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 Cross-project defect prediction is a method that predicts defects in one 

software project by using the historical record of another software project. 

Due to distribution differences and the weak classifier used to build the 

prediction model, this method has poor prediction performance. Cross-

project defect prediction may perform better if distribution differences are 

reduced, and an appropriate individual classifier is chosen. However, the 

prediction performance of individual classifiers may be affected in some 

way by their weaknesses. As a result, in order to boost the accuracy of cross-

project defect prediction predictions, this study proposed a strategy that 

makes use of multiple classifiers and selects attributes that are similar to one 

another. The proposed method's efficacy was tested using the Relink and 

AEEEM datasets in an experiment. The findings of the experiments 

demonstrated that the proposed method produces superior outcomes. To 

further validate the method, we employed the Wilcoxon sum rank test at 

95% significance level. The approach was found to perform significantly 

better than the baseline methods. 
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1. INTRODUCTION 

One of the most important phases in the creation of high-quality software is the software testing 

activities. However, software testing activities are higly expensive [1]. Numerious studies found that most 

software errors are caused by only some few parts of the software modules [2], [3]. To reduce the number of 

resources required for testing the software project, prior to testing activities, software testing team can use 

software defect prediction (SDP) tools to predict defect-prone modules in software projects [4]. Various 

studies have shown that SDP under within-project defect prediction method (WPDP) can effectively identify 

defect prone modules i.e., where historical defect data used for training and testing is extracted from the same 

project [4]. WPDP has an obvious challenge when a software project is new or has limited historical defect data 

[5]. In response to the challenge of WDPD, cross-project defect prediction (CPDP) was introduced i.e., where 

historical defect data of one project (source) is used to predict defect-prone modules in another project (target) 

Nam et al. [6]. However, although the potential usefulness of the CPDP has been validated by Ma et al. [7], 

Peters et al. [8], and Rahman et al. [9], CPDP has a poor predictive performance because of the difference 
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between the source and target projects in terms of programming languages, coding styles and developers’ 

experience. Another factor that also affect the predictive performance of CPDP is the weakness of individual 

machine leaning algorithm used for building prediction model [10]. To address the challenge of poor 

prediction performance in CPDP method, various studies have proposed difference approaches; [1] proposed 

transfer cost-sensitive boosting, Liu et al. [4] proposed two phase transfer learning, He et al. [5] proposed 

simplified training data method, Sun et al. [11] proposed filtering method for selecting suitable source project 

for CPDP, Chen et al. [12] proposed deep learning based CPDP, Zhao et al. [13] proposed Manifold feature 

transformation for CPDP, Lei et al. [14] proposed CPDP based on feature selection and distance-weight 

transfer learning. However, the predictive performance of CPDP is till below applicable level and therefore 

need improvement. 

To improve the predictive performance of CPDP, in this study, we proposed a similar attribute 

selection and multi-learning method (SASMLM), for cross-project defect prediction. Specifically, to improve 

the predictive performance of CPDP method by minimizing the difference between source and target projects 

and also the weakness of the individual classifier to determine the effectiveness of our proposed method, we 

conducted an experiment using eight open-source datasets from AEEEM and Relink. The results of the 

experiments showed that the proposed SASMLM achieved better F1_score results compared to the baseline 

CPDP approaches based on both individual dataset and on average scales. To further confirm that the 

achievement of our proposed SASMLM is not by chance, we analysed the prediction performance of 

SASMLM statistically against each baseline method using Wilcoxon rank-sum tests. The statistical result 

indicated that our proposed SASMLM method outperformed all the baseline method significantly. This study 

contributes in three ways. This study provides: i) method for reducing the difference between source and 

target project, ii) method for reducing the impact of weak classifier on the performance of cross-project 

defect prediction, and iii) details analysis on the impact of using multiple classifiers over single classifier 

when building model for cross-project defect prediction. 

