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Abstract: Crop digital twin is redefining traditional farming practices, offering unprecedented op- 13 
portunities for real-time monitoring, predictive and simulation analysis, and optimization. This re- 14 
search embarks on an exploration of the synergy between precision agriculture, crop modeling, and 15 
regression algorithms to create a digital twin for augmenting farmers the concentration and compo- 16 
sition prediction-based crop nutrient recovery. This captures the holistic representation of crop char- 17 
acteristics, considering the intricate relationships between environmental factors, nutrient concen- 18 
trations, and crop compositions. However, the complexity arising from diverse soil and environ- 19 
mental conditions makes nutrient content analysis expensive and time-consuming. This paper pre- 20 
sents two approaches namely,(i) single nutrient concentration prediction and (ii) nutrient composi- 21 
tion concentration prediction which is the result of a predictive digital twin case study that employs 22 
six regression algorithms namely Elastic Net, Polynomial, Stepwise, Ridge, Lasso, and Linear Re- 23 
gression to predict rice nutrient content efficiently, particularly considering the coexistence and 24 
composition of multiple nutrients. Our research findings highlight the superiority of the Polynomial 25 
Regression model in predicting nutrient content, with a specific focus on accurate nitrogen percent- 26 
age prediction. This insight can be used for nutrient recovery intervention by knowing the precise 27 
amount of nutrient to be added into the crop medium. The adoption of the Polynomial Regression 28 
model offers a valuable tool for nutrient management practices in the crop digital twin, potentially 29 
resulting in higher-quality rice production and a reduced environmental impact. The proposed 30 
method can be replicable in other low-resourced crop digital twin system. 31 

Keywords: rice nutrient level; fertilizer optimization; nutrient analysis; polynomial regression; nu- 32 
trient prediction; environmental impact reduction 33 
 34 

1. Introduction 35 
Digital twin technology involves the creation of a virtual duplicate of a physical ob- 36 

ject or system, enabling the simulation and analysis of diverse scenarios and outcomes [1- 37 
7]. When applied to crop management, a digital twin becomes a powerful tool for model- 38 
ing a specific farm, considering variables such as soil quality, weather conditions, irriga- 39 
tion systems, and crop varieties. This collected data is then utilized to update the digital 40 
twin, facilitating predictions about upcoming crop yields, potential pest outbreaks, and 41 
other influential factors that may impact the farm's overall success. 42 
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Employing Digital Twins as a primary method for farm management facilitates the 43 
separation of physical processes from their planning and control. Consequently, farmers 44 
gain the capability to oversee operations and crop health remotely, relying on (almost) 45 
real-time digital information rather than depending solely on direct observation and on- 46 
site manual tasks [6,7]. The deficiency of vital nutrients can lead to reduced crop yields [8- 47 
13]. This empowerment enables prompt action in response to anticipated or unexpected 48 
deviations such as crop nutrient concentration and allows for the simulation of the effects 49 
of interventions such as nutrient recovery based on real-life data [14-18]. 50 

In this context, the application of machine learning (ML) offers a promising avenue 51 
for farmers. ML equips them with tools for monitoring soil quality and delivering person- 52 
alized recommendations, drawing insights from both experimental and field data. None- 53 
theless, the prediction of rice essential nutrients remains a formidable challenge, primarily 54 
due to several factors: 1) the inherent variability in nutrient content, 2) the diversity of 55 
analytical approaches, 3) limitations in data availability, 4) genetic diversity among rice 56 
varieties, and 5) the associated cost and time constraints [16-19]. Consequently, it is im- 57 
perative to address these multifaceted challenges to develop accurate and reliable nutrient 58 
prediction models for rice [15-17].  59 

This paper report one of our digital twin case studies on rice nutrient recovery 60 
through two approaches namely single nutrient concentration prediction and nutrient 61 
composition concentration prediction. Regression facilitates the identification of intricate 62 
relationships among essential rice nutrients, ensuring their optimal supply, thereby en- 63 
hancing rice growth and nutrient content [20,21]. This study seeks to identify the most 64 
effective regression algorithm for predicting nutrient concentration percentages based on 65 
the co-existence and composition of other nutrients. The incorporation of regression algo- 66 
rithms in the crop digital twin is mainly because of its efficiency and effectiveness. This 67 
endeavor promises optimized nutrient management practices, culminating in enhanced 68 
rice quality and a reduced environmental footprint through the adjustment of nutrient 69 
ratios.  70 

Among the myriad regression algorithms, Elastic Net regression, Polynomial regres- 71 
sion, Stepwise regression, Ridge regression, Lasso regression, and Linear regression hold 72 
particular relevance for predicting nutrient concentration by considering the coexistence 73 
and composition of multiple nutrients. These algorithms offer a structured, data-driven 74 
approach to unravel the complexities of rice nutrition, providing accurate predictions and 75 
contributing to the standardization of nutrient management practices. Moreover, they 76 
play a crucial role in fostering sustainable and environmentally friendly rice cultivation 77 
practices.  78 

The singular nutrient prediction method offers advantages in two distinct scenarios. 79 
Firstly, it proves beneficial when a farmer or scientist intends to simulate the concentra- 80 
tion value of a specific nutrient, already possessing knowledge of the concentration of 81 
other nutrient components. Secondly, this approach becomes valuable if the sensor for a 82 
particular nutrient malfunctions. In such cases, the digital twin system promptly alerts the 83 
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user regarding the sensor breakdown and provides a predictive value while awaiting sen- 84 
sor replacement. 85 

Regardless of the scenario, the digital twin system ensures user awareness when the 86 
detected nutrient concentration surpasses the recommended range. Furthermore, the sys- 87 
tem recommends nutrient recovery interventions. The nutrient composition prediction 88 
approach serves as a comprehensive intervention preparation tool by informing the 89 
farmer or scientist about the anticipated nutrient concentration. The projected value, in 90 
turn, aids the digital twin system in suggesting the appropriate amount of nutrient recov- 91 
ery, aligning with best practices. 92 

This paper unfolds in six sections. The first section underscores the significance of 93 
predicting rice essential nutrients and elucidates the challenges in this domain, along with 94 
the role of linear and polynomial regression algorithms in addressing these issues. The 95 
second section offers an overview of the dataset and its attributes. The third section delin- 96 
eates the flowchart of the polynomial regression algorithm. The fourth section introduces 97 
the evaluation metrics employed to assess algorithm performance. The fifth section pre- 98 
sents the experimental results and their comprehensive analysis. Finally, the paper con- 99 
cludes by summarizing the findings and proposing potential avenues for future research. 100 

2. Literature Review 101 
One of the promises of digital twin in crop management is for automatic prediction 102 

system to support deciding the appropriate fertilization period [22-24]. Deploying the sen- 103 
sors which monitors concentration of nutrients present in soil, humidity, and temperature 104 
in the real fields to make the consistent quality check. Machine learning could be used as 105 
a proactive measure as predictor of the degradation of crop medium’s and crop’s plant 106 
nutrients which could increase the risk of crop pests and diseases [25,26]. 107 

Regression algorithms play a central role in rice nutrient prediction by unraveling 108 
the intricate interplay of nutrients in rice cultivation. Elastic Net Regression (EN), Polyno- 109 
mial Regression (PN), Stepwise Regression (SW), Ridge Regression(RR), Lasso Regres- 110 
sion(LS), and Linear Regression(LR) provide essential insights into the complex relation- 111 
ships among soil composition, environmental variables, and agricultural practices [27-30]. 112 
These algorithms empower researchers to comprehend the often-nonlinear dependencies 113 
among these factors, deepening our understanding of how various nutrients influence rice 114 
nutrition. 115 

Regression algorithms are data-driven, offering a robust framework for analyzing 116 
and interpreting nutrient data from diverse sources. By harnessing historical data and ob- 117 
servational insights, these algorithms provide crucial guidance on how different nutrients 118 
impact rice composition. This knowledge is vital for optimizing fertilizer usage, enhanc- 119 
ing nutrient management, and ultimately improving rice quality and yields [27-30]. 120 

These algorithms also aid farmers, agricultural experts, and policymakers in making 121 
informed decisions about crop management, fertilization strategies, and soil enrichment. 122 
This proactive approach helps avoid over-fertilization or under-fertilization, mitigating 123 
their detrimental effects on crop health and environmental sustainability [31,32]. 124 
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Existing works on rice nutrient has focused on predicting essential nutrient levels in 125 
rice, such as N, P, K, Mg, and Ca, and their effects on rice plant growth and development. 126 
One study employed an artificial neural network-based prediction algorithm to assess the 127 
influence of individual nutrients (N, P, K, Zn, and S) on various rice plant parameters. The 128 
algorithm indicated that optimal growth often occurs with nutrient doses below the max- 129 
imum applied levels, while maximum yield is achieved at 100% nutrient dose [22]. 130 

