PERFORMANCE OF CELLULOSE OIL PALM FIBRE (COPF) IN STONE MASTIC ASPHALT (SMA) MIX

JEYAN A/L VASUDEVAN

FK 2001 46
PERFORMANCE OF CELLULOSE OIL PALM FIBRE (COPF) IN STONE MASTIC ASPHALT (SMA) MIX

By

JEYAN A/L VASUDEVAN

Thesis Submitted in Fulfilment of the Requirement for the Degree of Master of Science in the Faculty of Engineering
Universiti Putra Malaysia

April 2001
Dedicated to my beloved family:

Dad, Mum,

Brother, Sisters, Sister-in-law

And Brother-in-laws
A large amount of money is allocated annually to reduce skid-related accidents due to pavement failures. It seems that the current Hot Mix Asphalt (HMA) could no longer cater for heavy loading vehicles. This indicates that an alternative asphalt technology has to be looked into seriously. As such, Stone Mastic Asphalt (SMA) technology with Cellulose Oil Palm Fibre (COPF) was developed. It is a gap-graded mix with high percentage of coarse aggregate. This mix was found to be performing very well for heavy loading traffic with the use of COPF.

Fibre in SMA plays an important role to stabilise the mix and to minimise the draindown phenomena. This research aims to study the production and processing of the fibre and their performance in the SMA. The fibre production and processing was done using different types of pulping methods such as mechanical and chemical pulping. Each type of pulp products was analysed for its suitability as an anti-draindown agent by using the fibre-oil draindown test. In this study, the standard production and processing methods
would be adjusted or modified if the pulp product failed the oil draindown test or otherwise. When the produced pulp is found to be suitable as an anti-draindown agent, it was then added to the SMA mix to check its performance. Complete mechanical and chemical analyses were also performed on the fibre to check its ability to form micromesh netting.

Material selection of aggregate and asphalt was carried out in accordance with the specified standards. It was found that the selected material complied with SMA mix requirement. Besides that, determination of Optimum Asphalt Content (OAC) was carried out in accordance with the UPM in-house method. From the study OAC of 5.5% was obtained. In addition, a new method of determination of Optimum Fibre Content (OFC) was developed in the study. The OFC of Smartcel obtained through this method was 0.3%.

A detailed comparative performance study of SMA mix was carried out with different types of fibres and without any fibres. The performance was determined by using Density and Void Analysis, Resilient Modulus Test, Marshall Stability Test, Indirect Tensile Test, Moisture Induced Damage Test, Fatigue Test, Static Creep Test, Cantabro and Draindown Test. Results from the analysis revealed that SMA with fibre was performing well.

The entire analysis indicated that the performance of SMA with COPF fibre was far superior as compared to the other SMA with international fibres and SMA without any
fibre. This shows that SMA with COPF fibre can be used as a heavy duty, durable and high
skid resistance road pavement in Malaysia.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

PERILAKU SELULOSA SERABUT KELAPA SAWIT DALAM TURAPAN CAMPURAN ASPHALT MAMAH

Oleh

JEYAN VASUDEVAN

April 2001

Pengerusi : En. Ratnasamy Muniandy

Fakulti : Kejuruteraan

Kos pemuliharaan jalan terutamanya bagi mengurangkan kemalangan yang disebabkan permukaan jalan, memerlukan perbelanjaan yang tinggi setiap tahun. Ini mungkin disebabkan oleh turapan campuran asphalt tradisional yang digunakan semasa ini tidak lagi mampu menampung beban gandar kenderaan. Oleh itu, satu teknologi turapan alternatif perlu ditinjau. Jesteru itu, turapan campuran asphalt mamah dengan selulosa serabut kelapa sawit (dikenali sebagai COPF dalam kajian ini) telah dihasilkan. Ia merupakan satu campuran gradiasi terbuka dengan peratusan batuan karas yang tinggi. Campuran dengan COPF ini juga didapati mampu menampung beban gandar yang tinggi.