 

  

2. RELATED WORK 

Briand et al. [15] conducted a feasibility study on the CPDP technique, in which an object-oriented 

project dataset was used to train a machine learning classifier for CPDP. Zimmermann et al. [16] motivated 

by this, experimented extensively with 622 cross-project defect predictions. The outcomes showed that just 

3.4% of CPDPs were effective. They concluded that reducing the disparity in distribution between the source 

and target projects could enhance the CPDP's performance. In addition, the predictive performance of CPDP 

can be enhanced by selecting appropriate machine learning algorithms. As a result, several studies were 

conducted to improve CPDP's predictive ability. Selecting the attributes (features) that are the closest to one 

another is one effective strategy for reducing the difference between two projects. Watanabe et al. [17], 

focusing on attribute level suggested transforming the training set for CPDP using the mean distributional 

characteristics of attributes from both the source and target projects. Nam et al. [6] proposed a trichloroacetic 

acid (TCA+) that reduces the distribution difference and improves CPDP's predictive performance by 

transforming the attributes of the source and target projects into a latent space. Zhao et al. [13] proposed a 

manifold-based feature transformation CPDP strategy. The Naïve Bayes (NB) classifier was trained using the 

transformed source project, and the trained NB was then used for the CPDP. Yuan et al. [18] proposed a two-

phase method for selecting a suitable CPDP training set. The attributes of the source and target projects were 

first grouped using the clustering method. To select the appropriate training data for the CPDP, the local 

density of features, feature class relevance, and feature similarity were then taken into consideration. 

In addition, to lessen the gap between the source and target projects, some studies concentrate on 

instance selection. Turhan et al. [19] proposed an approach which uses K-nearest neighbor (KNN) to select 

most similar instacess in source and target projects. He et al. [20] selected relevant instances with regard to 

defect count for CPDP using various similarity techniques. Ma et al. [7] suggested a method in which each 

instance in the source project was given weights based on how similar it was to the target project. A 

classification model for CPDP was trained using weighted instances. Peters et al. [8] proposed the peters 

filter, a method for selecting suitable training data for CPDP using K-means clustering technique. Herbold 

[21] suggested using the EM clustering algorithm and KNN to find similar instances that could be used as 

CPDP training data. Amasaki et al. [22] suggested a strategy in which the appropriate instance for training 

the CPDP model was obtained through the utilization of density-based spatial clustering of applications 

(DBSCAN) clustering methods. Li et al. [23] suggested a method in which a dictionary was used to learn the 

instances that were similar between the source and target projects. Ni et al. [24] proposed a method for CPDP 

in which initially, similar instances between the source and the target project were chosen utilizing the cluster 

technique. Second, the limited label in the target project was used in conjugation with TrAdaboost to select 

instances from the source project.  
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3. METHOD 

3.1.  Framework  

CPDP model train on previous records (dataset) of other software project (source) to predict defect 

on another project (target) to reduce the issue of limited or no previous record. The main challenge is the 

poor performance resulting from differences between projects and weakness of individual classifier. 

Selecting most similar attributes between the projects for training and adopting stacking technique instead of 

individual single classifercan improve the performance of CPDP method. 

Based on this, this study proposes a method SASMLM. As shown in Figure 1, the method consists 

of two main parts. In similar attribute selection part, after taking two different software projects as inputs, one 

serving as source S and the other as target T, the mean difference (MD) between all the features in the source 

and target datasets is computed, and features with a minimum MD are extracted from the source and target 

datasets denoted as training set (TrS) and testing set (TS) for training and testing, respectively. In multi-

learning part, in the first stage, a set of base classifiers, KNN, SVM, and RF trained on TrS and tested on TS. 

In the second stage, the meta-classifier LR is learned from the output of the KNN, SVM, and RF, and the 

learned meta-classifier (LR) makes a final prediction of TS. Finally, the F1_score is used to evaluate the 

predictive performance of the proposed method. 