Another study used regression methods and found that random forest regression al- 131 
gorithms provided the highest accuracy for estimating rice shoot dry matter, leaf area in- 132 
dex, and nitrogen accumulation [23]. A third study evaluated different approaches for 133 
estimating rice aboveground biomass, plant nitrogen uptake, and nitrogen nutrition in- 134 
dex, with the random forest algorithm demonstrating superior performance [25]. An ad- 135 
ditional study focused on using machine learning for early detection of nutrient deficiency 136 
in rice through leaf image processing, achieving high testing accuracy and roc_auc score 137 
[8]. 138 

Rice nutrient content prediction, based on the composition of other nutrient infor- 139 
mation, including nitrogen, phosphorus, potassium, and organic matter as input varia- 140 
bles, was addressed in a study [26]. This study compared the EN algorithm with tradi- 141 
tional linear regression methods, including Ordinary Least Squares (OLS) regression, 142 
Ridge regression, and Lasso regression. The results highlighted the superior performance 143 
of the EN algorithm, exhibiting higher R-squared scores (R2) and lower Mean Absolute 144 
Error (MAE). Thus, Elastic Net proves more accurate in predicting rice nutrient content 145 
and its correlation with other nutrients. 146 

Essential nutrient levels in rice can also be predicted using spectral data from remote 147 
sensing [28], considering nutrients like N, P, K, Mg, and Ca. This research compared the 148 
polynomial regression algorithm with two other methods: Multi linear regression (MLR) 149 
and Partial least squares regression (PLSR). The outcome demonstrated the polynomial 150 
algorithm's superiority in predicting nutrient concentrations in rice levels. 151 

Other studies predicting nutrient content in rice used 16 nutrients as predictors, such 152 
as moisture, crude protein, fat, ash, total dietary fiber, soluble dietary fiber, insoluble die- 153 
tary fiber, total sugar, sucrose, glucose, fructose, amylose, amylopectin, total amino acids, 154 
lysine, and thiamine [30]. These studies employed three algorithms: stepwise regression, 155 
PLSR, and MLR for prediction. The results favored stepwise regression analysis for its 156 
superior accuracy in predicting nutrient content in rice. 157 

Another study aimed to predict nutrient content in rice based on 14 nutrients, includ- 158 
ing moisture, crude protein, fat, ash, total dietary fiber, soluble dietary fiber, insoluble 159 
dietary fiber, total sugar, sucrose, glucose, fructose, amylose, amylopectin, and thiamine. 160 
This research compared three algorithms: ridge regression, principal component regres- 161 
sion (PCR), and PLSR. Ridge regression stood out as the most effective method for pre- 162 
dicting nutrient content in rice, delivering higher accuracy than PLSR and PCR. 163 

Utilizing another set of 14 nutrients, including moisture, crude protein, fat, ash, total 164 
dietary fiber, soluble dietary fiber, insoluble dietary fiber, total sugar, sucrose, glucose, 165 
fructose, amylose, amylopectin, and thiamine as predictors for nutrient prediction in rice, 166 
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another study employed three algorithms: MLR, PLSR, and lasso regression. The experi- 167 
mental results highlighted the precision of the lasso regression algorithm in predicting 168 
both yield and nutrient content in rice, offering potential benefits in optimizing rice crop 169 
cultivation and management. 170 

In a similar vein, another study [34,35] compared three prediction algorithms, 171 
namely MLR, PLSR, and PCR, for nutrient content in rice, considering nutrients such as 172 
moisture, crude protein, fat, ash, total dietary fiber, soluble dietary fiber, insoluble dietary 173 
fiber, total sugar, sucrose, glucose, fructose, amylose, amylopectin, and thiamine. The 174 
findings indicated that MLR provided more accurate predictions compared to the other 175 
methods assessed. 176 

Table 1 provides a comparative analysis of the advantages and disadvantages of re- 177 
gression algorithms [26-33] for rice nutrient prediction. These algorithms effectively cap- 178 
ture both linear and nonlinear correlations among various nutrients. 179 

Table 1. Advantage and disadvantage of linear regression algorithm. 180 

Linear regression 
Types 

Proficiency  Advantage Disadvantage  

Simple linear regres-
sion (LR)[25] 

Identifying the corre-
lation between two 

variables 

-Computationally effi-
cient 

-Required less parame-
ters 

-Unable to deal 
with nonlinearity 
-Sensitive to out-

lier 

Elastic Net Regres-
sion (EN) [26] 

Constructed by com-
bination of Lasso and 

Ridge regression 
models. 

-Able to deal with large 
number of features 

-Prevent overfitting us-
ing L1 and L2 regulari-

zation methods 

-Computationally 
expensive 

-Unsatisfactory 
results when the 

number of predic-
tors is more than 

sample size 

Polynomial Regres-
sion (PR)[28] 

Captures nonlinearity 
between variables  

-Ability to deal with 
small dataset 

- Computationally 
expensive 

-Overfit if the de-
gree of polyno-

mial is high 

Stepwise Regression 
(SW)[30] 

Built by combination 
of backward and for-
ward selection meth-

ods which is beneficial 
to select best subset of 

features 

-Provide balance be-
tween features and al-
gorithms predictive 

power 

-Time demanding 
-Unstable due to 

overfitting 

Ridge Regression 
(RR) [31] 

Considered as regulari-
zation method 

-Able to dela with large 
dataset  

-Prevent overfitting  

-Issue with find-
ing optimal value 

for lambda  
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Lasso Regression 

[33] 

Known as regulariza-
tion method 

-Mitigate overfitting 

-Challenging 
while dealing 

with large dataset 
that has large 

number of obser-
vations 

These diverse regression algorithms collectively share a common aim: to enhance the 181 
precision and reliability of predictions concerning rice nutrient content, a critical step in 182 
optimizing fertilizer application, ensuring a balanced nutrient supply, and ultimately el- 183 
evating rice crop quality and yield while reducing environmental impact. 184 

However, very limited works have addressed the crop’s nutrients prediction by fo- 185 
cusing on the co-existent and composition nutrient’s concentration. For a digital twin sys- 186 
tem equipped with crop nutrients surveillance, this comes to our advantage to enable crop 187 
nutrient recovery. Our exploration and application of these regression techniques serve 188 
to address prevailing research disparities and foster a more standardized and comprehen- 189 
sive approach to predicting rice nutrient content. By employing a variety of regression 190 
models, our objective is to gain a deeper understanding of the intricate relationships 191 
among different nutrients in rice. This, in turn, promotes more sustainable and efficient 192 
rice cultivation practices. 193 

3. Materials and Methods 194 
This part splits into three subsections. First, we explain the dataset and its attribute. 195 

Next, we present the setting of the regression models. Then, we discuss the evaluation 196 
metrics. 197 

3.1. Dataset Description  198 
A self-collected rice dataset was used as described in Table 2, comprising of 348 ob- 199 

servations and nine attributes. This multivariate dataset features a combination of cate- 200 
gorical and numerical data, including spatiotemporal factors such as Season, Day, Plot, 201 
and Subplot. 202 

Table 2. Rice dataset descriptions. 203 

Name of Dataset  Rice Dataset 
Dataset Characteristics Multivariate 
Attribute Characteristics  Categorical Data (Nominal), Numerical & Continual Data 

Number of Instances 348 
Attributes Number 9 

Missing Values No 
  

The Season attribute categorizes data into two distinct seasons, denoted by the values 204 
1 and 2, enabling the exploration of how seasonal changes influence rice nutrient levels, a 205 
fundamental aspect of rice production optimization. Additionally, the Day attribute, with 206 
three distinct values—30, 60, and 90, introduces temporal granularity, facilitating an ex- 207 
amination of nutrient content variations within each season. This temporal dimension is 208 
essential for understanding the influence of specific days on nutrient levels.  209 

Furthermore, the Plot attribute categorizes data into four distinct plot locations rep- 210 
resented by values 1, 3, 4, and 5, enabling the assessment of nutrient distribution across 211 
different areas within the study site, thus adding a spatial context to the analysis. Subplot 212 
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further refines the spatial information by specifying 15 sublocations within each plot, de- 213 
noted by values such as 1A, 1B, 1C, and so forth.  214 