Serabut dalam campuran asphalt mamah memainkan peranan yang penting dalam menstabil dan mengurangkan pengaliran keluar asphalt dari campuran berkenaan. Fokus kajian ialah menghasilkan dan memproses serabut kelapa sawit, dan juga perilaku selulosa serabut ini dalam campuran asphalt mamah. Penghasilan selulosa serabut kelapa
VII

Pemilihan batuan dan asphalt dilakukan berasaskan spesifikasi yang disyorkan. Dari kajian yang dijalankan ke atas batuan dan asphalt yang dipilih, didapati bahawa ia adalah sesuai digunakan sebagai bahan dalam turapan campuran asphalt mamah. Selain itu, kajian penentuan asphalt optima yang dijalankan berasaskan keadah UPM menunjukan nilai optima sebanyak 5.5%. Selanjutnya, satu kaedah penentuan serabut optima dibentuk dalam kajian ini. Melalui kaedah baru ini, nilai optima 0.3% diperolehi bagi COPF.

Keseluruhan analisis yang dijalankan menunjukan turapan campuran asphalt mamah dengan COPF mempamerkan keputusan yang lebih baik bcrbanding dengan campuran asphalt mamah dengan serabut lain dan campuran asphalt mamah tanpa sebarang serabut. Oleh itu, campuran asphalt mamah dengan COPF disyorkan bagi menangani masalah beban gandar berlebihan. Ia juga berkesan untuk mengurangkan gclinciran di jalanraya di Malaysia.
ACKNOWLEDGEMENTS

It is a great pleasure to acknowledge my indebtedness to those who have provided me with great help and assistance upon the completion of this research study. First and foremost, I would like to express my most sincere thanks and appreciation to Mr. Ratnasamy Muniandy for his unflagging and resolute guidance, invaluable advice, constructive suggestions, tutelage, understanding, help and approachability throughout the course of the study. I would like to record my appreciation for the valuable comments and guidance given by Assoc. Prof. Ir. Megat Johari Megat Mohd. Noor (Faculty of Engineering, UPM). I also wish to extend my gratitude to Mr. Hussain Hamid (Faculty of Engineering, UPM) for his support, constructive criticism and valuable comments in making this study a success.

I would like to thank the Ministry of Science, Technology and the Environment, Malaysia for the IRPA research fund. It has enabled me to complete the study without encountering any financial difficulties.

I would like to express my deep appreciation to all the staff member of Chemical laboratory, Forest Research Institute of Malaysia (FRIM) Kepong, who were of great help during the fibre-processing phase. In particular, special thanks go to Dr. Mohd. Noor Mohd. Yusoff (Head of Chemical Laboratory), Dr. Koh Mok Poh, Mrs. Zainab and their colleagues.
I am deeply indebted to Dr. Jalaludin Harun, Faculty of Forestry, UPM for his valuable advice. I also would like to extend my thanks to all the staff member of faculty of engineering, particularly Tn. Hj. Razali Mohd. Amin for his help during the course of the study.

I would like to express my sincere thanks to other postgraduate students in the research centre, who been great friends and helpful in many aspects. I would also like to extend gratitude to all my friends for the discussion, continuous support and encouragement.

Last but least, may my family be blessed with good health, long life and happiness for all the love and care they have given me all this while. Thanks also for always having faith in me.
I certify that an Examination Committee met on 12th April 2001 to conduct the final examination of Jeyan Vasudevan on his Master of Science thesis entitled "Performance of Cellulose Oil Palm Fibre (COPF) in Stone Mastic Asphalt (SMA) Mix" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

RADIN UMAR RADIN SOHADI, Ph.D.
Professor / Dean
Department of Civil Engineering
Faculty of Engineering,
Universiti Putra Malaysia
(Chairman)

RATNASAMY MUNIANDY, M.Sc.
Department of Civil Engineering
Faculty of Engineering,
Universiti Putra Malaysia
(Member)

MEGAT JOHARI MEGAT MOHD NOOR, M.Sc.
Associate Professor
Department of Civil Engineering,
Faculty of Engineering,
Universiti Putra Malaysia
(Member)

HUSSAIN HAMID, M.Sc.
Department of Civil Engineering,
Faculty of Engineering,
Universiti Putra Malaysia
(Member)

MOHD. GHAZALI MOHAYIDIN, Ph.D.
Professor
Deputy Dean of Graduate School
Universiti Putra Malaysia

Date: 14 MAY 2001.
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Master of Science.