 

  

 
 

Figure 1. Framework for SASMLM 

 

 

3.2.  Algorithm description 

In the initialization phase, (line 1 to 12 in the Algorithm 1), the mean 𝑓̂𝑗
(𝑠)of each feature 𝑓(𝑠) in the 

source project S and the mean 𝑓̂𝑗
(𝑡) of each feature 𝑓(𝑡) in the target project T are computed. To find the similar 

features between features in the source and target projects, we compute the absolute MD between each 

feature in the source and the corresponding feature in the target project, for example, mean of feature 1 in 

source project is subtracted from mean of feature 1 in target project. The absolute values of MD are then 

arranged in ascending order. We select N top features in MD and used them as common features (CF) 

between the source and target projects. We then select all features in the source project that are same with the 

features in the CF and used them as TrS, similarly, all features in the target project that are same with 

features in CF are selected and used as TS. 

In the training phase, (line 14 to 16 in the Algorithm 1), we employed method similar to stacking, 

KNN, SVM, and RF are trained on TrS and tested on TS. The prediction performance of all the three models, 

evaluated using F1_score is then used as training set for LR. In the final prediction phase, (line 17 to 19 in 

the Algorithm 1), the trained LR model is then used to predict defect in the TS. Prediction performance of the 

LR model was evaluated using F1_score. 
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Algorithm 1 for proposed SASMLM 

Input: S - Source 

 T - Target 

 N – The number of selected similar features 

Output: F1_score 

1: Get all the features in S, mark as 𝑓(𝑠) = {𝑓1
(𝑠)

, 𝑓2
(𝑠)

, 𝑓3
(𝑠)

… 𝑓𝑚
(𝑠)

}; 

2: Get all the features in T, mark as 𝑓(𝑡) = {𝑓1
(𝑡)

, 𝑓2
(𝑡)

, 𝑓3
(𝑡)

… 𝑓𝑚
(𝑡)

}; 

3: for each𝑓(𝑠)and 𝑓(𝑡) 

4: Compute the mean, markas 𝑓𝑗
(𝑠)

and 𝑓𝑗
(𝑡)

; 

5: for each pair of 𝑓𝑗
(𝑠)

and 𝑓𝑗
(𝑡)

 

6: Compute the absolute difference, marked as 𝑀𝐷 = {𝑓1
(𝑠)

− 𝑓1
(𝑡)

, 𝑓2
(𝑠)

− 𝑓2
(𝑡)

, 𝑓3
(𝑠)

− 𝑓3
(𝑡)

… 𝑓𝑚
(𝑠)

− 𝑓𝑚
(𝑡)

}; 

7: end for 

8: Rank the values in MD in ascending order; 

9: Select N top features in MD, mark as CF; 

10: Transpose CF; 

11: Select all features from 𝑓(𝑠) that correspond with features in transpose CF, mark as Training Set (TrS); 

12: Select all features from 𝑓(𝑡) that correspond with features in transpose CF, mark as Testing Set (TS); 

13: end for 

14: Train the base models (KNN, SVM and RF) on TrS; 

15: Test the trained base models on the TS and calculate their performance in F1_score; 

16: Use the trained base models as features to train the second level model (LR); 

17: Use the trained LR to perform a final prediction on the TS; 

18: Compute the performance of LR using F1_score; 

19: Return F1_score; 

 

3.3.  Experimental setup 

To evaluate the proposed SASMLM systematically, we established the following research 

questions: i) RQ1: Does the proposed SASMLM performed better cross-project defect prediction than the 

compared CPDP methods?; ii) RQ3: How does the different number of learners affect the prediction 

performance of SASMLM?, and iii) RQ4: How does the difference combination of learners affect the 

prediction performance of our SASMLM? 

 

3.4.  Dataset 

In this study, we conducted CPDP on eight open-source and commonly used datasets from AEEEM 

and Relink. Table 1 provides details of these projects. AEEEM dataset was collected by D’Ambros et al. [25]. It 

consists of five projects. Each project in the AEEEM constitutes a total of 71 attributes in different categories, 

including entropy of change, entropy of source code, source code, previousdefect metrics, and churn of source 

code. Relink dataset was collected by Wu et al. [26]. It consists of three projects, each with 26 attributes. 
 
