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ABSTRACT Autism spectrum disorder (ASD) is a developmental disease characterised by restricted
and repetitive behaviours, as well as difficulty in social communication and interaction, in children.
The clinical diagnosis of ASD is reached by behavioural screening, which delays early intervention.
Electroencephalography (EEG) is a method for analysing the brain’s electrical activity that has proven useful
in the diagnosis of several neurological illnesses. Pre-trained deep Convolutional Neural Networks (CNNs)
were used to extract features from the spectral profiles of the EEG dataset and classify patients into mild,
moderate, and severe patients, as well as age-matched control subjects. Accordingly, the primary goal of this
study is to use the pre-trained CNNs as classifiers in order to reap the benefits of transfer learning, and the
secondary goal is to propose a hybrid model by employing decision tree (DT), K nearest neighbour (KNN),
and a Support Vector Machine (SVM) machine learning classification techniques to categorise the features
of the pre-trained CNN networks into mild, moderate, severe, and normal categories. The results show that
using SqueezeNet for transfer learning improves classification accuracy to 85.5%, and that using SqueezeNet
for hybrid models improves classification accuracy to 87.8% using SVM. Therefore, a hybrid model based
on the combination of SqueezeNet and SVM might be utilised to automatically diagnose ASD based on the
individual’s EEG data.

INDEX TERMS Autism, EEG, deep learning, transfer learning, convolutional neural networks, machine
learning.

I. INTRODUCTION
Autism spectrum disorders (ASD) are neurodevelopmen-
tal illnesses characterized by markedly aberrant social
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interaction, impaired communication and language skills, and
narrow interests [1]. Symptoms occur throughout childhood
or infancy and are usually followed by a continuous course
with no recovery from an illness [2]. Symptoms appear after
the age of six months, become established by the age of two
or three years old, and remain into adulthood, but with less
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severity [3], [4]. The ‘spectrum’ in ASD is for indicating that
autistic individuals can have a multitude of symptoms, such
as difficulties in motor movement abilities, limited attention
spans, and sleep and gastrointestinal disturbances [2]. These
are some prevalent characteristics of children with autism
in which frequently, autistic children have communication
difficulties, like refusing to engage in conversation, being
unable to use appropriate language, repeating what they hear,
and having a low linguistic understanding [5], [6]. However,
some experience sensory disturbances, as well. These distur-
bances might be auditory, visual, tactile, gustatory, vestibular,
or proprioceptive. Additionally, they avoid social interaction,
as they prefer to be alone, the majority avoid making eye
contact with others and lack the capacity to receive affection
from those closest to them [7].
When a child is screened early, the problem is found and

treated faster and better. The sooner a trained diagnostic
team can confirm the diagnosis, the sooner any needed
treatment can start [7]. Research suggests that there is a
higher prevalence of autism in males compared to females.
The prevalence of autism has a male-to-female ratio of
4-to-1 [7].

Indeed, ASD is a complex disorder and its symptoms
overlap with other psychiatric disorders. So, it is important
to use the appropriate assessment scales to diagnose subjects
with ASD [8]. Numerous assessments can be employed to
ascertain the presence or absence of autism in children,
such as behavioral evaluation and screening for occupational
therapy, among others [9]. Several widely used clinical
procedures for assessing autism spectrum disorder include
the Childhood Autism Rating Scale (CARS) [10], Autism
Diagnostic Observation Schedule (ADOS) [11] and Autism
Diagnostic Interview-Revised (ADI-R) [12]. Nevertheless,
it is important to acknowledge that each of these assessments
have distinct advantages and limitations. These assessments
are characterized by their time-intensive nature, extensive
questions, and the necessity of licensed specialists for their
administration [9], [13].

This illustrates that autism diagnosis requires scientific
improvements and support, therefore, early autism diagnosis
requires clinical signs or biomarkers as clinical assessments
alone cannot diagnose early [14], [15], [16]. One of
the most essential indications for diagnosing ASD is the
electroencephalogram (EEG). EEG signals contain a wealth
of information about the brain neural activities [17], [18],
[19], [20], [21].

EEG with machine learning, deep learning, and other
advanced computing technologies can be used to diagnose
and educate children early [9], [22]. Many researchers across
the world are currently attempting to use neuroscience to
treat and identify children with ASD, and the study and
classification of EEG patterns can greatly aid in the diagnosis
of a patient [9].
EEG waveforms were reported in autism and control

patients, particularly the gamma band in the frontal brain

lobe which can be discriminated between ASD and control
patients early in the first year following birth [23]. More-
over, EEG non-linear characteristics can be exploited by
statistical learning methods to classify ASD and non-ASD
participants [8], [24].

Processing enormous datasets is now an issue of the
development of deep learning models that are supported by
artificial intelligence. In the field of deep learning, the most
popular type of model is the convolutional neural network
(CNN), which is also prevalent in a variety of medical
specialities. A deep learning model is capable of carrying out
both the extraction of features and the classification of data.
In addition, the retrieved features have a high enough level of
recall to pick up on very minor differences [25].
Deep learning surpasses traditional machine learning

approaches as a result of its superior feature extraction [26].
CNN uses the features that it has gathered from its deep lay-
ered structure in order to do classification or regression, much
like an algorithm that is used in machine learning [26]. CNN
models like VGG Net, GoogLeNet, ResNet, Inceptionv3,
DenseNet, and AlexNet are only some of the numerous
pre-trained CNN models that have found broad applications
in image classification and pattern recognition [27].

