEMI) to different time-
to-event data. The proposed (GEMR) model and confidence interval technique are
then applied to modified lung cancer data with age as a fixed covariate. Furthermore,
the (GEMI) model was applied to breast cancer data. The necessary inferences were
drawn from the applications. Chapter 7 summarizes and concludes the whole thesis.
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