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 Big number operation has always been a bottleneck to computer system as it 

imposes high demand on computing power. With a limited power available, 

operations such as exponentiation and multiplication involving large integer 

belonging to encryption process requires grave scrutiny. One way to address 

this issue is by replacing an original complex computation into a sequence of 

small computations that in the end produces the same results. This paper 

takes an evolutionary approach to survey numerous articles that have 

contributed to the advancement of integer representation. Numerous 

representations were proposed, those that come into play concentrated on 

reducing non-zero digits and limiting non-zero spacing other than allowing 

subtraction operation. A comparison was made to distinguish the properties 

of each method from the others. This detailed outlook can be a guide for 

identifying the correct representation to be chosen for implementation within 

specific application. 
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1. INTRODUCTION 

Computer was designed to work with only numbers. Characters and symbols must all be converted 

to numbers in the form of zeros and ones. These are the only form that are understood by computer. Any type 

of operations from whatever applications deals only with this form of numbers. Speaking of using computer 

in our daily life, one of the most important measurements that comes to our head would be efficiency. 

Efficiency in itself is not a real parameter as it has no specific unit for it. But it can be broken into specific 

parameters such as time taken for executing some tasks, and resources needed to accomplish certain tasks. 

Time itself can be further subcategorized into speed and delay [1]. Speed and delay are just like an antonym 

to each other. One measures how fast can you make it to a destination and the other how late will you be 

there. Resources are much bigger a measurement, it can be divided into space or memory resources, capacity 

or CPU resources. Memory is a place where computer store data required for processing while CPU is the 

strength of computing processor to execute given instructions [2]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Integer representation is indeed important in various aspects of computing and mathematics. 

Integers are whole numbers that can be positive, negative, or zero, and they are commonly used to represent 

quantities, perform calculations, and store data in computer systems. Integers are used to represent and store 

numerical data in computer memory. They are typically stored using a fixed amount of memory, allowing for 

efficient storage and manipulation of large sets of integers. Integers are essential for performing arithmetic 

operations like addition, subtraction, multiplication, and division [3]. These operations are fundamental in 

computer programs and mathematical computations. In low-level programming and computer architecture, 

integers are represented as sequences of bits. This representation allows for bitwise operations like shifting, 

masking, and logical operations [4], which are used in various applications such as data encoding, 

encryption, and optimization algorithms. Integers are often the subject of study in algorithm design and 

analysis. Many algorithms and data structures are designed specifically to efficiently handle integer inputs or 

produce integer outputs. Overall, integer representation is fundamental in computer science and mathematics, 

serving as a cornerstone for data representation, numerical computations, and algorithmic problem-solving 

[4]. Integer representation has been exploited before for many different applications of computing such as 

encryption [5] and compression [6]. It has been successfully implemented and beginning to offer some 

fruitful results. For encryption, speed would be the main goal while for compression, a shorter transmission 

time or a smaller disk space is desirable for data transmission and data storage respectively. 

Data security has been a hot topic since a few decades ago and it gets even hotter these days. The 

emergence of industrial revolution 4.0 relies largely on data security for all of its functionalities and 

accomplishments [7]–[9]. Its success depends on the safe and secure communication between connected 

devices. Data security plays the most important role that determines not only the success but also trust and 

confidence between communicators. Data security in its true meaning ensure the properties of data in terms 

of confidentiality and integrity are preserved, and those who handle the data require authentication to access 

and dismiss any future repudiation. Encryption has been a single most critical function in offering protection 

to data transmission and storage. Encryption tries to achieve the highest possible security to date while 

retaining the efficiency of its execution. Balancing the twos has been a challenge in itself and the trade-off is 

pegged to which areas it has been used such as the military, commercial and individual. Security is achieved 

through the size of the secret information (key) that is used for the encryption, other than the choices of 

algorithms which imposes different level of complexities to the computer processor [10]. 

Data representation can be manipulated to reduce the cost of execution and thus improve the speed. 

Good representation can reduce the number of operations and thus the instruction. Encryption deals with 

large number for its key, therefore by being able to represent this number in a different representation offer a 

chance to reduce its complexity. In cryptography, this large number operation is simply converted into a 

chunk of simple but iterative execution of cheaper operations involving smaller number. 

Obviously, any method that was designed to take the recoded minimal representation to iteratively 

compute the modular exponentiation or modular multiplication will produce an identical result but with 

different speed. Based on Figure 1, we can categorize integer representation by the availability of its sign. 

Signed representation allows substitution or division operation into the sequence. Meanwhile, radix is 

another approach into converting integer base 10 into selected basis. In this survey article, we try to 

comprehensively review various integer representations that have been used for the purpose of speeding up 

encryption operations. Our focus is to relate the properties of minimal representation in terms of its length 

and non-zero density. 