AINI IDERIS, Ph.D,
Professor,
Dean of Graduate School,
Universiti Putra Malaysia.

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Name: Jeyan Vasudevan

Date: 14/05/2001
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION FORM</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xxv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxvi</td>
</tr>
</tbody>
</table>

CHAPTER I: INTRODUCTION

1. Background of the study
 1. Background of pavement in Malaysia
 - Cracking
 - Rutting
 - Stripping
 - Rehabilitation and Maintenance
 2. Background Stone Mastic Asphalt (SMA)
 3. Background of Oil Palm Fibre
 4. Problem Statement
 5. Objective of Study
 6. Importance of Study
 7. Assumptions
 8. Scope of Study
 9. Limitations

CHAPTER II: LITERATURE REVIEW

18. Fibre
 19. Background of Oil Palm Industry in Malaysia
 23. General Description of Oil Palm Empty Fruit Bunch
 24. Availability and Distribution of Empty Fruit Bunch (EFB)
 27. Utilisation of Oil Palm Empty Fruit Bunches (EFB)
 27. Fibre Morphology of Oil Palm Fibre
 28. Chemical Composition of Oil Palm Fibre
 30. Fibre Pulping Process
 - Kraft Pulping Process
 - Semi-chemical and Thermo Mechanical Pulping (TMP)
 32. Stone Mastic Asphalt (SMA) Review
Advantages of Stone Mastic Asphalt (SMA) 34
Economic Consideration 34
Potential use of Stone Mastic Asphalt (SMA) 35
Issues regarding Stone Mastic Asphalt (SMA) 36
Fibre Additives 36
Draindown 37
Effect of Fibre on the Performance of Asphaltic Mix 42
Density or Unit Weight 42
Marshall Stability 44
Flow 46
Indirect Tensile Strength 48
Resilient Modulus 49
Static Creep 51
Cantabro Test 52
Conclusion 53

III METHODS AND MATERIALS 54
Methodology 54
Fibre Production 58
Fibre Production by modified TMP Method 58
Fibre Production by RMP Method 59
Fibre Production by Kraft Method 60
Fibre Production by Recycle Pulping 61
Oil-Fibre Draindown Test 62
Fibre Mechanical and Chemical Properties Analysis 63
Mesh Screen Analysis 63
Appearance Testing 64
Scanning Electron Microscope (SEM) Analysis 64
Cellulose Content 64
Moisture Content 65
pH value 65
Ash Content 65
Material Selection 65
Aggregate Test 66
Los Angeles Abrasion Test 66
Aggregate Impact Value 66
Aggregate Crushing Value 67
Ten Percent Fines 68
Polished Stone Value (PSV) 69
Soundness Test 70
Determination of Flakiness and Elongation Index 71
Determination of Angularity Number 71
Specific Gravity of Aggregate 72
Asphalt Testing 73
Penetration 73
Softening Point 74
Flash and Fire Point 74
Thin Film Oven Test 75
Specific Gravity 76
Viscosity 77
Preparation of Specimens For Marshall 77
Performance Analysis 78
Density and Void Analysis 78
Marshall Stability And Flow Of Bituminous Mixtures 81
Resilient Modulus 85
Moisture Induced Damage 86
Static Creep 86
Fatigue 87
Cantabro Test 87
Dr. Schellenberg Mix Draindown 88
Wire mesh Mix Draindown 89
Summary of Methodology 90