 

Table 1. Datasets 
Project name Modules Features Defective modules 

EQ 325 71 129 
JDT 997 71 206 

LC 399 71 64 

ML 1862 71 245 
PDE 1492 71 209 

Apache 194 26 98 

Safe 56 26 22 
ZXing 399 26 118 

 

 

3.5.  Evaluation measures 

To evaluate the prediction performance of our approach, we used F-measure which is one of the 

most used evaluation measures in SDP [27], [28]. F-measure is the harmonic mean of precision and recall. 

They are defined as follows: 

− Precision: determined the ratio of software modules that were accurately predicted to be non-defective 

to all modules that were predicted to be non-defective. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (1) 

 

− Recall: determined the ratio between the total number of non-defective modules and the number of 

modules that were accurately predicted to be non-defective. 

 

𝑅𝑒𝑐𝑎𝑙𝑙
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2) 

 

− F-measure: defined the hamonic representation of precision and recall. The higher F-measure means 

better performance. 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3) 

 

3.6.  Baselines 

We first experimentally compared SASMLM with four baseline methods in CPDP to determine the 

effectiveness of our proposed approach. The baseline methods are Watanabe, Burak, TCA+, and MFTCPDP, 

which were proposed by Nam et al. [6], Zhao et al. [13], Watanabe et al. [17], and Turhan et al. [19], 

respectively. Experiments were conducted on the AEEEM and Relink datasets. The experimental results 

were measured using F_measurement. 

 

3.7.  Evaluation settings 

To be in conformity with the previous studies in SDP, we arrange all the datasets in AEEEM and 

Relink in pairs. For instance, when EQ was used as a source, each of the other projects in AEEEM was used 

as a target i.e., EQ ⇒ JDT, ML, PDE, and LC. In all the two benchmark datasets, we conducted 26 CPDP 

experiments from AEEEM and Relink datasets. For the evaluation of the results, we used F-measure 

(F1_score). 

 

3.8.  Statistical significance test  

To evaluate whether SASMLM significantly performed better than the compared baseline methods. 

Like existing SDP studies [7], [24], [29], we employed a nonparametric Wilcoxon signed-rank test at a at a 

confidence level of 95%. This test is a non-parametric test use to confirm whether there is a statistical 

significance difference between two related variables. 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Effectiveness of SASMLM 

RQ1: Does the proposed SASMLM performed better cross-project defect prediction results than the 

baseline CPDP methods? 

The comparison results of SASMLM against the compared CPDP methods is reported in this section 

as shown in Tables 2 and 3. From these tables, we can observe that SASMLM achieves better prediction 

results in most of the combinations against the compared baseline methods based on F1_score. On individual 

AEEEM dataset, SASMLM won 15, 11, 17, and 18 out of 20 datasest combinations against MFTCPCP, 

TCA+, Watanabe and Burak respectively. On the Relink datasets, SASMLM won 3, 4, 6, and 5 out of 6 

datasets combinations against MFTCPCP, TCA+, Watanabe, and Burak respectively. Also, considering the 

average results from across 26 prediction combinations, SASMLM performed better than the baseline 

methods with mean of 0.82 and 0.73 on AEEEM and Relink respectively. To further confirm that the 

achiement of SASMLM is not by chance, we analysed the prediction performance of SASMLM statistically. 

Like previous studies [1], [30], [31] we established the following hypothesis:  

a. H10: SASMLM does not achieve better prediction performance than the four baseline CPDP methods. 

b. H1A: SASMLM can achieve better prediction performance than the four baseline CPDP methods. 