Pre-trained models are seeing more and more use,
particularly as a result of transfer learning that has made it
possible to create more successful models with a smaller set
of training data by modifying the structure of a network that
has been trained in the past [28].
Using CNN architectures, one can extract features from

images [28]. from the fully connected layers, to extract
features and classify them even further. Therefore, the
use of the machine learning algorithm as opposed to the
aforementioned layer can result in the accomplishment of
successful classifications. Thus, using a variety of different
machine learning algorithms illustrates various benefits that
each of these algorithms offers [29].
It is of the utmost importance to locate the method of

machine learning that provides the best results in relation
to the particular application like Naive Bayes (NB), Support
Vector Machine (SVM), k-Nearest Neighbour (KNN), and
Decision Tree (DT) are the ones that are most commonly used
and favoured in academic works [20], [30], [31].

The KNN algorithm is a clear and simple method that
can be understood with little effort, it is an example of
a supervised machine learning technology that has been
used due to its ability to process multi-dimensional data,
its high level of precision, and its adaptability [32]. The
SVM, has gained a substantial amount of traction in the
field of biomedical in recent years. source [33]. The DT
algorithm is a type of supervised machine learning that is
used for the categorization of big datasets by adopting a
hierarchical tree-like structure made up of leaves, branches,
and nodes [34].
In order to improve the diagnostic accuracy of ASD,

machine learning and deep learning have been supplemented
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with EEG signals, however, classification systems for the
autistic brain have research problems [9], [35].

As a result of recent research studies [8], [36], both
the performance and accuracy of the EEG-based ASD
recognition task have lately undergone substantial efforts.
However, the vast majority of theworks that are now available
suffer from the same weaknesses in a few key areas. To begin,
the vast majority of models have only been validated using
a single dataset; as a result, such models have the potential
to be data-dependent and may not be as robust as they
may be. Second, the majority of the research that has been
conducted for the EEG-based diagnosis of ASD has focused
on developing models that are founded on the concept of
machine learning. Several of the researchers have already
started working on a solution to this problem by constructing
specialised deep learning models. These models are currently
in the process of being developed. However, because these
models are extremely simplistic, they are unable to deal with
the complexities of the situation, which leads to a low degree
of classification accuracy. This issue is caused by the fact
that these models are overly simplistic. An EEG-based ASD
detection challenge served as the impetus for this research,
which was motivated to give a deep hybrid multi-model-
based deep learning for automatic ASD diagnosis using seven
pre-trained CNNs deep learning models. The objective of
this research was to address the problem. This strategy is
proposed in this work with the intention of filling the gap that
was discussed earlier. It is essential to emphasise the fact that
this pre-trained CNNs deep learningmodels ASDEEG-based
dataset has been utilised for the very first time in the specific
area of research that is being investigated.

In this study, a 19-channel EEG time series is used to
compute a spectrogram, which is then shown in three dimen-
sions (3)-D spectrogram images). In order to accomplish
the necessary multi-classification tasks and extract useful
characteristics from these images, seven pre-trained CNNs
including AlexNet [37], ResNet18 [38], GoogLeNet [39],
MobileNetV2 [40], SqueezeNet [41], ShuffleNet [42] and
EfficientNetb0 [43] in order to automatically identify mild,
moderate, severe individuals with ASD and normal by
analysing their EEG spectrogram images to get the benefits of
transfer learning to classify scalograms. In addition, the DT,
KNN, and SVM machine learning classification techniques
were applied to the output features from the convolutional
and pooling layers of the modified CNNs model in order
to further classify the characteristics extracted by the deep
CNNs in order to separate them into their respective
categories.

The main contributions of the current study lie in the devel-
opment of an EEG-based dataset that comprises individuals
with mild, moderate, and severe types of ASD conditions,
as well as normal controls. Indeed, EEG signals have, as far
as we’re aware, never been invested in any practical use.
In addition, seven distinct state-of-the-art pre-trained deep
CNN networks were used in conjunction with a machine
learning classifier to autonomously diagnose ASD utilising

deep and hybrid frameworks based on EEG characteristics
derived from individuals with autism spectrum disorder.
Highlighting the challenges of diagnosis and therapy while
emphasising the need for effective therapeutic procedures.
If cases of ASD could be diagnosed in the preclinical phase,
while patients are still asymptomatic, it would allow for early
and more effective treatment options and improved overall
care.

A. RELATED WORK
Clinical procedures are employed with the purpose of
detecting autism, mostly depending on behavioral data and,
in severe instances, neuroimaging techniques. The utilization
of machine learning in quantitative methodologies has
been extensively researched and advanced as a means to
address challenges associated with therapeutic techniques.
The utilization of quantitative methods in this context is
heavily reliant on machine learning techniques. Specifically,
there are intricate approaches rooted in deep learning that
have been devised to expedite the process of identifying and
diagnosing ASD [44].

Machine learning is a subset of the field of Artificial
Intelligence (AI), characterized by the ability of systems to
acquire knowledge and improve performance via experience,
rather than relying on explicit programming. Machine
learning is employed to develop intricate models that can
effectively classify or predict various sorts of data with a
high level of accuracy. Deep learning, which falls under
the category of machine learning, employs several layers
of non-linear information processing to extract features,
perform transformations, analyze patterns, and carry out
classification tasks, either in a supervised or unsupervised
manner [9].