This fine-grained attribute is invaluable for scrutinizing nutrient variation within 215 
specific subregions of the plots, enhancing spatial precision. Additionally, the dataset in- 216 
corporates nutrient concentration, composition and co-existence ('N%', 'P%', 'K%', 'Mg%', 217 
'Ca%'), which is vital for understanding rice growth and health. The dataset's integrity is 218 
maintained, as it contains no missing values. 219 

 220 

Figure 1. Example content of the dataset 221 

Example of the data content is shown in Figure 1, which shows the concentration of each 222 
nutrient based on the spatial information. The best range of the nutrients are N: [1.17, 223 
2.47], P: [0.25, 0.3], K: [1.85, 2.52], Mg: [0.11, 0.17], Ca: [0.23, 0.33] which has produced the 224 
maximum weight grain at the planting plot with range [29.26, 39.42] at the end of the 225 
planting cycle. These values are considered the best practice to guide for intervention plan 226 
for the user (farmer or scientist).  227 

Figure 2 shows the dashboard that presents the average rice nutrient concentration 228 
across the growth period and the rice anatomical values at harvesting time, while Figure 229 
3 shows the nutrient value distribution. From Figure 2, we can identify the relationship of 230 
the nutrient con-existence, composition, and concentration with the yield. The digital twin 231 
supports three-staged insight for crop intelligence. First, we could also see the average 232 
values of nutrients that have led to the yield, and the nutrient values from the plant with 233 
the best yield become the benchmark.  234 

So, this has motivated us towards the second intelligence by predicting the co-exist- 235 
ence, concentration, and composition of the plant at each plot and subplot to know their 236 
health. The third intelligence is nutrient recovery during the growth as an intervention 237 
mechanism so that the predicted values can be a guide on precise additional nutrients to 238 
be added into the crop medium to optimize the yield. The precision of values for addi- 239 
tional nutrients can mitigate unnecessary excess in fertilizer usage and waste pollution. 240 
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 241 
Figure 2. Dashboard about the average nutrient values and the content in the rice. 242 

     Table 3. Values distribution for the nutrients 243 

 N (%) P (%) K (%) Mg (%) Ca (%) 

MIN 0.15 0.15 1.61 0.09 0.16 

MAX 4.59 28.00 3.89 0.20 0.38 

STDEV 0.77 1.48 0.45 0.02 0.04 

The nutrient concentration distribution, as depicted in Table 3, highlights the range 244 
of values for key nutrients of N (%), P (%), K (%), Mg (%), and Ca (%) that is essential for 245 
agricultural productivity. The minimum (MIN) and maximum (MAX) values illustrate the 246 
variability in nutrient levels, emphasizing the complexity of nutrient dynamics in agricul- 247 
ture. Standard deviation (STDEV) values quantify the degree of variability around the 248 
mean. This information is instrumental in precision agriculture, guiding targeted inter- 249 
ventions based on specific nutrient needs. In the context of environmental sustainability, 250 
understanding these distributions enables our digital twin system to issue timely alerts 251 
and recommend nutrient recovery interventions when concentrations exceed recom- 252 
mended ranges. This proactive approach optimizes crop yield while minimizing the en- 253 
vironmental impact associated with nutrient imbalances. 254 

3.2. Data Pre-Processing Using Min-Max Normalization  255 
Before visualization, the data exhibited variations in nutrient concentrations that 256 

prompted the need for exploration. The raw data contained outliers, which are data points 257 
significantly different from the majority of the observations. These outliers, if not ad- 258 
dressed, can impact the understanding of the overall nutrient distribution and make it 259 
challenging to discern patterns and trends in the data. 260 

Therefore, to gain a deeper understanding of the nutrient concentration data and vis- 261 
ualize its distribution, we employed box plots both before and after applying Min-Max 262 
normalization. The original box plots revealed the presence of outliers in the dataset, 263 
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which was affecting the clarity of the distribution. To address this issue, Min-Max nor- 264 
malization was applied to scale the data. The box plots after normalization effectively 265 
showcased the distribution of nutrient concentrations without displaying outliers. This 266 
approach allows for a more accurate and informative representation of the data, aiding in 267 
the identification of central tendencies and variations while providing a clearer view of 268 
the data's overall structure. The use of box plots before and after normalization aids in the 269 
assessment of data quality and the impact of data preprocessing techniques. 270 

The Min-Max normalization method is applied to rescale the input features between 271 
0 and 1 during the pre-processing phase. This normalization technique is suitable for the 272 
prediction models of this study because it helps to ensure that all the input features are 273 
on the same scale and have the same range, which helps the linear regression models of 274 
this study converge faster and boost their performance. This approach removes noises 275 
from data and prevents the big scales from data by giving the range of [0,1]. Equation (1) 276 
shows the formula of the Min-MAX method.  277 

𝑋!"#$ =
(𝑋 − 𝑋%&')

(𝑋%() − 𝑋%&')
 (1) 

Where X is the original value of a data point, 𝑿𝑴𝒊𝒏 is the minimum value in the da- 278 
taset, 𝑿𝑴𝒂𝒙 is the maximum value in the dataset, and	𝑿𝑵𝒐𝒓𝒎is the normalized value of the 279 
data point. This formula ensures that the minimum value in the dataset is scaled to 0 and 280 
the maximum value is scaled to 1, with all other values falling between these two limits.  281 

By applying a preprocessing method to the dataset, we can improve the stability and 282 
performance of regression models. Once this stage is complete, we can proceed to the next 283 
stage, where we design a regression model based on the different variables in the dataset. 284 
This stage involves selecting an appropriate regression method and specifying the inde- 285 
pendent and dependent variables. Finally, we analyze the model and provide information 286 
on its performance and accuracy. Figure 3 illustrates the Rice Nutrients data before and 287 
after applying the Min-Max normalization method. The visual representation of the data 288 
highlights the impact of normalization on the distribution of nutrient concentrations. 289 

 290 

 291 
Figure 3. Rice Nutrient Data: (a) Original Data and (b) Min-Max Normalized Data. 292 

 293 



Appl. Sci. 2023, 13, FOR PEER REVIEW  10 
 

The dataset under analysis consists of nutrient concentration data for rice samples, 294 
including attributes like nitrogen (N %), phosphorus (P %), potassium (K %), magnesium 295 
(Mg %), and calcium (Ca %). Prior to visualization, the data exhibited variations in nutri- 296 
ent concentrations that prompted the need for exploration. The raw data contained outli- 297 
ers, which are data points significantly different from the majority of the observations. 298 
These outliers, if not addressed, can impact the understanding of the overall nutrient dis- 299 
tribution and make it challenging to discern patterns and trends in the data. 300 

Therefore, to gain a deeper understanding of the nutrient concentration data and vis- 301 
ualize its distribution, we employed box plots both before and after applying Min-Max 302 
normalization. The original box plots revealed the presence of outliers in the dataset, 303 
which was affecting the clarity of the distribution. To address this issue, Min-Max nor- 304 
malization was applied to scale the data. The box plots after normalization effectively 305 
showcased the distribution of nutrient concentrations without displaying outliers. This 306 
approach allows for a more accurate and informative representation of the data, aiding in 307 
the identification of central tendencies and variations while providing a clearer view of 308 
the data's overall structure. The use of box plots before and after normalization aids in the 309 
assessment of data quality and the impact of data preprocessing techniques. 310 

 311 

3.3. Nutrient Concentration and Composition Prediction 312 
We present two approaches namely (i) single nutrient concentration prediction and (ii) nutri- 313 

ent composition concentration prediction; which are developed using EN, PN, SW, RR, LS, and 314 
LR algorithms. This section describes the development of the prediction models. 315 

3.3.1. Single nutrient concentration prediction 316 
We call the first approach single nutrient concentration prediction where five (5) 317 

models are developed based on different feature sets of rice dataset as shown in Table 4 318 
by exploiting the nutrient concentration, co-existence, and composition. In Table 4, ‘Y’ in- 319 
dicates that the spatiotemporal factors and nutrient features are used in the model build- 320 
ing, while ‘N’ indicates otherwise.  321 

Table 4. Single nutrient concentration prediction setting  322 

Spatiotemporal Factors Nutrients 

Feature Set 
Sea-
son 

Da
y 

Pl
ot 

Subplot 
N 

(%
) 

P 
(%) 

K 
(%) 