We constructed four groups of Wilcoxon rank-sum tests: SASMLM and MFTCPDP, SASMLM and 

TCA+, SASMLM and Watanabe, and SASMLM and Burak. At the 95% significance level, the statistical p-

values obtained were 0.002 for SASMLM and MFTCPDP, 0.000 for TCA+ and 0.000 for SASMLM and 

Watanabe, and 0.000 for SASMLM and Burak. The p-values of SASMLM and MFTCPDP, SASMLM and 

TCA+, SASMLM and Watanabe, and SASMLM and Burak are less than the significant value of 0.05, this 

indicates that the proposed SASMLM has significantly outperformed all the compared approaches. 

Therefore, we rejected H10 and accepted H1A. In other words, SASMLM can achieve better F-measure 

results with statistical significance. A better F-measure indicates that SASMLM can be effective for 

predicting defects across different projects. 
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Table 2. Comparison of SASMLM to baseline methods on AEEEM dataset based on F1_score  
Source→Target MFTCPDP TCA+ Watanabe Burak SASMLM 

EQ→JDT 0.53 0.46 0.74 0.43 0.87 
EQ→LC 0.84 0.48 0.02 0.81 0.95 

EQ→ML 0.76 0.39 0.35 0.59 0.94 

EQ→PDE 0.72 0.62 0.76 0.53 0.75 
JDT→EQ 0.56 0.61 0.69 0.45 0.71 

JDT→LC 0.89 0.80 0.83 0.86 0.75 

JDT→ML 0.84 0.77 0.78 0.81 0.75 
JDT→PDE 0.83 0.80 0.78 0.79 0.88 

LC→EQ 0.67 0.55 0.68 0.47 0.65 

LC→JDT 0.57 0.73 0.82 0.70 0.73 
LC→ML 0.78 0.47 0.81 0.81 0.87 

LC→PDE 0.78 0.80 0.81 0.80 0.9 

ML→EQ 0.62 0.64 0.68 0.45 0.64 
ML→JDT 0.61 0.73 0.83 0.70 0.88 

ML→LC 0.88 0.86 0.86 0.86 0.88 

ML→PDE 0.82 0.82 0.82 0.79 0.92 
PDE→EQ 0.63 0.61 0.69 0.45 0.60 

PDE→JDT 0.72 0.74 0.83 0.70 0.85 

PDE→LC 0.88 0.79 0.81 0.86 0.92 
PDE→ML 0.83 0.79 0.81 0.81 0.91 

Mean 0.74 0.67 0.72 0.68 0.82 

 

 

Table 3. Comparison of SASMLM to baseline methods on relink dataset based on F1_score 
Source→Target MFTCPDP TCA+ Watanabe Burak SASMLM 

Safe→Apache 0.71 0.67 0.72 0.57 0.71 

ZXing→Apache 0.65 0.67 0.71 0.36 0.63 

ZXing→Safe 0.77 0.51 0.72 0.74 0.70 
Apache→Safe 0.46 0.57 0.72 0.23 0.78 

Apache→ZXing 0.59 0.60 0.65 0.16 0.78 

Safe→Zxing 0.65 0.63 0.64 0.60 0.78 
Mean 0.64 0.61 0.69 0.44 0.73 

 

 

4.2.  Effect of the number of classifiers (S) on prediction performance of SASMLM 

RQ2: How number of classifiers have effect on SASMLM prediction performance? 

To investigate the effect of different numbers of classifiers S on the prediction performance of 

SASMLM, we conducted cross-project defect pre-diction experiments using different numbers of classifiers, 

starting from S=1 (one classifier), S=2 (two classifiers), and S=3 (three classifiers), as shown in Table 4. The 

average results across the AEEEM project combinations are also reported in the last row of the corresponding 

tables. From the table, we can see that the prediction performance of SASMLM is slightly better when S=3  

(the number of classifiers used as base learners) than the average performance of other variants. 