Baygin et al. [45] presented two novel algorithms which
are one-dimensional local binary patterns which are used as
input of short-term Fourier transform to generate spectrogram
image and hybrid deep lightweight feature generators.
The proposed hybrid deep lightweight feature generator
incorporates three lightweight deep network architectures for
feature extraction. These are MobileNetV2, ShuffleNet, and
SqueezeNet. The proposed model achieved 96.44% accuracy
using a support vector machine (SVM) classifier. The results
indicate that the proposed model is suitable for autism
detection using EEG signals and can serve as an adjunct
tool to aid neurologists during autism diagnosis in medical
centres.

Hendr et al. [46] introduced the utilization of handwritten
tasks as a means of studying people with the objective
of early detection of ASD using computer-aided diagnosis.
The dataset, consisting of both participants with ASD and
those without ASD, underwent image processing techniques.
Subsequently, the processed images were utilized to train
a transfer learning network. The dataset was utilized in
order to suggest a solution for automated ASD diagnosis
using deep learning techniques. The GoogleNet transfer
learning algorithm was employed to train and classify each
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handwritten task in the dataset. The results obtained from
the proposed model demonstrate promise, as evidenced by
an accuracy of 90.48%, recall of 80%, and specificity of
100%. These encouraging findings warrant further research
and experimentation in this area. The findings of this study
indicate that the utilization of handwritten task data yields
superior performance and holds considerable significance in
the identification of individuals with ASD [46].
Din and Jayanthy [47] used EEG data with pre-trained

deep convolution neural networks to identify ASD. To train
the pre-trained CNNs, GoogLeNet and SqueezeNet for
identifying ASD individuals and normal controls using their
EEG data, the study employed a transfer learning technique.
The GoogLeNet and SqueezeNet algorithms successfully
classified the scalograms produced from the EEG signals
of ASD participants and healthy control subjects with 75%
and 82% accuracy, respectively. The article comes to the
conclusion that pre-trained deep convolution neural networks
may accurately identify ASD from EEG readings.

Sridurga et al. [48] used two variants of CNN models,
Xception and VGG19, to detect autism spectrum disorder.
The requisite dataset was compiled from face images
consisting of an equal number of healthy and autistic
patients. The results demonstrated that the Xception model
has an accuracy of 86% whereas the VGG19 model only
provides an accuracy of 81%.The results indicated that the
proposed system can be used in real-time applications to
assist physicians with early patient diagnosis.

Ismail et al. [44] used facial images to predict whether the
person is either autistic or a typically developing child. The
Efficient Net convolutional neural network was utilized to
build this model, which achieved an accuracy level of 88%.

Using temporal dynamic features of fMRI data, Al-
Hiyali et al. [49] proposed a deep learning model for the
diagnosis of ASD for 82 subjects (41 ASD and 41 normal
cases) collected from three different sites of Autism Brain
Imaging Data Exchange (ABIDE). The model employs
pre-trained convolutional neural networks for feature extrac-
tion and two classifiers for classification using SVM and
KNN. The KNN classifier with DenseNet201 as a pre-trained
model produced the greatest results, with an accuracy of
85.9%, recall of 79.3%, and specificity of 92.2%. The
proposed model can be used to analyze fMRI data related
to brain disorders and is a useful diagnostic tool for
ASD.

Alam et al. [50] have sought to identify the most effective
transfer learning model for ASD classification. An empirical
study has been conducted to adjust hyperparameters and
optimizers for model training, taking into account five widely
used and existing CNN-based models including VGG19,
EfficientNetB0, Xception, MobileNetV2, and ResNet50V2.
The study reveals that the modified Xception model demon-
strates the highest performance, with 95% accuracy, AUC
of 98%, a precision of 95%, and recall values of 95%
compared to VGG19 which has an accuracy of 86.5%,
ResNet50V2 has an accuracy of 94%, while MobileNetV2

and EfficientNetB0 have an accuracy of 92% and 85.76%
respectively.

II. MATERIALS AND METHODS
A number of signal processing stages would be applied to
the recorded EEG in order to distinguish the signals of ASD
patients with varying degrees of severity from those of normal
control subjects, allowing for a more accurate diagnosis of
ASD signs automatically. Figure 1 is a block diagram of the
proposed methodology.

For the current study investigation, the EEG signals were
segmented into 5 sec and each was converted into a 2-D grey
scale spectrogram image using the power spectral density
PSDmethod. After that, the state-of-the-art pre-trained CNN
models like AlexNet, SqueezNet, MobileNetV2, GoogleNet,
ResNet18, ShuffleNet, and EfficientNet are utilised in order
to extract features from each spectrogram image and classify
them first then hybrid models are performed using DT,
KNN and SVM classifiers to discriminate these features as
normal subjects, mild, moderate, and severe ASD patients,
respectively. The combination of seven different CNNmodels
and three different machine learning approaches is analysed
and contrasted in order to determine which combination
produces the best successful outcomes from these methods.
The results of the classification at the end of the study were
evaluated using performance metrics.

A. EEG DATASET FOR ASD DETECTION
30 children were diagnosed with ASD, ranging in severity
as mild, moderate and severe, and 10 children served as
controls, all within the same age range. Ten normal subjects
(5 females and 5 males; the age of 8.545Â±1.1 years),
ten mild ASD patients (4 females and 6 males; the
age of 8.182Â±1.025 years); ten moderate ASD patients
(3 females and 7 males; the age of 8.364Â±0.8 years); ten
severe ASD patients (3 females and 7 males; the age of
8.727Â±0.98 years; mean Â± standard deviation SD).
The patients were recruited for the study from the Autism

Center in Pediatric Hospital, and the Neurophysiology
department at Baghdad Teaching Hospital in Medical City,
Baghdad, Iraq. Before the EEG recording, none of the
children diagnosed with ASD had taken any kind of medicine
for at least two weeks. The youngsters that comprised the
control group had all attended regular, healthy schools and
did not have a family history of neurological or mental
conditions.