Mg 
(%) 

Ca (%) 

FS1 (Ca%) Y Y Y Y Y Y Y Y N 
FS2 (Mg%) Y Y Y Y Y Y Y N Y 
FS3 (K%) Y Y Y Y Y Y N Y Y 
FS4 (P%) Y Y Y Y Y N Y Y Y 
FS5 (N%) Y Y Y Y N Y Y Y Y 

 323 
Referring to Table 4, the single nutrient concentration setting has been constructed 324 

based on the selection of different features from spatiotemporal factors and nutrient fea- 325 
tures. These settings will be used for single nutrient concentration prediction using six 326 
methods: EN, PN, SW, PR, LS, and LR. Table 5 presents the parameter specifications 327 
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applied to the six regression approaches of EN, PN, SW, PR, LS, and LR in single nutrient 328 
concentration and composition concentration prediction. 329 

Table 5. Parameter specification for six regression algorithms of EN, PN, SW, PR, 330 
LS, and LR in single nutrient concentration and composition concentration pre- 331 
diction 332 

Model Parameter Values 

EN alpha 0.1 

L1_ratio 0.5 

PN degree 2 

SW Sequential Feature Selector Automatically select features 
(no direct parameters involved) 

PR alpha 0.1 

LS alpha 0.1 

LR No additional parameters  --------- 

 333 
Table 5 outlines the parameter specifications for six regression algorithms of EN, PN, 334 

SW, PR, LS, and LR in the context of predicting both single nutrient concentration and 335 
composition concentration.  336 

For EN, the parameters include an alpha value of 0.1 and an L1_ratio of 0.5. PN em- 337 
ploys a degree of 2 for modeling. The SW automatically selects features without involving 338 
direct parameters. PR is characterized by an alpha value of 0.1, and LS also utilizes an 339 
alpha value of 0.1. LR, on the other hand, involves no additional parameters, as indicated 340 
by the dash line in the "Values" column.  341 

The steps for the single nutrient concentration prediction are described in Algorithm 342 
1, based on the parameters setting for the machine learning algorithms described in Table 343 
5.  344 
 345 

Algorithm 1: Single nutrient concentration prediction  

Input: Nutrient concentration dataset 
Process: 

1. Apply the Min-Max normalization method (Eq. 1) 
2. Set training ratio= 80%  
3. For each feature set, fs in Table 4: FS1,...,FS5  

a. Load FSx to be the predictors  
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b. ModelENx=Develop Elastic Net regression using FSx with parameters in Ta-
ble 5 

c. ModelSWx=Develop Polynomial regression using FSx with parameters in Ta-
ble 5 

d. ModelSWx=Develop Stepwise regression using FSx with parameters in Table 
5 

e. ModelRRx=Develop Ridge regression using FSx with parameters in Table 5 
f. ModelLSx=Develop Lasso regression using FSx with parameters in Table 5 
g. ModelLRx=Develop Linear regression using FSx with parameters in Table 5 

4. End For 
 
Output: ModelENCa, ModelENMg, ModelENK, ModelENP, ModelENN, ModelPNCa, Mod-
elPNMg, ModelPNK, ModelPNP, ModelPNN, ModelSWCa, ModelSWMg, ModelSWK, Mod-
elSWP, ModelSWN, ModelSWCa, ModelSWMg, ModelSWK, ModelSWP, ModelSWN, Mod-
elRRCa, ModelRRMg, ModelRRK, ModelRRP, ModelRRN, ModelLSCa, ModelLSMg, ModelLSK, 
ModelLSP, ModelLSN, ModelLRCa, ModelLRMg, ModelLRK, ModelLRP, ModelLRN. 

 346 
Regards to Algorithm 1, the process for single nutrient concentration prediction, out- 347 

lined in Algorithm 1, involves applying Min-Max normalization to the nutrient concen- 348 
tration dataset and setting an 80% training ratio. For each of the five feature sets (FS1 to 349 
FS5) detailed in Table 3, the algorithm loads the respective features and employs six re- 350 
gression models (Elastic Net, Polynomial, Stepwise, Ridge, Lasso, Linear), each with its 351 
parameters specified in Table 4. The result is a set of trained models for predicting nutrient 352 
concentrations (Ca, Mg, K, P, N) denoted by prefixes such as ModelENCa, ModelENMg, 353 
and so on. The models are developed using various regression techniques tailored to each 354 
feature set, creating a comprehensive framework for nutrient concentration prediction. 355 

3.3.2. Nutrient composition concentration prediction 356 
In the second approach, model is developed based on different feature sets of rice 357 

dataset as shown in Table 6 based on solely the spatiotemporal factors.  358 

Table 6.  Nutrient composition concentration prediction setting  359 

Spatiotemporal Factors Nutrients 

Feature 
Set 

Sea-
son 

Day 
Plo

t 
Subplot 

N 
(%
) 

P 
(%) 

K 
(%
) 

Mg (%) Ca (%) 

FS6 (All) Y Y Y Y N N N N N 

  360 
Referring to Table 6, the nutrient composition concentration prediction setting has 361 

been constructed by incorporating features from both spatiotemporal factors and nutrient 362 
features. 363 
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 These settings will be utilized for nutrient composition concentration prediction using 364 
six methods: EN, PN, SW, PR, LS, and LR. The parameter specifications for these models 365 
in nutrient composition concentration prediction are consistent with those applied for sin- 366 
gle nutrient concentration prediction (refer to Table 5).  367 

The steps outlined in Algorithm 2 illustrate the processes for nutrient composition con- 368 
centration prediction, developed based on the similar parameter specifications listed in 369 
Table 4 for single nutrient concentration prediction. 370 

 371 

Algorithm 2: Nutrient composition concentration prediction  

Input: Nutrient concentration dataset 
Process: 

1. Apply the Min-Max normalization method (Eq. 1) 
2. Set training ratio= 80%  
3. Load FS6 from Table 6 
4. ModelENx=Develop Elastic Net regression using FSx with parameters in Table 

5  
5. ModelSWx=Develop Polynomial regression using FSx with parameters in Ta-

ble 5 
6. ModelSWx=Develop Stepwise regression using FSx with parameters in Table 5 
7. ModelRRx=Develop Ridge regression using FSx with parameters in Table 5  
8. ModelLSx=Develop Lasso regression using FSx with parameters in Table 5 
9. ModelLRx=Develop Linear regression using FSx with parameters in Table 5 

 
Output: ModelENAll, ModelPNAll, ModelSWAll, ModelRRAll, ModelLSAll, ModelLRAll 

 372 
Algorithm 2, designed for nutrient composition concentration prediction, starts by nor- 373 

malizing the input nutrient concentration dataset using the Min-Max method and setting 374 
an 80% training ratio. It then exclusively utilizes features from FS6 in Table 6 to develop 375 
six regression models—Elastic Net, Polynomial, Stepwise, Ridge, Lasso, and Linear—each 376 
configured with parameters specified in Table 5. The resulting output comprises compre- 377 
hensive models denoted as ModelENAll, ModelPNAll, ModelSWAll, ModelRRAll, Mod- 378 
elLSAll, and ModelLRAll. This algorithm provides an efficient means of predicting nutri- 379 
ent composition concentrations based on the designated features and regression tech- 380 
niques. 381 

4. Experimental Setting  382 
This section presents the experimental results for Elastic Net Regression, Polynomial 383 

Regression, Stepwise Regression, Ridge Regression, Lasso Regression, and Linear Regres- 384 
sion to predict rice nutrient levels using FS 1 until 6. Table 4 and Figure 4 display the 385 
RMSE score of all six models where polynomial regression has the best performance in 386 
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four models to predict Ca%, K%, P% and N% with an average of 0.1502 RMSE, except 387 
Model 2 (prediction of Mg%), with very little standard deviation (0.1980).  388 
 389 
5.1 Performance of single nutrient concentration approach 390 
 391 

We present Table 7 until Table 11 to explain the performance of the single nutrient 392 
concentration approach by using R2, MAE and RMSE. A larger R2 value is generally con- 393 
sidered better. An R2 value closer to 1 suggests that a larger proportion of the variation in 394 
the dependent variable is accounted for by the independent variables in the model, indi- 395 
cating a better fit. However, it's important to note that a high R2 does not necessarily imply 396 
causation or the absence of model errors, and other factors should be considered in eval- 397 
uating the overall validity of the regression model. MAE represents the average absolute 398 
difference between the predicted values and the actual values. The smaller the MAE, the 399 
better the model performance. MAE is less sensitive to outliers compared to RMSE. Lower 400 
values of MAE and RMSE indicate better model performance. 401 