 

 

Table 4. Results of SASMLM based on different number of learners on AEEEM datasets 
Source→Target S=3 S=2 S=1 

EQ→JDT 0.71 0.74 0.67 
EQ→LC 0.60 0.54 0.48 

EQ→ML 0.65 0.59 0.66 

EQ→PDE 0.64 0.57 0.52 
JDT→EQ 0.73 0.73 0.74 

JDT→LC 0.87 0.84 0.88 

JDT→ML 0.85 0.80 0.85 
JDT→PDE 0.88 0.87 0.88 

LC→EQ 0.75 0.75 0.75 

LC→JDT 0.88 0.88 0.88 
LC→ML 0.9 0.93 0.93 

LC→PDE 0.92 0.92 0.92 

ML→EQ 0.75 0.75 0.75 
ML→JDT 0.88 0.88 0.88 

ML→LC 0.95 0.95 0.95 

ML→PDE 0.92 0.92 0.92 
PDE→EQ 0.75 0.75 0.75 

PDE→JDT 0.87 0.88 0.88 

PDE→LC 0.94 0.94 0.95 
PDE→ML 0.91 0.93 0.93 

Mean 0.82 0.81 0.81 
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4.3.  Effect of the difference combinations of classifiers on prediction performance of SASMLM  

RQ3: How difference combinations of classifiers have effect on SASMLM prediction performance? 

To answer this question, we conducted an experimental investigation on the performance of 

SASMLM using a combination of KNN and RF, KNN and SVM, and RF and SVM as base learners on 

AEEEM datasets. The results obtained, as shown in Table 5, show that the SASMLM achieved the highest 

average F1_score (0.83) using the KNN and RF as base learners compared to the other combinations. 

Therefore, this result shows that KNN and RF are suitable as base learners for SDP. This agrees with the 

findings of Akour et al. [32] and Goyal et al. [33] on RF and KNN, respectively. 

 

 

Table 5. Results of SASMLM based on combination of different classifiers used as base learners on AEEEM 

datasets 
Source→Target KNN and RF KNN and SVM RF and SVM 

EQ→JDT 0.74 0.78 0.71 
EQ→ML 0.73 0.49 0.55 

EQ→PDE 0.65 0.54 0.51 

EQ→LC 0.85 0.39 0.39 
JDT→EQ 0.72 0.74 0.74 

JDT→ML 0.72 0.84 0.85 

JDT→PDE 0.85 0.88 0.87 
JDT→LC 0.89 0.83 0.81 

ML→EQ 0.75 0.75 0.75 

ML→JDT 0.88 0.88 0.88 
ML→PDE 0.92 0.92 0.92 

ML→LC 0.95 0.94 0.95 

PDE→EQ 0.75 0.75 0.75 
PDE→JDT 0.88 0.88 0.88 

PDE→ML 0.93 0.93 0.92 

PDE→LC 0.95 0.94 0.94 
LC→EQ 0.75 0.75 0.75 

LC→JDT 0.88 0.88 0.88 

LC→ML 0.92 0.93 0.93 
LC→PDE 0.92 0.92 0.92 

Mean 0.83 0.80 0.80 

 

 

5. CONCLUSION 

In this study, we propose a new method for improving the predictive performance of a CPDP called 

SASMLM. SASMLM first computes the mean vector of all attributes in both the source and target projects, 

and selects the most similar ones. The selected attributes were then used to train the base learners. The 

trained base learners were tested on the target project. The results of the base learners are used to train the 

meta-learner, and the trained meta-learner is used for the final prediction. We conducted experiments to 

evaluate SASMLM on eight projects from two benchmark datasets, using the F-measure as the evaluation 

metric. The non-parametric Wilcoxon signed-rank test was used to evaluate the significant difference 

between SAMLM and the four compared methods. The results show that SASMLM can achieve better 

prediction performance than competing CPDP methods. Our findings, therefore, show that SASMLM can be 

useful for SDP, especially when there is a shortage of historical records for a particular project. In future 

studies, we intend to extend this study by using more classifiers as base learners. Adding new classifiers may 

help the approach predict more defects. 
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