IV RESULTS & DISCUSSION 91
Fibre Production and Suitability Analysis 93
 Modified Thermal-mechanical Pulping 93
 Refinery Mechanical Pulping (RMP) Method 93
 Chemical Pulping (KRAFT) Method 94
 Recycle Pulping Method 95
Selection of Fibre Pulp 96
Oil-Fibre Draindown Test 97
Fibre Mechanical and Chemical Property Analysis 100
 Fibre Sieve Analysis 100
 Appearance Test 101
 Cellulose Content 102
 Moisture Content 103
 Ash Content 103
 pH-value 104
 Scanning Electron Microscope (SEM) analysis 104
Conclusion of Fibre Analysis 107
Material Selection 108
 Aggregate Test 108
 Asphalt Test 115
Summary of Material Selection 119
Determination of Optimum Asphalt Content 120
Determination of Optimum Fibre Content 125
 Resilient Modulus 128
 Marshall Stability 130
 Marshall Flow 130
 Moisture Induced Damage Test 132
 Static Creep 134
 Fatigue 136
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Oil Palm EFB Biomass Supply in Malaysia from 1996 to 2020 (t/y dry weight)</td>
</tr>
<tr>
<td>2.2</td>
<td>Distribution of Oil Palm Areas and Palm Oil Mill for The Respective States in Malaysia</td>
</tr>
<tr>
<td>2.3</td>
<td>Morphology of Oil Palm Trunk, Frond and Empty Fruit Bunch</td>
</tr>
<tr>
<td>2.4</td>
<td>Chemical Component of Oil Palm</td>
</tr>
<tr>
<td>2.5</td>
<td>Summary of Optimum Asphalt Content and Void Result On SMA Mix by the US Pavement Agencies</td>
</tr>
<tr>
<td>3.1</td>
<td>UPM SMA14 Specification</td>
</tr>
<tr>
<td>3.2</td>
<td>Stability Correlation Ratio (ASTM D1559)</td>
</tr>
<tr>
<td>4.1</td>
<td>Modified TMP Draindown</td>
</tr>
<tr>
<td>4.2</td>
<td>RMP Draindown</td>
</tr>
<tr>
<td>4.3</td>
<td>Modified RMP Draindown</td>
</tr>
<tr>
<td>4.4</td>
<td>KRAFT Draindown</td>
</tr>
<tr>
<td>4.5</td>
<td>Modified KRAFT Draindown</td>
</tr>
<tr>
<td>4.6</td>
<td>Recycle Pulp Draindown</td>
</tr>
<tr>
<td>4.7</td>
<td>Pulp Product Oil-Draindown</td>
</tr>
<tr>
<td>4.8</td>
<td>Oil-Fibre Draindown Test</td>
</tr>
<tr>
<td>4.9</td>
<td>Average Percent Passing for Fibre Sieve Analysis</td>
</tr>
<tr>
<td>4.10</td>
<td>Colour and Odour of the Fibres</td>
</tr>
<tr>
<td>4.11</td>
<td>Summary of Cellulose Content in the Fibre</td>
</tr>
<tr>
<td>4.12</td>
<td>Summary of Moisture Content in the Fibre</td>
</tr>
</tbody>
</table>
4.13 Summary of Ash Content in the Fibre 103
4.14 Summary of pH Value of the Fibres 104
4.15 Los Angeles Abrasion Test 108
4.16 Aggregate Impact Value 108
4.17 Aggregate Crushing Value 109
4.18 Ten Percent Value 110
4.19 Ten Percent Value 111
4.20 Polished Stone Value for Aggregate 111
4.21 The Soundness Test for Aggregate 112
4.22 The Flakiness Index Test for Aggregate 112
4.23 The Elongation Index Test for Aggregate 113
4.24 The Specific Gravity for Aggregate 113
4.25 The Angularity Number Test for Aggregate 114
4.26 Penetration Test for Asphalt 115
4.27 Softening Point Test for Asphalt 116
4.28 Flash & Fire Point Test for Asphalt 116
4.29 Thin Film Test for Asphalt 117
4.30 Specific Gravity Test for Asphalt 118
4.31 Viscosity Test for Asphalt 119
4.32 Summary for Aggregate Test 119
4.33 Summary for Asphalt Test 120
4.34 Density and Void Analysis for Determination of OAC 121
4.35 Resilient Modulus test for Determination of OAC 123
4.36 Marshall Stability tests for Determination of OAC 124