Each interview and diagnosis was carried out by a child
and a psychiatrist in accordance with the criteria outlined in
the Diagnostic and Statistical Manual of Mental Disorders
(DSM-V) [51]. In addition, participants were screened
the ASD severity using the Gilliam Autism Rating Scale
(GARS-3) [52].
An EEG lasting ten minutes was obtained by utilizing an

EEGmachine (Nihon Kohden Company, Japan), 19 Ag/AgCl
electrodes were placed (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, T5,
T4, T6, P3, Pz, P4, C3, Cz, C4, O1, and O2) in accordance
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FIGURE 1. Schematic diagram of this study on ASD detection through EEG signals.

with the 10–20 system, in addition to two reference electrodes
placed on both the mastoid. The information was gathered by
the use of a sampling frequency of fs = 500Hz, a resolution
of 12bits, and an impedance of less than 5Kω. During the
recording process, the settings for the bandpass filter were
(0.1–70 Hz), while the notch filter was at 50Hz. Bandpass
filtering was performed on the data in the range of 0.1−64Hz
in preparation for analysis.

All of the procedures that were carried out as part of this
research were done so in a manner that was compliant with
the ethical standards established by the institutional research
committee at the University of Baghdad/College ofMedicine,
as well as the 1964 Helsinki Declaration and any revisions

that have been made to it since then. Before any of the
children participated in the study, their parents provided their
written consent after receiving appropriate information.

B. PRE-PROCESSING
In the first stage of processing each channel of recorded EEG
datasets, the sampling frequency was set at fs = 500Hz;
conventional filters, including a notch filter at 50Hz, were
used to get rid of interference noise; and a band pass filter
with a 0.5 − 64 Hz frequency range was used to limit the
band of the recorded EEG signals [16].

After that, the EEGs were downsampled to a sampling fre-
quency of fs = 256Hz and segmented into non-overlapping
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epochs of 5 sec length. In the subsequent step, each of
the 19 denoised EEG channels had its signal split into
non-overlapping epochs of 5 sec length. Due to the fact that
fs = 256Hz, each epoch contains N = 1280 samples.
We were able to determine the value of the power spectral

density PSD to be between 0.5 and 64 based on these epochs.
The traditional method of estimating PSD is referred to
as a periodogram, and it is obtained from the frequency
distribution of the EEG signals [31]. The evaluation of the
PSD can be used to describe the Fourier transform of the
autocorrelation function. To be more specific, the following
in Equation 1 describes the periodogram of a signal with a
length of L [31].

PSD(f ) =
Ts
L

∣∣∣∣∣
L−1∑
l=0

xle−2π ifl

∣∣∣∣∣
2

(1)

where −
1
2Ts

< f ≤
1
2Ts

and 1
2Ts

is the sampling period. The
following modified periodogram is obtained by multiplying
the input time series by the window function wl as in
Equation 2:

P̂SD(f ) =
Ts
L

∣∣∣∣∣
L−1∑
l=0

wlxle−2π ifl

∣∣∣∣∣
2

(2)

Spectral profiles have been widely used to characterise
dementia phases using conventional classification methods
and to extract empirically specified variables [25], [53].
Moreover, spectrogram images generated form time series are
well suited for analysing biological signals due to its great
resolution [54]. Therefore, in this research, the PSD of the
xth EEG time series from individuals with mild, moderate,
and severe ASD, as well as healthy controls were obtained
using a modified periodogram with a rectangular windowing
function to limit spectral leakage and smoothing out the edges
of the signal, allowing for the generation of EEG spectrogram
images.

A 2-dimensional grayscale spectrogram image was created
by mapping the PSD images in question to an intensity
value between 0 and 1 (where 0 (black pixel) and 1
(white pixel) correspond to the minimum and maximum
of the PSDs, respectively). However, the EEG 2-D PSD
are represented as images, thus they needed to be scaled
into 3-D images to fit the individual state-of-the-art pre-
trained CNN networks input architecture utilised for the
automatic extraction and categorization of features in this
study.

C. PRE-TRAINED CNN
The CNN is one of the well-known diagnostic methods that
has had extensive application in the field of biomedical [45].
Convolutional layers, pooling layers, batch normalisation
layers, fully connected (FC) layers, and finally a softmax
layer are all part of the CNN networks [28].
Pooling the layers that learn feature maps with either the

maximum or the average operator yields the most significant

features as a result. At some point in time, the FC layers
will supply the Softmax layer with resultant features for the
layer to classify [55], [56]. In order to resolve non-linear
issues, non-linear layers such as rectified linear unit (ReLU)
functions were added to the network in order to make it more
robust. After each convolutional and fully connected layer,
the ReLU activation function is applied after the layer to
which it is applied [57], [58].
In addition to that, the batch normalization and dropout

approaches are addressed as potential solutions to the
overfitting problem that exists within this neural network.
CNN which has been pre-trained is a network that has been
fine-tuned on extensive image content and has many different
classes [57].

Seven individual state-of-the-art pre-trained deep CNN
networks were trained on the ImageNet [59] database
including AlexNet, ResNet18, GoogLeNet, MobileNetV2,
SqueezeNet, ShuffleNet, and EfficientNetb0. For instance,
AlexNet is a pre-trained deep CNN network which trained
on set of images for a visual object detection project
consisting of 1.2 million images from 1,000 different
classes [37].