Table 7. Performance of Ca prediction using approach 1 402 

Algorithm  R2 score MAE RMSE 
ModelENCa 0.0 0.0297 0.0362 
ModelPNCa 0.5017 0.0204 0.0255 
ModelESWCa 0.0257 0.0292 0.0357 
ModelRRCa 0.0869 0.0281 0.0345 
ModelLSCa 0.0 0.0361 0.0297 
ModelLRCa 0.0931 0.0279 0.0345 
AVG 0.1179 0.0286 0.0327 
STDEV 0.1942 0.0050 0.0042 

 403 
Based on Table 7, the best model for Ca prediction is ModelPNCa with consistent per- 404 

formance in all three evaluation metrics, and that the PN algorithm has far better perfor- 405 
mance compared to the other algorithms which indicate the superior performance of this 406 
algorithm to capture the nutrients values variability. Two algorithms, EN and LS could 407 
not capture the variability in the dataset for predicting Ca, based on the zero R2 value.  408 

Table 8. Performance of Mg prediction using approach 1 409 

Algorithm  R2 score MAE RMSE 
ModelENMg 0.0 0.0154 0.0193 
ModelPNMg -3.1900 0.0301 0.0395 
ModelESWMg 0.0879 0.0151 0.0184 
ModelRRMg 0.1734 0.0142 0.0176 
ModelLSMg 0.0 0.0154 0.01934 
ModelLRMg 0.1742 0.0141 0.0175 
AVG -0.451 0.0174 0.0219 
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STDEV 1.3401 0.0063 0.0086 

 410 
Contrary to its performance in Table 7, the PN algorithm shows a bad performance 411 

for Magnesium. The best for Magnesium prediction is the LR algorithm. The negative R2  412 
value of PN implies that the model is so inadequate that it is worse than a naive model 413 
that merely predicts the mean of the dependent variable for all observations. This indi- 414 
cates that PN could have been overfit and too complex for the given data, and it fits noise 415 
rather than the underlying patterns.  416 

The performance of LR and RR are very similar which reflect their high similarity. 417 
Both algorithms assume a linear relationship between the independent variables and the 418 
dependent variable. The models are expressed as linear combinations of the input fea- 419 
tures. Both methods aim to minimize a certain objective function to find the optimal set of 420 
coefficients that best fits the data. In LR, this is typically done by minimizing the sum of 421 
squared differences between the predicted and actual values. In RR, the objective function 422 
includes an additional regularization term.  423 

The primary difference between RR and LR lies in how they handle multicollinearity 424 
and overfitting. RR uses regularization term penalizes large coefficients, helping to miti- 425 
gate the effects of multicollinearity and prevent overfitting. The regularization term is 426 
controlled by a hyperparameter (usually denoted as "alpha" or "lambda"). LR does not 427 
include a regularization term in the objective function. It is more prone to overfitting when 428 
dealing with highly correlated features (multicollinearity) or when the number of features 429 
is close to or exceeds the number of observations. 430 

Table 9. Performance of K prediction using approach 1 431 

Algorithm  R2 score MAE RMSE 
ModelENK 0.1967 0.3101 0.3991 
ModelPNK 0.8496 0.1275 0.1726 
ModelESWK 0.0926 0.3464 0.4241 
ModelRRK 0.5873 0.2266 0.2860 
ModelLSK 0.1391 0.3235 0.4131 
ModelLRK 0.5895 0.2261 0.2852 
AVG 0.4091 0.2600 0.3300 
STDEV 0.3087 0.0823 0.0993 

 432 
PN maintains the best algorithm for K prediction, and again, the performance of RR 433 

and LR are very similar for predicting K. As explained, RR is a modified version of LR 434 
that adds a regularization term to address certain issues, particularly multicollinearity. If 435 
the correlation between independent variables is high, RR can provide more stable and 436 
reliable coefficient estimates compared to LR. Since the performance of RR is better in 437 
predicting K, this indicates that the dataset for the training possesses multicollinearity.  438 

 439 
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Table 10. Performance of P prediction using approach 1 440 

Algorithm  R2 score MAE RMSE 
ModelENP 0.0 0.0529 0.0651 
ModelPNP 0.8308 0.0212 0.0267 
ModelESWP 0.4180 0.0377 0.0497 
ModelRRP 0.6193 0.0311 0.0402 
ModelLSP 0.0 0.0529 0.0651 
ModelLRP 0.6202 0.0312 0.040 
AVG 0.4147 0.0378 0.0478 
STDEV 0.3468 0.0128 0.0153 

 441 
Likewise, the best technique for P prediction is PN, and it is observed that the per- 442 

formance of PN in this nutrient prediction is the best compared to other nutrients. All the 443 
other algorithms also had better scores, which indicates that the values in the features 444 
used for training the P prediction are more homogeneous compared to the earlier models.  445 

Table 11. Performance of N prediction using approach 1 446 

Algorithm  R2 score MAE RMSE 
ModelENN 0.3006 0.4524 0.6326 
ModelPNN 0.5862 0.3808 0.4866 
ModelESWN 0.4240 0.4388 0.5741 
ModelRRN 0.5508 0.3657 0.5070 
ModelLSN 0.1994 0.4948 0.6768 
ModelLRN 0.5532 0.3661 0.5056 
AVG 0.4357 0.4164 0.5638 
STDEV 0.1574 0.0535 0.0777 

 447 
Similarly, PN achieved the best performance in comparison to the other models. All 448 

models had lower performance in prediction N compared to predicting P.  It is also ob- 449 
served that the performance of SW in predicting N are similar in predicting P, when com- 450 
pared against RR and LR. Although LR and RR show stability and generalizability across 451 
different datasets, SW has better performance in this nutrient compared to Ca and Mg 452 
because of its simplicity drawback and tendency of assumption that the relationship be- 453 
tween variables is best represented by a combination of selected features. 454 

 Figures 4 to 8 depict the Streamlit outputs for the single-nutrient prediction of Ca, 455 
Mg, K, P, and N, respectively, based on the best-performing model, PN.  The predicted 456 
values for each nutrient are computed utilizing the PN model, taking into account spatial- 457 
temporal parameters and other relevant nutrient inputs. The diagrams illustrate that the 458 
predicted nutrient concentrations are used to recommend the amount of nutrient recov- 459 
ery, by comparing against the benchmark nutrient values. 460 

 461 
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 462 
 463 
 464 

 465 
 466 

Figure 4. Rice Ca Nutrient prediction based on other nutrients of N, P, K, and Mg. 467 
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 468 

 469 

Figure 5. Rice Mg Nutrient prediction based on other nutrients of N, P, K, and Ca. 470 

 471 
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 473 

 474 
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Figure 6. Rice K Nutrient prediction based on other nutrients of N, P, Mg, and Ca. 475 

 476 
 477 

 478 

Figure 7. Rice P Nutrient prediction based on other nutrients of N, K, Mg, and Ca. 479 

 480 
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 481 

Figure 8. Rice N Nutrient prediction based on other nutrients of P, K, Mg, and Ca. 482 

Referring to the aforementioned Streamlit interface for individual nutrients, includ- 483 
ing Ca, Mg, K, P, and N, the application provides essential values for "predicted," "Best 484 
practice (Range)," "Best practice (Average)," and "Intervention." The predicted values for 485 
each nutrient are computed utilizing the PN model, taking into account spatial-temporal 486 
parameters and other relevant nutrient inputs. 487 

The "Best practice Range" and "Best practice Average" values specify the optimal 488 
range and average of nutrient concentrations, offering valuable benchmarks for nutrient 489 
levels. To further enhance precision in nutrient management, the intervention value is 490 
calculated by estimating the difference between the best practice average and the pre- 491 
dicted value derived from the PN model. This intervention value serves as a critical metric 492 
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for nutrient recovery interventions, providing insights into the precise amount of nutri- 493 
ents required for optimal crop growth. 494 

Therefore, in the context of precision agriculture and environmental sustainability 495 
the crafted Streamlit tool for predicting individual nutrients, utilizing prior knowledge of 496 
other nutrient concentrations, offers advantages to farmers and scientists seeking specific 497 
insights into individual nutrient levels. This method proves especially advantageous 498 
when a sensor dedicated to a specific nutrient experiences a malfunction. As a result, our 499 
digital twin system promptly alerts users about sensor malfunctions and supplies predic- 500 
tive values while waiting for sensor replacement. This immediate functionality guarantees 501 
continuous monitoring and safeguards data accuracy, essential for the effectiveness of 502 
precision agriculture practices. 503 