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.37</td>
<td>Density and Void Analysis for Determination of OAC</td>
<td>126</td>
</tr>
<tr>
<td>4.38</td>
<td>Resilient Modulus test for Determination of OFC</td>
<td>129</td>
</tr>
<tr>
<td>4.39</td>
<td>Marshall Stability Test for Determination of OFC</td>
<td>131</td>
</tr>
<tr>
<td>4.40</td>
<td>Moisture Induce Damage Test</td>
<td>133</td>
</tr>
<tr>
<td>4.41</td>
<td>Static Creep tests for Determination of OFC</td>
<td>136</td>
</tr>
<tr>
<td>4.42</td>
<td>Fatigue Test for Determination of OFC</td>
<td>137</td>
</tr>
<tr>
<td>4.43</td>
<td>Cantabro Test for Determination of OFC</td>
<td>138</td>
</tr>
<tr>
<td>4.44</td>
<td>Dr. Schellenberg Draindown Test for Determination of OFC</td>
<td>140</td>
</tr>
<tr>
<td>4.45</td>
<td>Summary of Determination of OFC</td>
<td>141</td>
</tr>
<tr>
<td>4.46</td>
<td>Density and Void Analysis</td>
<td>144</td>
</tr>
<tr>
<td>4.47</td>
<td>Resilient Modulus Analysis</td>
<td>146</td>
</tr>
<tr>
<td>4.48</td>
<td>Marshall Stability and Flow Analysis</td>
<td>147</td>
</tr>
<tr>
<td>4.49</td>
<td>Moisture Induced Damage analysis</td>
<td>150</td>
</tr>
<tr>
<td>4.50</td>
<td>Static Creep Analysis</td>
<td>152</td>
</tr>
<tr>
<td>4.51</td>
<td>Fatigue Analysis</td>
<td>154</td>
</tr>
<tr>
<td>4.52</td>
<td>Cantabro Analysis</td>
<td>156</td>
</tr>
<tr>
<td>4.53</td>
<td>Compilation of Critical Compaction Temperature</td>
<td>160</td>
</tr>
<tr>
<td>4.54</td>
<td>Ranking of Performance Test</td>
<td>160</td>
</tr>
<tr>
<td>4.55</td>
<td>One-way ANOVA Test Comparing SMA with and without Fibre</td>
<td>162</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Accidents due to Road Defect vs. Year</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Accidents due to Material Failure vs. Years</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Comparison of SMA and Conventional dense graded mix surface</td>
<td>33</td>
</tr>
<tr>
<td>2.2</td>
<td>Pavement Section with SMA Surface Coarse Over a Conventional Paving Mix</td>
<td>33</td>
</tr>
<tr>
<td>2.3</td>
<td>Dr. Schellenberg Draindown Method</td>
<td>38</td>
</tr>
<tr>
<td>2.4</td>
<td>Wire Basket by NCAT</td>
<td>39</td>
</tr>
<tr>
<td>2.5</td>
<td>Percent Draindown of SMA Mix without Cellulose Fibre</td>
<td>40</td>
</tr>
<tr>
<td>2.6</td>
<td>Percent Draindown of SMA mix with 0.3% Cellulose Fibre</td>
<td>40</td>
</tr>
<tr>
<td>2.7</td>
<td>A Typical Draindown versus Time Plot for Mixture Using Gravel Aggregate, Baghouse Fines, and 20 Percent Passing the No. 4 Sieve and 7% AC.</td>
<td>41</td>
</tr>
<tr>
<td>2.8</td>
<td>Comparison between Imported and Malaysian Fibre versus Weight of Oil Passes</td>
<td>41</td>
</tr>
<tr>
<td>2.9</td>
<td>Unit Weight Vs. Fibre Content for Granite Aggregate</td>
<td>42</td>
</tr>
<tr>
<td>2.10</td>
<td>Unit Weight Vs. Fibre Content for Gravel Aggregate</td>
<td>43</td>
</tr>
<tr>
<td>2.11</td>
<td>Bulk Density Vs. Percentage of Oil Palm fibre</td>
<td>43</td>
</tr>
<tr>
<td>2.12</td>
<td>Marshall Stability Vs. Fibre Content for Granite Aggregate</td>
<td>45</td>
</tr>
<tr>
<td>2.13</td>
<td>Marshall Stability Vs. Fibre Content for Gravel Aggregate</td>
<td>45</td>
</tr>
<tr>
<td>2.14</td>
<td>Marshall Stability Vs. Percentage of Oil Palm Fibre</td>
<td>45</td>
</tr>
</tbody>