 

 

 
 

Figure 1. Taxonomy of integer representation 
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2. INTEGER REPRESENTATION 

In complex modular arithmetic, the scalar n (multiplicand/exponent) is assumed to be a positive 

integer. Some form of representations for n were introduced such that the technique for computing result is 

efficient. In achieving this objective, several factors were identified namely, the density of non-zeros, the 

cardinality of coefficient set and the length of zero runs in the representation. 

Definition 1: every integer 𝑛 ∈ ℤ+can be expressed by a summation of its coefficient multiplied by its radix 

as: 
 

𝑛 =∑𝑐𝑖𝑚
𝑖 = 𝑐𝑟−1𝑚

𝑟−1 + 𝑐𝑟−2𝑚
𝑟−2

𝑟−1

𝑖=0

+⋯+ 𝑐1𝑚 + 𝑐0 

 

where 𝑐𝑖 ∈ {0,1, . . . , 𝑚 − 1} are the coefficients, 𝜆(𝑛) = ⌊𝑙𝑜𝑔𝑚𝑛⌋ +  1 is the length of the representation 

and 𝑣(𝑛) gives the number of non-zero digits. The m is called the radix for m-ary representation. 

 

2.1.  Binary representation 

Binary number is the most suitable representation for computer systems as it able to work directly 

with no extra efforts are required for further conversion because computer system understands 0’s and 1’s 

perfectly. Other than the original, to increase efficiency, many representations emerged as a result of 

weaknesses found within their predecessors. An unsigned binary representation is the most common form of 

binary number used to represent an integer n. 

Definition 2: unsigned binary. Let an integer 𝑛 ∈ ℤ+, a classical binary representation for n is given by: 
 

𝑛 =∑𝑏𝑖2
𝑖 = 𝑏𝑟−12

𝑟−1 + 𝑏𝑟−22
𝑟−2

𝑟−1

𝑖=0

+⋯+ 𝑏12 + 𝑏0 

 

where 𝑏𝑖 ∈ {0,1}, 𝜆(𝑛) = ⌊𝑙𝑜𝑔2𝑛⌋ + 1, and the average non-zero density is given by 𝑣𝐴(𝑛) =
𝑟

2
. This 

representation is unique, there is one-to-one correspondence between n and its associated binary 

representation. However, the appearance of non-zeros seems to be redundant in this representation. As it will 

be discussed in the next section, efficiency in computing Q can be further improved by reducing the number 

of 1’s. Out of unsigned binary representation, Booth [11] introduced the idea of signed binary representation. 

Definition 3: signed binary. Given an integer 𝑛 ∈ ℤ+, a signed binary representation for n is given by: 
 

𝑛 =∑𝑏𝑖
′2𝑖 = 𝑏𝑟−1

′ 2𝑟−1 + 𝑏𝑟−2
′ 2𝑟−2

𝑟−1

𝑖=0

+⋯+ 𝑏1
′2 + 𝑏0

′  

 

where 𝑏𝑖
′ ∈ {0, ±1}, 𝜆(𝑛) = ⌊𝑙𝑜𝑔2𝑛⌋ + 1 and 𝑣𝐴(𝑛) =

𝑟

2
. This representation is also known as modified  

radix-m form in the theory of arithmetic codes. It manages to reduce the non-zero density. However, the 

representation is not unique since for each n, there exist more than one signed binary representations. For this 

reason, a non-adjacent form (NAF) was introduced by Reitwiesner [12], which consists of minimal hamming 

weight, and most importantly every integer has a unique form of this sort [12]–[14]. Hamming weight for this 

type of representation is a measure of its non-zero density.  

Definition 4: non-adjacent form. Every integer 𝑛 ∈ ℤ+can be represented by non-adjacent form as: 
 

𝑛 =∑𝑏𝑖
′2𝑖 = 𝑏𝑟

′2𝑟 + 𝑏𝑟−1
′ 2𝑟−1

𝑟

𝑖=0

+⋯+ 𝑏1
′2 + 𝑏0

′  

 

where 𝑏𝑖
′ = {

+1,0   𝑖𝑓 𝑖 ≥ 𝑛
±1,0   𝑖𝑓 𝑖 < 𝑛

 and ⌊𝑙𝑜𝑔2𝑛⌋ ≤ 𝜆(𝑛) − 1 ≤ ⌊𝑙𝑜𝑔2𝑛⌋ + 1 and 𝑣𝐴(𝑛) =
𝑟

3
. The conception is to 

disallow two consecutive non-zero bits. Comparing to that of unsigned binary, an average non-zero density is 

reduced by one sixth of the original length. Researchers [12], [15] specified an iterative method to generate 

NAF from an unsigned binary as well as signed binary representations. That of [12] is known as right-to-left 

recoding algorithm and is compact and efficient. Researchers [16], [17] showed that the algorithm from 