 504 
5.2 Performance of nutrient composition concentration approach 505 

Table 12. Performance of approach 2 to predict all nutrients 506 

Algorithm  R2 score MAE RMSE 
ModelENAll 0.0771 0.1814 0.2376 
ModelPNAll 0.5237 0.1211 0.1502 
ModelESWAll 0.0450 0.2054 0.2572 
ModelRRAll 0.3066 0.1477 0.1949 
ModelLSAll 0.0377 0.1918 0.2494 
ModelLRAll 0.3066 0.1477 0.1949 
AVG 0.2161 0.1659 0.2140 
STDEV 0.1957 0.0321 0.0412 

 507 
ModelPNAll appears to be the best-performing model based on R2, MAE, and RMSE. 508 

It explains a significant proportion of variability and provides accurate predictions. Mod- 509 
elRRAll and ModelLRAll have the same R2, MAE, and RMSE values, indicating similar 510 
performance. They both exhibit a moderate level of explained variability and reasonable 511 
predictive accuracy. ModelENAll, ModelESWAll, and ModelLSAll have lower R2 values, 512 
suggesting limited ability to explain variability. They also have higher MAE and RMSE 513 
values, indicating higher prediction errors compared to the better-performing models. 514 
The choice of features included in the models can significantly impact performance. Mod- 515 
els that incorporate irrelevant or highly correlated features may exhibit lower accuracy. 516 
The results also indicate that the features incorporated have a complex relationship with 517 
each other and the target variable.  518 

The experiment results led us to the conclusion that regression models have good 519 
performance in informing nutrient co-existence, concentration, and composition. This in- 520 
sight allows intervention to increase nutrient recovery to optimize the crop’s yield. PN 521 
generally outperformed the other tested algorithms in terms of producing higher R2 val- 522 
ues, and lower MAE and RMSE values for almost all models. This is due to the ability of 523 
the polynomial function to capture nonlinear relationships among variables. However, it 524 
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should be noted that for Mg, the polynomial regression algorithm produced a negative R2 525 
value, indicating that it explained less variance in the dependent variable than a horizon- 526 
tal line. Therefore, the polynomial function was not well-suited for predicting nutrient 527 
content in Mg. In contrast, LR produced better performance compared to the other meth- 528 
ods for Mg, signifying that this model was better approximated by a straight-line relation- 529 
ship. This finding highlights the significance of considering the specific nature of the data 530 
and the relationships between variables when selecting the most appropriate regression 531 
model for nutrient prediction.  532 

Figure 9 illustrates the Streamlit outputs for the prediction of nutrient composition 533 
concentrations, based on the best-performing model, PN. 534 

 535 

Figure 9. Rice nutrients composition concentrations prediction based on spatial-temporal parameters. 536 

Referring to the Figure 9 interface for nutrient composition concentrations, similar to 537 
the single-nutrient prediction (see Figures 4-8), the application furnishes crucial values for 538 
"predicted," "Best practice (Range)," "Best practice (Average)," and "Intervention." The pre- 539 
dicted values for each nutrient are calculated employing the PN model, considering spa- 540 
tial-temporal parameters and other pertinent nutrient inputs. 541 
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The "Best practice Range" and "Best practice Average" values delineate the optimum 542 
range and average of nutrient concentrations, providing valuable benchmarks for nutrient 543 
levels. Furthermore, this information serves as a comprehensive intervention preparation 544 
tool by informing farmers or scientists about the anticipated nutrient concentration. The 545 
projected value, in turn, facilitates the digital twin system in suggesting the appropriate 546 
amount of nutrient recovery, aligning with established best practices. 547 

So, the provided streamlit for rice nutrients composition concentrations prediction 548 
serves as a powerful intervention preparation tool. By informing farmers and scientists 549 
about the anticipated nutrient concentrations, this approach enables the digital twin sys- 550 
tem to suggest the precise amount of nutrient recovery aligned with best practices. This 551 
proactive and informed approach not only optimizes crop yields but also minimizes the 552 
environmental footprint associated with excessive fertilizer application.  553 
 554 
5.3 RMSE analysis and approach performance highlights 555 
 556 
 To identify the best model, we provide an analysis of RMSE across both approaches. 557 

Table 13. RMSE with Average and STDEV. 558 

Method Ca Mg K P N All AVG STDEV 

EN 
0.03
62 

0.0193 0.3991 0.0651 0.6326 0.2376 0.2305 0.2738 

PN 
0.02
55 

0.0395 0.1726 0.0267 0.4866 0.1502 0.1502 0.1979 

SW 
0.03
57 

0.0184 0.4241 0.0497 0.5741 0.2572 0.2204 0.2601 

RR 
0.03
45 

0.0176 0.2860 0.0402 0.5070 0.1949 0.1771 0.2152 

LS 
0.02
97 

0.0193 0.4131 0.0651 0.6768 0.2494 0.2408 0.2934 

LR 
0.03
45 

0.0175 0.2852 0.0400 0.5056 0.1949 0.1766 0.2146 

AVG 
0.03
27 

0.0219 0.3300 0.0478 0.5638 0.2140   

STDEV 
0.00
42 

0.0086 0.0993 0.0153 0.0777 0.0412   
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 559 

Figure 10. RMSE performance for each nutrient prediction models 560 

 561 

Figure 11. Stdev performance for each nutrient prediction models 562 

The best performance of algorithm for FS 2 is Linear Regression. In terms of the per- 563 
formance to predict each nutrient, FS 2 is the easiest to be predicted, based on the average 564 
(AVG) of RMSE for this model, at 0.0219 (Figure 10). On the contrary, according to Figure 565 
11, the percentage of N is the most difficult and inconsistent performance across the re- 566 
gression models, with an average of RMSE at 0.5638. 567 
 568 
5.1. Statistical Analysis  569 

 570 
For this investigation, this study chose to use parametric statistical analysis because 571 

the assumptions of normality and equal variance are likely to be met given the data and 572 
the fact that we are comparing means within each regression model. Additionally, para- 573 
metric tests are generally more powerful than non-parametric tests, meaning they have a 574 
greater ability to detect differences between groups when they exist.  575 
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The normality assumption was evaluated through the Shapiro-Wilk test, which is a 576 
commonly used test for normality. This test checks whether the data follows a normal 577 
distribution. The equal variance assumption was examined using Levene's test. The 578 
Shapiro-Wilk test for normality was applied to the residuals of the regression models, and 579 
the results indicated that the residuals were normally distributed (p-value > 0.05). Addi- 580 
tionally, Levene's test was employed to assess the equality of variances among the groups, 581 
and the results did not suggest any significant deviation from homogeneity of variances 582 
(p-value > 0.05). 583 

The application of these tests supports the validity of the ANOVA results presented 584 
in Table 14. These tests, along with the reported F-statistic and p-value, confirm that the 585 
assumptions necessary for ANOVA were satisfied. Therefore, we can observe differences 586 
among the six designed regression models are statistically significant and not a result of 587 
violations of normality or equal variance assumptions. Table 14 presents the ANOVA test 588 
for six designed regression models using different regression methods of "Elastic Net Re- 589 
gression," "Polynomial regression," "Stepwise regression," "Ridge regression," "Lasso re- 590 
gression," and "Linear Regression." Table 14. ANOVA test for performance analysis. 591 

 592 
Anova: Single Fac-

tor 
    

SUMMARY     
Groups Count Sum Average Variance 

FS1 6 0.1961 0.0327 1.77137E-05 
FS2 6 0.13164 0.0219 7.46328E-05 
FS3 6 1.9801 0.3300 0.0098 
FS4 6 0.2868 0.0478 0.0002 
FS 5 6 3.3827 0.5638 0.0060 
FS 6 6 1.2842 0.2140 0.0017 

ANOVA  593 
Source of 
Variation SS df MS F P-value 
Between 
Groups 1.394 5 0.2787 93.3932 2.3253E-17 
Within 
Groups 0.0895 30 0.0030   

Total 1.4833 35    
Based on the ANOVA test with a p-value of 2.3253E-17 and an alpha level of 0.05, we 594 

can conclude that there is a statistically significant difference among the six designed re- 595 
gression models. Therefore, we reject the null hypothesis that there is no significant dif- 596 
ference and accept the alternative hypothesis that at least one of the regression models has 597 
a different performance value than the others. 598 