</table>
2.15 Flow Vs. Fibre Content for Granite Aggregate
2.16 Flow Vs. Fibre Content for Gravel Aggregate
2.17 Flow Vs. Percentage of Oil Palm Fibre
2.18 Indirect Tensile Vs. Fibre Content for Granite Aggregate
2.19 Indirect Tensile Vs. Fibre Content for Gravel Aggregate
2.20 Resilient Modulus Vs. Fibre Content for Granite Aggregate
2.21 Resilient Modulus Vs. Fibre Content for Gravel Aggregate
2.22 Resilient Modulus Vs. Percentage of Oil Palm Fibre
2.23 Static Creep Permanent Strain Vs. Fibre Content for Granite Aggregate
2.24 Static Creep Permanent Strain Vs. Fibre Content for Gravel Aggregate
2.25 Comparison of Cantabro data for two type of Cellulose Fibre
3.1 UPM SMA 14 Specification and G2 Gradation on 0.45 Power Gradation Chart
3.2 Upper and Lower Marshall Testing Head
3.3 Flow Chart on the Process and Procedure of Testing
4.1 Percent Oil Draindown Vs. Type of Fibre Production
4.2 Percent Oil Draindown Vs. Type of Fibre
4.3 Cumulative Percent Oil Draindown Vs. Time
4.4 Percent Fibre passing Vs. Sieve size
4.5 Bulk Density versus Percentage of Asphalt Content
4.6 Void in Total Mix (VTM) versus Percentage of Asphalt Content
4.7 Resilient Modulus versus Percentage of Asphalt Content
4.8 Marshall Stability versus Percentage of Asphalt Content
4.9 Bulk Density versus Percentage of Fibre Content
4.10 Void in Total Mix (VTM) versus Percentage of Fibre Content
4.11 Void Mineral Aggregate (VMA) versus Percentage of Fibre Content
4.12 Void Filled Asphalt (VFA) versus Percentage of Fibre Content
4.13 Resilient Modulus versus Percentage of Fibre Content
4.14 Marshall Stability versus Percentage of Fibre Content
4.15 Marshall Flow versus Percentage of Fibre Content
4.16 Indirect Tensile versus Percentage of Fibre Content
4.17 Tensile Strength Ratio versus Percentage of Fibre Content
4.18 Static Creep Loading Strain versus Percentage of Fibre Content
4.19 Static Creep Recovery Strain versus Percentage of Fibre Content
4.20 Static Creep Recovery Efficiency versus Percentage of Fibre Content
4.21 Fatigue Properties versus Percentage of Fibre Content
4.22 Cantabro Percentage Loss versus Percentage of Fibre Content
4.23 Percentage Draindown versus Percentage of Fibre Content
4.24 Bulk Density versus Types of Fibre
4.25 VTM versus Types of Fibre
4.26 VMA versus Types of Fibre
4.27 VFA versus Types of Fibre
4.28 Resilient Modulus versus Types of Fibre
4.29 Marshall Stability versus Types of Fibre
4.30 Marshall Flow versus Types of Fibre
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.31</td>
<td>Moisture Induced Damage Load and Tensile Strength Ratio (TSR) versus Type of Fibre</td>
<td>149</td>
</tr>
<tr>
<td>4.32</td>
<td>Creep Modulus versus Loading Time for Different Type of Fibre</td>
<td>151</td>
</tr>
<tr>
<td>4.33</td>
<td>Initial Strain and Recovery Efficiency versus Type of Fibre</td>
<td>151</td>
</tr>
<tr>
<td>4.34</td>
<td>Fatigue Permanent Strain versus Type of Fibre</td>
<td>155</td>
</tr>
<tr>
<td>4.35</td>
<td>Percent Loss Cantabro versus Type of Fibre</td>
<td>155</td>
</tr>
<tr>
<td>4.36</td>
<td>SMA Mix Draindown versus Type of Fibre</td>
<td>158</td>
</tr>
<tr>
<td>4.37</td>
<td>Log Viscosity Vs. Log Temperature</td>
<td>159</td>
</tr>
<tr>
<td>4.38</td>
<td>Viscosity versus Temperature</td>
<td>159</td>
</tr>
</tbody>
</table>