However, a network called AlexNet is a groundbreaking
CNN architecture that has been popular since it won the
ImageNet Large Scale Visual Recognition Challenge [59].
It is made of five convolutional blocks, then regular
max-pooling layers and three fully connected networks.
Using AlexNet, deep convolutional neural networks became
more effective at classifying images. It pioneered the idea of
ReLU Layer, max-pooling layers with overlapping regions
and dropout regularizer [59]. Furthermore, ResNet18 is a
version of the famous architecture named Resnet, which is
short for a residual network known has its structure as being
deep. ResNet18 has 18 layers, in addition to the convolutional
ones which contain several batch normalizations and residual
connections. In residual connections, the flow of information
is directly from early layers to late layers thus solving
vanishing gradient problem. ResNet18 is one of the simplest
and symmetric clean network few nice accuracy also on this
scenario [37]. In addition, GoogLeNet, was later introduced
for feature extraction from different levels. GoogLeNet
makes use of different sizes in parallel convolutional path-
ways and concatenates their results. It fosters both the breadth
and depth of networks. At the same time, GoogLenet utilises
spatial reduction using 1 × 1 convolutions to reduce feature
map dimensions and make computations more efficient.
It was engineered to be deeper and more efficient than the
previous architects [37]. Immediately, MobileNetV2 is a
CNNdesign for mobiles and embedded systems that have low
computing power capabilities. It adopts depth-wise separable
convolutions that break the original standard one into two
dimensions, i.e., when convolving 7×9 kernels on a flowchart
containing three hundred eighty elements and sixty units
of width in height for each circuit level This reduces the
number of parameters and computational costs without com-
promising accuracy, which is also good. MobileNetV2 has
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TABLE 1. Specifications of the pre-trained deep network used in this
study, Network Size in (MB) and No. of parameters in (Millions).

inverted residual blocks with linear bottlenecks that facilitate
the capture of a more complex object without sacrificing
efficiency [37]. Moreover, SqueezeNet is a lightweight CNN
architecture capable of producing high accuracy without
losing efficiency. It does this by employing the use of squeeze
layers that uses one-by-one convolutions to reduce input
channels which are then followed by expanded layers using
larger convolution kernels. In certain layers, SqueezeNet
also transforms 3 × 3 filters into regular universal filters
to minimize computational complexity. SqueezeNet has a
network structure that enables it to obtain better performance
in terms of accuracy level when comparedwith larger models,
at approximately lower levels of parameters [37]. ShuffleNet
is also a model aimed at reducing the cost of computation
for CNN models while still preserving accuracy. It defines
channel shuffling, which allows transferring and exchanging
information across various groups of channels. ShuffleNet
uses point group convolutions and channel shuffling which
not only considerably reduces the number of parameters
but also computational complexity. Shuffling the channels
enables the network to capture local and global dependencies
efficiently [37]. Ultimately, the EfficientNet is a sequence of
CNN architectures that achieve top performance with low run
time. This series of the model consists of a baseline type,
which is called EfficientNet B0. It applies compound scale
which uniformly scales the depth, width and resolution of
network. The architecture is essentially a stack of blocks
constructed in the same pattern but with varying layer counts,
squeeze-and-excitation passes andmobile inverted bottleneck
layers. With an accuracy-efficiency balance, unsurprisingly
EfficientNet B0 is a basis reference for other members of the
family [37].
The CNN architecture of the seven individual state-of-

the-art pre-trained deep networks were modified and were
employed for this three-way classification task and the
dataset is split 80% for training and validation and
20% for testing (80% : 20%) of the different epoch
lengths and EEG-derived images. The specifications of the
pre-trained deep network used in this study are shown in
Table 1.
In this study, the spectrogram 3-D images were employed

for the purpose of classifying individuals with ASD and
control people. The neural networks AlexNet, ResNet18,
GoogLeNet, MobileNetV2, SqueezeNet, ShuffleNet and
EfficientNetb0, all of which had been pre-trained, were
utilised. These networks had previously been pre-trained to
categorise photos into one thousand different categories, and

we have since retrained the network. Every one of those layers
served as a filter in turn. The earliest levels extract the more
general characteristics of the images, whereas the latter layers
extract themore particular features. The features are extracted
by the convolution layers, and the final classification layer
is the one that is utilised for classification. In order to
prevent over-fitting, a dropout layer was utilised. Through
this training, we hope to improve our accuracy and reduce
the amount of loss function that occurs. The recommended
input size for images for GoogleNetV2, ResNet, VGG19,
ShuffleNet, and EfficientNetb0 is 224 × 224 × 3. When
compared to this, the input size for other neural networks such
as AlexNet and SqueezeNet was 227 × 227 × 3.

1) TRANSFER LEARNING MODELS
The transfer learning phase involved using a big dataset to
generate insights and then applying those insights to a smaller
target dataset. Pre-trained models that were also trained on
the ImageNet dataset are a prominent resource for transfer
learning. The images in the ImageNet dataset have been
divided into over a thousand different categories, including
everything from natural objects and humans to plants and
animals. Multiple applications have made extensive use of
pre-trained models drawn from the ImageNet dataset to deal
with the problem of scarce data [60]. The value of transfer
learning using pre-trained models increases when the target
task dataset has similar properties to ImageNet. The Ima-
geNet dataset may not immediately improve the usefulness
of 19-channel EEG time series signals because it mostly
comprises 3-D images, but this should not be overlooked.
This difference between 3-D and EEG signals emphasises
the necessity for careful thought and customization when
applying transfer learning approaches to problems involving
EEG datasets, many of which require specific preprocessing
to overcome the EEG time series representations issue [47],
[54].