Post-hoc analysis was conducted using the Tukey Honestly Significant Difference 599 
(Tukey HSD) test to determine specific pairwise differences between the regression 600 
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models. This test accounts for multiple comparisons and provides valuable insights into 601 
which models significantly differ in performance. 602 

Based on the results of the ANOVA test, Model 5 demonstrated better performance 603 
compared to other designed feature set models (Refer to Table 4). As a result, to gain in- 604 
sight into the impact of each nutrient on N% nutrient concentration, we utilized SHAP 605 
visualization. Figure 12 illustrates the effect of each nutrient on N% nutrient concentra- 606 
tion. 607 

 608 
Figure 12. Features importance for N% nutrient concentration prediction. 609 

Referring to Figure 12, the attributes K (Potassium), Mg (Magnesium), Day, Season, 610 
Ca (Calcium), Plot, SubPlot, and P (Phosphorus) appear to have varying levels of impact 611 
on N% nutrient concentration. Potassium (K) has the highest impact, followed by Mag- 612 
nesium (Mg), indicating that their concentrations in the soil or nutrient supply signifi- 613 
cantly influence N%. The day and season when measurements are taken also play essen- 614 
tial roles, while attributes like Calcium (Ca), Plot, SubPlot, and Phosphorus (P) have var- 615 
ying degrees of influence, with P showing the lowest impact. Therefore, this visualiza- 616 
tion can be valuable for optimizing agricultural and environmental practices to manage 617 
nutrient levels effectively, considering specific local conditions and domain knowledge. 618 

6. Conclusion and Future Work 619 
Crop digital twin offers a revolution to monitor and intervene crop health manage- 620 

ment. The physical twin surveil the condition of the crop and this information can be an- 621 
alysed by the digital twin to provide suggestions for countermeasures such as adding nu- 622 
trient concentration level.   623 

Predicting nutrient levels is crucial for optimizing fertilizer usage and ensuring a bal- 624 
anced nutrient supply, leading to higher-quality and increased yields, and reduced envi- 625 
ronmental impact. The importance of accurately anticipating essential nutrients, such as 626 
Nitrogen (N), Phosphorus (P), Potassium (K), Calcium (Ca), and Magnesium (Mg), in rice 627 
cannot be overstated, as it directly impacts crop yield, quality, and environmental sustain- 628 
ability. The challenges in this field stem from the complexities introduced by the 629 
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variability in nutrient content, the diversity of analytical approaches, data availability con- 630 
straints, genetic diversity, and the associated costs and time investments.  631 

To address these challenges, this research has present two approaches of namely,(i) 632 
single nutrient concentration prediction and (ii) nutrient composition concentration pre- 633 
diction to explored a range of regression algorithms, including Elastic Net Regression, 634 
Polynomial Regression, Stepwise Regression, Ridge Regression, Lasso Regression, and 635 
Linear Regression, to predict rice nutrient content. These algorithms have proven to be 636 
invaluable tools for capturing both linear and nonlinear correlations among various nu- 637 
trients, offering a structured, data-driven approach to understanding and managing the 638 
complexities of rice nutrition.  639 

The findings reveal that the Polynomial Regression algorithm consistently outper- 640 
forms the other models for predicting several nutrients, particularly Calcium (Ca%), Po- 641 
tassium (K%), Phosphorus (P%), and Nitrogen (N%). This algorithm's ability to handle 642 
both small and large datasets, along with its proficiency in capturing nonlinear relation- 643 
ships, makes it a favorable choice for optimizing nutrient management practices. It is im- 644 
portant to note, however, that Model 2, focused on predicting Magnesium (Mg%), demon- 645 
strated a unique characteristic, as Linear Regression outperformed Polynomial Regres- 646 
sion.  647 

The dashboard in the digital twin visualizes the current nutrient content of the crop 648 
as a surveillance mechanism while the predicted nutrient concentration is a valuable in- 649 
sight for precise fertilisation to be added as nutrient recovery. This may mitigate fertilisa- 650 
tion overload and waste pollution. Albeit manual intervention is currently addressed in 651 
this research, the regression method’s implementation supports low-resourced crop digi- 652 
tal twin so that fast computation could be performed.  653 

In summary, these regression models provide essential insights into rice nutrient pre- 654 
diction, offering a pathway to optimize fertilizer use, ensure balanced nutrient supply, 655 
enhance rice quality, and reduce environmental impact. They contribute to the develop- 656 
ment of standardized methodologies for nutrient prediction and promote more sustaina- 657 
ble and environmentally friendly rice cultivation practices. The choice of the most suitable 658 
regression model depends on the specific characteristics of the dataset and the nature of 659 
the nutrient interactions. Therefore, the selection of the appropriate algorithm is pivotal 660 
to achieving the highest predictive accuracy for rice nutrient content. 661 

Acknowledgments 662 

This paper reports some progress in our project entitled Digital Twin Proto- 663 
type for Integrated Multi-Enterprise Agricultural Monitoring Mechanism, funded 664 
by the Universiti Putra Malaysia, Malaysia. 665 

                         References: 666 
1. C. Verdouw, B. Tekinerdogan, A. Beulens, and S. Wolfert, “Digital twins in smart farm- 667 
ing,” Agric. Syst., vol. 189, no. January, p. 103046, 2021, doi:  668 
  10.1016/j.agsy.2020.103046. 669 
2. Purcell, W.; Neubauer, T.; Mallinger, K. Digital Twins in Agriculture: Challenges and 670 
Opportunities for Environmental Sustainability. Current Opinion in Environmental Sustain- 671 
ability 2023, 61, 101252, doi:10.1016/j.cosust.2022.101252. 672 
3. Javaid, M.; Haleem, A.; Suman, R. Digital Twin Applications toward Industry 4.0: A 673 
Review. Cognitive Robotics 2023, 3, 71–92, doi:10.1016/j.cogr.2023.04.003. 674 



Appl. Sci. 2023, 13, FOR PEER REVIEW  29 
 

4. Gallego-García, S.; Gallego-García, D.; García-García, M. Sustainability in the Agri-Food 675 
Supply Chain: A Combined Digital Twin and Simulation Approach for Farmers. Procedia 676 
Computer Science 2023, 217, 1280–1295, doi:10.1016/j.procs.2022.12.326. 677 
5. Botín-Sanabria, D.M.; Mihaita, A.-S.; Peimbert-García, R.E.; Ramírez-Moreno, M.A.; 678 
Ramírez-Mendoza, R.A.; Lozoya-Santos, J.D.J. Digital Twin Technology Challenges and 679 
Applications: A Comprehensive Review. Remote Sensing 2022, 14, 1335, 680 
doi:10.3390/rs14061335. 681 
6. S. De Alwis, Z. Hou, Y. Zhang, M. H. Na, B. Ofoghi, and A. Sajjanhar, “A survey on 682 
smart farming data, applications and techniques,” Comput. Ind., vol. 138, p. 103624, 2022,  683 
doi: 10.1016/j.compind.2022.103624. 684 
7. C. Prakash, L. P. Singh, A. Gupta, and S. K. Lohan, “Advancements in smart farming: A 685 
comprehensive review of IoT, wireless communication, sensors, and hardware for agricul- 686 
tural automation,” Sensors Actuators A Phys., vol. 362, no. August, p. 114605, 2023, doi: 687 
10.1016/j.sna.2023.114605. 688 
8. Cho, J.; Lee, J. Multiple Linear Regression Models for Predicting Nonpoint-Source Pol- 689 
lutant Discharge from a Highland Agricultural Region. Water 2018, 10, 1156, 690 
doi:10.3390/w10091156. 691 
9.Ali, Y.; Qin, A.; Aatif, H.M.; Ijaz, M.; Khan, A.A.; Ahmad, S.; Shahzad, U.; Yasin, M.; 692 
Rahman, S.U. A Stepwise Multiple Regression Model to Predict Fusarium Wilt in Lentil. 693 
Meteorological Applications 2022, 29, e2088, doi:10.1002/met.2088. 694 
10.Ansarifar, J.; Wang, L.; Archontoulis, S.V. An Interaction Regression Model for Crop 695 
Yield Prediction. Sci Rep 2021, 11, 17754, doi:10.1038/s41598-021-97221-7. 696 
11.Panigrahi, B.; Kathala, K.C.R.; Sujatha, M. A Machine Learning-Based Comparative Ap- 697 
proach to Predict the Crop Yield Using Supervised Learning With Regression Models. Pro- 698 
cedia Computer Science 2023, 218, 2684–2693, doi:10.1016/j.procs.2023.01.241. 699 
12.Kuradusenge, M.; Hitimana, E.; Hanyurwimfura, D.; Rukundo, P.; Mtonga, K.; 700 
Mukasine, A.; Uwitonze, C.; Ngabonziza, J.; Uwamahoro, A. Crop Yield Prediction Using 701 
Machine Learning Models: Case of Irish Potato and Maize. Agriculture 2023, 13, 225, 702 
doi:10.3390/agriculture13010225. 703 
13.Abbas, F.; Afzaal, H.; Farooque, A.A.; Tang, S. Crop Yield Prediction through Proximal 704 
Sensing and Machine Learning Algorithms. Agronomy 2020, 10, 1046, doi:10.3390/agron- 705 
omy10071046. 706 
14. Zaukuu, J.-L.Z.; Benes, E.; Bázár, G.; Kovács, Z.; Fodor, M. Agricultural Potentials of 707 
Molecular Spectroscopy and Advances for Food Authentication: An Overview. Processes 708 
2022, 10, 214, doi:10.3390/pr10020214. 709 
15.Ali, Y.; Raza, A.; Iqbal, S.; Khan, A.A.; Aatif, H.M.; Hassan, Z.; Hanif, Ch.M.S.; Ali, H.M.; 710 
Mosa, W.F.A.; Mubeen, I.; et al. Stepwise Regression Models-Based Prediction for Leaf 711 
Rust Severity and Yield Loss in Wheat. Sustainability 2022, 14, 13893, 712 
doi:10.3390/su142113893. 713 
16. Tangendjaja, B. Nutrient Content Of Soybean Meal From Different Origins based on 714 
Near Infrared Reflectance Spectroscopy. Indones. J. Agric. Sci. 2020, 21, 39, 715 
doi:10.21082/ijas.v21n1.2020.p39-47. 716 