In the present study, Transfer Learning was utilised
with pre-trained CNNs in order to complete the three-way
classification work consisting of mild, moderate, and severe
ASD patients, as well as normal control subjects. In the first
part of the process, various neural networks, such as AlexNet,
ResNet18, GoogLeNet, MobileNetV2, SqueezeNet, Shuf-
fleNet and EfficientNetb0, were utilised to train on the
spectrogram images of ASD patients and normal subjects.
After that, loading all of the pre-trained models to replace
the classification output layout, needs to be done so that the
weights of the final entirely linked layer can be reduced from
the typical one thousand classes to four classes. The last
three layers, including the fully connected layer, the softmax
layer, and the classification output layer, were eliminated
and replaced by three new layers. These three new layers
are the fully connected layer-New, the softmax layer-New,
and the classification layer-New. This was done in order to
meet the number of class requirements that were necessary in
order to discriminate mild, moderate, and severe ASD as well
as normal control subjects.
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FIGURE 2. The confusion matrices of the AlexNet, ResNet18, GoogleNet and MobileNetV2 pre-trained transfer learning networks for classifying
mild, moderate, severe and normal subjects.

2) HYBRID MODELS
Applying the pre-trained CNN models requires a computer
with high specification and intensive computation capability,
as it takes a long time to train the model using the
3-D spectrogram images modified from the EEG dataset.
Therefore, the hybrid method will address these challenges.

This section describes how the hybridmethod combines CNN
models with the DT, KNN and SVM classifiers.

EEG-based ASD severity detection utilising hybrid learn-
ing has been further investigated.Machine learning classifiers
DT,KNN and SVMare integrated into each of the seven state-
of-the-art pre-trained deep CNN networks to classify the 3-D
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FIGURE 3. The confusion matrices of the SqueezNet, ShuffleNet and EfficientNet pre-trained transfer learning networks for classifying mild,
moderate, severe and normal subjects.

spectrogram images into mild, moderate, severe, and normal
categories involving using the feature map matrices of seven
state-of-the-art pre-trained deep CNN networks [45].

Feature matrices were extracted individually, transformed
into a vector by the global average pooling layer, fed into
a fully connected layer, and then illustrated by the Softmax

andClassifier Output layers [61], [62]. Completely connected
layers allowed us to incorporate features from multiple
networks into a single model. Standard metrics for evaluating
classification systems and a confusion matrix were used
to determine the effectiveness of the suggested approach.
To create deep feature maps for use in DT, KNN and SVM
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FIGURE 4. Confusion matrices utilising pre-trained AlexNet with DT, KNN, and SVM classifiers for mild, moderate, and severe patients, together with
normal subjects.

models for machine learning, the ‘‘global average pooling
layer’’ is employed.

• Deep Features Extraction: As the ImageNet has Large
Scale Visual Recognition Challenge [37] whichwaswon
by AlexNet, a revolutionary CNN [37], the AlexNet uses
a sequence of five convolutional layers to decrease the
picture size from 224 × 224 to 13 × 13 and the filter

response depth from 96 to 256 using max pooling and
rectified linear unit (ReLU) [37].
In this study, we applied transfer learning to networks
of CNNs to classify conditions into mild, moderate,
severe, and normal categories. 3-D images from the
epoch lengths of 5 sec were resized into 227× 227 × 3
before being input into the AlexNet and SqueezeNet
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FIGURE 5. Confusion matrices utilising pre-trained ResNet18 with DT, KNN, and SVM classifiers for mild, moderate, and severe patients, together with
normal subjects.

models and resized to the dimensions of 224 × 224 ×

3 before being fed into GoogleNetV2, ResNet, VGG19,
ShuffleNet, and EfficientNetb0 models. Since there are
four classes, we replaced CNN’s final fully linked layer
with a new final classification layer consisting of four
nodes.

• Machine Learning Classifiers: Thanks to CNN’s auto-
matic feature learning capabilities, ASD categorization
using deep neural networks is becoming more and
more common [8]. Based on the outcomes of the
classification, current works can be separated into four
categories from different perspectives.
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FIGURE 6. Confusion matrices utilising pre-trained GoogleNet with DT, KNN, and SVM classifiers for mild, moderate, and severe patients, together with
normal subjects.

3-D images are fed into the seven individual pre-trained
CNNmodels to extract the deep features of these images.
Another strategy for classifying pre-processed 3-D ASD
and normal images involves pooling the feature map
matrices from many CNN deep networks and feeding
them into a fully connected layer, as shown by the
Softmax and Classifier Output layers. Deep feature
maps were created using the features layer of each

CNN 1 and the last layers of the CNN models were
removed and replaced with the DT, KNN and SVM
classifiers, respectively.

D. MODELS EVALUATION METRICS
In this research, the classification accuracies were calculated
by using seven individual state-of-the-art pre-trained deep
CNN networks firstly, and DT, KNN and SVM machine
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FIGURE 7. Confusion matrices utilising pre-trained MobileNetV2 with DT, KNN, and SVM classifiers for mild, moderate, and severe patients, together
with normal subjects.

learning classification models secondly to classify the EEG
dataset into two classes are children with ASD into mild,
moderate, severe and normal control children. To prevent
class imbalance, the dataset is split 80% for training and
validation and 20% for testing (80% : 20%).

The scope of the evaluation is broadened by includ-
ing segment-based and event-based performance outcomes.

Estimating seizure prediction performance requires defining
the true positive rate (TP) as the number of EEG segments
that were correctly identified as preictal, the true negative
rate (TN ) as the number of EEG segments that were correctly
classified as interictal, the false positive rate (FP) as the
number of EEG segments that were incorrectly classified as
preictal, and the false negative rate (FN ) as the number of
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TABLE 2. Transfer learning results of evaluation metrics for classifying
mild, moderate, severe patients and control people using all 7 pre-trained
networks.

EEG segments that were incorrectly classified as interictal.
Equations 3 to 7 were used for calculating accuracy, recall,
specificity, precision and F1-score.

Accuracy = (Tp+ TN )/(TP+ TN + FN + FP) (3)

Recall = TP/(TP+ FN ) (4)

Specificity = TN/(TN + FP) (5)

Precision = Tp/(Tp+ FP) (6)

F1 − score = 2 × (precision× recall)/(precision+ recall)

(7)

III. RESULTS AND DISCUSSION
A. RESULTS OF PRE-PROCESSING
A 10-minute (153600-sample) EEG recording was seg-
mented into 120 non-overlapping epochs of 5 sec in length,
with dimensions of 120epochs × 19 channels. The data set
was then analysed for mild, moderate, severe, and normal
activity. In order to more accurately depict the corresponding
spectral profiles, the segmented images were transformed
into 2-D grayscale images.

Then, 2-D grayscale images were converted into 3-D
images and resized to have the dimensions of 227 × 227 ×

3 before being input into the AlexNet and SqueezeNet
models. On the other hand, the 3-D images were resized
into 224 × 224 × 3 to meet the specification of the input

TABLE 3. Results of evaluation metrics utilising pre-trained AlexNet with
DT, KNN, and SVM classifiers for mild, moderate, and severe patients,
as well as control people.

TABLE 4. Results of evaluation metrics utilising pre-trained ResNet18
with DT, KNN, and SVM classifiers for mild, moderate, and severe patients,
as well as control people.

layer of GoogleNetV2, ResNet, VGG19, ShuffleNet, and
EfficientNetb0 models.

B. RESULTS OF PRE-TRAINED CNN
The deep learning adaptive moment estimation ADAM
optimizer with a mini-batch size of 64, a piecewise learn rate
schedule with an initial learn rate of 0.00001, and a validation
frequency of 3 were used.

The results of the study of the 3-class ASD and normal
datasets with the proposed deep feature extraction and
machine learning classification workflow will be shown in
the following subsections.

1) RESULTS OF TRANSFER LEARNING MODELS
Tables 2 contain the results of the classification corre-
sponding evaluation metrics that were obtained using seven
state-of-the-art transfer learning CNN deep neural networks.
In addition, the confusionmatrix for each scheme is displayed
in Figures 2 it has come to our attention that the classification
accuracy as a whole is satisfactory for all three-way group
classification tasks.

Confusion matrices Figures 2 and 3 demonstrate that
employing transfer learning with a SqueezeNet model
yields the highest classification accuracy, reaching 85.53%.
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FIGURE 8. Confusion matrices utilising pre-trained SqueezeNet with DT, KNN, and SVM classifiers for mild, moderate, and severe patients, together with
normal subjects.

The subsequent models in the sequence are MobileNetV2,
AlexNet, ResNet18, GoogLeNet, ShuffleNet, and Efficient-
Netb0, achieving accuracies of 81.4%, 80.5%, 74.1%, 72.8%,
68.9%, and 60.5%, respectively.

2) RESULTS OF HYBRID MODELS
Figures 4 show the confusion matrices for each scheme
after using AlexNet with DT, KNN, and SVM classifiers,
respectively to discriminate the mild, moderate, and severe

patients and normal subjects. The classification results
illustrate that the best result was achieved by using AlexNet
with SVM classifier with an accuracy of 83.9%, as indicated
in Table 3.

ResNet18 was used with DT, KNN, and SVM classifiers
to differentiate between mild, moderate, and severe patients
and normal people, and the resulting confusion matrices are
displayed in Figures 5. According to Table 4, the results
of the classification show that the best result was reached
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FIGURE 9. Confusion matrices utilising pre-trained ShuffleNet with DT, KNN, and SVM classifiers for mild, moderate, and severe patients, together with
normal subjects.

by utilising ResNet18 with DT classifier at an accuracy of
72.3%.

The confusion matrices for each scheme are displayed
in Figure 6 after GoogleNet was used with DT, KNN,
and SVM classifiers to distinguish between mild, moder-
ate, and severe patients and normal participants. Table 5
shows that the best classification result was obtained

using GoogleNet with SVM classifier with an accuracy
of 74.9%.

Confusion matrices for each method used to differentiate
between mild, moderate, and severe patients and normal
people are displayed in Figures 7 after MobileNetV2 was
trained using DT, KNN, and SVM classifiers, in that order.
According to Table 6, the best classification result was
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TABLE 5. Results of evaluation metrics utilising pre-trained GoogleNet
with DT, KNN, and SVM classifiers for mild, moderate, and severe patients,
as well as control people.

TABLE 6. Results of evaluation metrics utilising pre-trained MobileNetV2
with DT, KNN, and SVM classifiers for mild, moderate, and severe patients,
as well as control people.