Appl. Sci. 2023, 13, FOR PEER REVIEW  30 
 

17. Cule, E.; De Iorio, M. Ridge Regression in Prediction Problems: Automatic Choice of 717 
the Ridge Parameter. Genetic Epidemiology 2013, 37, 704–714, doi:10.1002/gepi.21750. 718 
18.Wibowo, A.; Yasmina, I.; Wibowo, A. Food Price Prediction Using Time Series Linear 719 
Ridge Regression with The Best Damping Factor. Adv. sci. technol. eng. syst. j. 2021, 6, 694– 720 
698, doi:10.25046/aj060280. 721 
19. Andriopoulos, V.; Kornaros, M. LASSO Regression with Multiple Imputations for the  722 
Selection of Key Variables Affecting the Fatty Acid Profile of Nannochloropsis Oculata. 723 
Marine Drugs 2023, 21, 483, doi:10.3390/md21090483. 724 
20.Singh, K.N.; Singh, K.K.; Kumar, S.; Panwar, S.; Gurung, B. Forecasting Crop Yield 725 
through Weather Indices through LASSO. Indian J Agri Sci 2019, 89, 726 
doi:10.56093/ijas.v89i3.87602. 727 
21.Meng, L.; Zheng, T.; Wang, Y.; Li, Z.; Xiao, Q.; He, J.; Tan, J. Development of a Prediction 728 
Model Based on LASSO Regression to Evaluate the Risk of Non-Sentinel Lymph Node 729 
Metastasis in Chinese Breast Cancer Patients with 1–2 Positive Sentinel Lymph Nodes. Sci 730 
Rep 2021, 11, 19972, doi:10.1038/s41598-021-99522-3. 731 
22. Hayat, A.; Amin, M.; Afzal, S.; Muse, A.H.; Egeh, O.M.; Hayat, H.S. Application of  732 
Regression Analysis to Identify the Soil and Other Factors Affecting the Wheat Yield. Ad- 733 
vances in Materials Science and Engineering 2022, 2022, 1–10, oi:10.1155/2022/7793187. 734 
23. De Borja Reis, A.F.; Moro Rosso, L.; Purcell, L.C.; Naeve, S.; Casteel, S.N.; Kovács, P.; 735 
Archontoulis, S.; Davidson, D.; Ciampitti, I.A. Environmental Factors Associated With Ni- 736 
trogen Fixation Prediction in Soybean. Front. Plant Sci. 2021, 12, 675410, 737 
doi:10.3389/fpls.2021.675410. 738 
24. Lee, Y.; Choi, Y.; Ahn, D.; Ahn, J. Prediction Models Based on Regression and Artificial 739 
Neural Network for Moduli of Layers Constituted by Open-Graded Aggregates. Materials 740 
2021, 14, 1199, doi:10.3390/ma14051199. 741 
25. Lusiana, E.D.; Musa, M.; Ramadhan, S. The Estimation of Nutrient Limit for Predicting 742 
Eutrophication Using Quantile Regression Model (Case Study: Aquaculture Pond at IBAT 743 
Punten, Batu). IOP Conf. Ser.: Earth Environ. Sci. 2019, 239, 012002, doi:10.1088/1755- 744 
1315/239/1/012002. 745 
26. Williamson, J. Improving Risk Prediction for Depression via Elastic Net Regression Re- 746 
sults from Korea National Health Insurance Services Data. 747 
27. Sloboda, B.W.; Pearson, D.; Etherton, M. An Application of the LASSO and Elastic Net 748 
Regression to Assess Poverty and Economic Freedom on ECOWAS Countries. MBE 2023, 749 
20, 12154–12168, doi:10.3934/mbe.2023541. 750 
28. Yanova, M.A.; Oleynikova, E.N.; Khizhnyak, S.V. Polynomial Regression as a Tool for 751 
Prediction Quality of Bread Baked of Wheat Flour Mixed with Flour of Cereal Extrudates. 752 
IOP Conf. Ser.: Earth Environ. Sci. 2019, 315, 032026, doi:10.1088/1755-315/315/3/032026. 753 
29. Shah, B.K.; Chettri, S.T.; Diyali, R.S.; H K, S.; Maharjan, S. Rain Prediction Using Poly- 754 
nomial Regression for the Field of Agriculture Prediction for Karnatakka. SSRN Journal 755 
2020, doi:10.2139/ssrn.3635278. 756 



Appl. Sci. 2023, 13, FOR PEER REVIEW  31 
 

30. Jamshidi, S.; Yadollahi, A.; Ahmadi, H.; Arab, M.M.; Eftekhari, M. Predicting In Vitro 757 
Culture Medium Macro-Nutrients Composition for Pear Rootstocks Using Regression 758 
Analysis and Neural Network Models. Front. Plant Sci. 2016, 7, doi:10.3389/fpls.2016.00274. 759 
31. Shastry, A.; Sanjay, H.A.; Bhanusree, E. Prediction of Crop Yield Using Regression 760 
Techniques. Int. J. SoftComput. 2017. 761 
32. Ahmed, A.A.M.; Sharma, E.; Jui, S.J.J.; Deo, R.C.; Nguyen-Huy, T.; Ali, M. Kernel Ridge 762 
Regression Hybrid Method for Wheat Yield Prediction with Satellite-Derived Predictors. 763 
Remote Sensing 2022, 14, 1136, doi:10.3390/rs14051136. 764 
33. De Vlaming, R.; Groenen, P.J.F. The Current and Future Use of Ridge Regression for 765 
Prediction in Quantitative Genetics. BioMed Research International 2015, 2015, 1–18, 766 
doi:10.1155/2015/143712. 767 
34. Osco, L.P.; Ramos, A.P.M.; Faita Pinheiro, M.M.; Moriya, É.A.S.; Imai, N.N.; Estrabis, 768 
N.; Ianczyk, F.; Araújo, F.F.D.; Liesenberg, V.; Jorge, L.A.D.C.; et al. A Machine Learning 769 
Framework to Predict Nutrient Content in Valencia-Orange Leaf Hyperspectral Measure- 770 
ments. Remote Sensing 2020, 12, 906, doi:10.3390/rs12060906. 771 
35. Kang, Y.; Nam, J.; Kim, Y.; Lee, S.; Seong, D.; Jang, S.; Ryu, C. Assessment of Regression 772 
Models for Predicting Rice Yield and Protein Content Using Unmanned Aerial Vehicle- 773 
Based Multispectral Imagery. Remote Sensing 2021, 13, 1508, doi:10.3390/rs13081508. 774 

 775 