TABLE 7. Results of evaluation metrics utilising pre-trained SqueezeNet
with DT, KNN, and SVM classifiers for mild, moderate, and severe patients,
as well as control people.

accomplished by combining MobileNetV2 and the SVM
classifier, yielding an accuracy of 80.8%.

SqueezNet was used with DT, KNN, and SVM classifiers
to differentiate between mild, moderate, and severe patients
and normal people, and the resulting confusion matrices
are depicted in Figure 8. Classification findings show that
the best result was reached by combining SqueezNet with
SVM classifier with an accuracy of 87.8%, as shown in
Table 7.

TABLE 8. Results of evaluation metrics utilising pre-trained ShuffleNet
with DT, KNN, and SVM classifiers for mild, moderate, and severe patients,
as well as control people.

TABLE 9. Results of evaluation metrics utilising pre-trained
EfficientNetb0 with DT, KNN, and SVM classifiers for mild, moderate, and
severe patients, as well as control people.

The confusion matrices for each scheme are displayed in
Figure 9 after ShuffleNet was used with DT, KNN, and SVM
classifiers to distinguish between mild, moderate, and severe
patients and normal participants. Table 8 shows that the best
classification result was obtained using ShuffleNet with SVM
classifier with an accuracy of 67.9%.

The confusion matrices for each scheme are displayed in
Figure 10 after EfficientNet was used with DT, KNN, and
SVM classifiers to distinguish between mild, moderate, and
severe patients and normal participants. Table 9 shows that
the best classification result was obtained using EfficientNet
with SVM classifier with an accuracy of 68.9%.

Results show that using hybrid models with a SqueezeNet
gives the highest classification using SVM accuracy of
87.8%. followed by AlexNet, MobileNetV2, GoogLeNet,
ResNet18, EfficientNetbo and ShuffleNet, respectively with
accuracy of 83.9%, 80.8%, 74.9%, 70.8%, 68.9% and 67.9%,
respectively.

One classifier performs better than the other because
algorithm differences are tied to a variation in underlying
algorithms that explain abifromces another has unique char-
acteristics changes its performance. In addition, performance
of different classifiers benefited from the use of deep neural
networks in feature selection depends on how powerful
these classifiers become capable as a result to efficiently
utilize selected features. Mark the trend which refers to
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FIGURE 10. Confusion matrices utilising pre-trained EfficientNetb0 with DT, KNN, and SVM classifiers for mild, moderate, and severe patients, together
with normal subjects.

generalization performance, model complexity and general-
ization ability – highlighting that we are considering classi-
fiers to make trade-offs between overfitting vs. underfitting.

IV. CONCLUSION
Deep CNNs such as AlexNet, ResNet18, GoogLeNet,
MobileNetV2, SqueezeNet, ShuffleNet, and EfficientNetb0

were utilised in this study to classify EEG recordings made
by patients with mild, moderate, and severe forms of autism
as well as recordings made by healthy control subjects. This
research tackled the difficult problem of classifying EEG
recordings. Deep learning is able to overcome the restrictions
that are associated with traditional learning algorithms, and
it enables users to avoid the process of manually crafting
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and extracting features. The 3-D spectrogram of the EEG
recordings has been analysed to look for abnormalities in
the spectrum of people who have ASD. As a result, the
development of an automated method that is predicated on
the spectrum representation of EEG data was one of the
most important contributions made by this study. To be
more specific, we suggested a PSD-based CNN that is able
to extract latent features from 3-D representations of EEG
spectra and, as a result, distinguish between mild, moderate,
severe, and normal patients using just non-invasive scalp
EEG recordings. Extracting information through feature
engineering about these physiological changes can assist
specialists in increasing the quality of their analysis while
also reducing the amount of time it takes to complete
the analysis [63]. Current research has evolved beyond
the feature engineering stage and is now focusing on
comprehension and the extraction of knowledge using deep
learning. This is being done so that the analysis process
can be optimised even further. On the other hand, the prior
research either used face recognition as Akhtar et al. used
transfer learning-based autism face recognition framework
to more precisely identify children with ASD in the early
stages, which demonstrated the highest accuracy 92.10%
in detecting autistic children more explicitly in the early
stages [64], or in spite of using EEG, researchers did not take
into account all of the EEG channels [45]. As a consequence,
it is possible that some characteristics that may be relevant for
ASD have been neglected, and the accuracy rate for automatic
diagnosis is low. The ability to accurately classify data is
possessed by deepmodels. As a result, deepmodels have been
applied in this investigation to resolve classification issues
based on the extraction of EEG spectrogram images. The
results of this deep classification have achieved a high level
of performance. EEG-based autism signals have never been
used to be identified by a data-driven from seven individual
state-of-the-art pre-trained deep CNN networks employing
EEG spectrogram images, as far as we are aware. This is the
best information we have regarding this topic. Mohi et al. [8]
introduced pre-trained ASD and normal controls utilising the
GoogLeNet and SqueezeNet with accuracies of 75% and
82%, respectively.

Directions for further work include creating an EEG-based
drowsiness detection system that uses real-time data graphs
to attain the needed simulation. Naturally in this case,
we tap into our minds through brain-computer interfaces
(BCI) insert that complement by examining the potential of
individual fit versions to identify sleepiness using EEG data.
There is a possibility that more advanced and personalized
algorithms for the detection of lethargy can be developed by
considering brainwave patterns associated with each person,
along with personality-defining factors such as gender, age
and strength on autism severity. Such regions may represent
targets of future studies, which seek to boost the diagnostic
possibilities for sleepiness in autism spectrum disorder
patients.
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