Reitwiesner is based on the formula 3𝑛 − 𝑛. Alternatively, Chang and Tsao-Wu [17] produced an iterative 

method called weight minimization algorithm (WMA) to generate NAF, including theorems for the 

sparseness and uniqueness of the output. Another notably development was due to [18] with recoding from 

right to left is based on dividing n repeatedly by 2 and assigning 𝑏𝑖
′ to be 0 if n is even, 1 if (𝑛 − 1)/2 is 

even, or -1 if (𝑛 + 1)/2 is even. 
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However, the direction of scanning the bits can be a constraint in some occasions. As a result, Joye 

and Yen [19] brought up an idea to produce binary representation with NAF properties of having minimal 

hamming weight but contrary to earlier works, the technique scans the bits of input from left to right. In 

certain cases, this may lead to some improvements in software as well as hardware performance especially in 

a case where a memory resource is very limited. This representation is an elegant left-to-right algorithm of 

comparable performance to Reitwiesner right-to-left. It has minimal hamming weight but not always sparse, 

in other words, it allows two consecutive non-zeros [20]. Extended this idea of left-to-right algorithm and 

came out with a new canonical and unique representation for signed binary namely mutual opposite form 

(MOF). Unlike NAF, MOF does not always have minimal hamming weight and it allows consecutive  

non-zeros but with opposite sign and the most non-zero significant bit and the least non-zero significant bit 

are 1 and 1̅ respectively. 

Definition 5: mutual opposite form. Every unsigned binary for any 𝑛 ∈ ℤ+can be converted into MOF. 
 

𝑛 =∑𝑏𝑖
′2𝑖 = 𝑏𝑟

′2𝑟 + 𝑏𝑟−1
′ 2𝑟−1

𝑟

𝑖=0

+⋯+ 𝑏1
′2 + 𝑏0

′  

 

where 𝑏𝑖
′ ∈ {0, ±1}, 𝑏𝑟

′ = 𝑏𝑟−1, 𝑏0
′ = −𝑏0 and 𝑏𝑖

′ = 𝑏𝑖−1 − 𝑏𝑖  for 𝑖 = 1,2, … , 𝑟 − 1. The conversion is 

achieved using the formula 2𝑛 ⊖ 𝑛, where ⊖ is a bitwise subtraction. Properties of MOF is quite similar to 

that of NAF except for it is not being sparse. The left-to-right MOF recoding algorithm generates MOF 

representation by taking an unsigned binary representation. The advantage of MOF is its ability to recode 

from left to right although in some cases it will produce longer addition chain than NAF. Another version of 

NAF is due to [21]. The idea is to increase the zero runs in a NAF representation without changing its weight. 

All recoding algorithms discussed are based on iteration and can be quite a constraint [22] came out with a 

new recoding technique based on common multiplicand [23] which could speed up the recoding from binary 

to NAF.  

Definition 6: complementary recoding. Given an unsigned binary representation for 𝑛 ∈ ℤ+, its 

complementary recoding representation is given by: 
 

𝑛 =∑𝑏𝑖2
𝑖 = (100…0)(𝑟+1)𝑏𝑖𝑡𝑠 − 𝑛̅ − 1

𝑟−1

𝑖=0

 

 

where 𝑛̅ = 𝑛̅𝑖−1𝑛̅𝑖−2 … 𝑛̅0, if 𝑏𝑖 = 1 then  𝑛̅𝑖 = 0, if 𝑏𝑖 = 0 then 𝑛̅𝑖 = 1, for 𝑖 = 0,1,2, … , 𝑛 − 1. This representation is 

longer than its input binary representation by 1 bit. Due to a much simpler recoding algorithm which requires 

no iteration, the average running time for recoding an integer n using this algorithm is significantly shorter 

than that of NAF or MOF. However, this method does not always produce minimal weight representation and 

it is totally different from NAF or MOF. As such, the number of operations will not be as minimal as NAF or 

MOF. Therefore, for general case, NAF is still considered as the best recoding technique to date. 

Integer representation discussed thus far is known as signed binary representation. In case when 

extra memory resource is available, precomputation is allowed, signed representation using larger digit set 

should be taken into account. This representation enlarges the coefficient set by reading w bits NAF input at 

one time. There are two different ways to construct this type of representation, namely by applying sliding 

window technique on signed binary representation [21], [24], and w-NAF which is computed directly from 

binary strings using a generalization of NAF recoding technique [25]–[27]. 

Definition 7: w-NAF. Every integer 𝑛 ∈ ℤ+, can be represented by w-NAF as: 
 

𝑛 =∑𝑐𝑖2
𝑖 = 𝑐𝑟2

𝑟 + 𝑐𝑟−12
𝑟−1 +⋯+ 𝑐12 + 𝑐0

𝑟

𝑖=0

 

 

where 𝑐𝑖 ∈  {|2𝑘 +  1| < 2𝑤 −  1 ∶  𝑘 ∈  ℤ+}, ⌊𝑙𝑜𝑔2𝑛⌋ ≤  𝜆(𝑛) −  1 ≤  ⌊𝑙𝑜𝑔2𝑛⌋ +  1 and 𝑣𝐴(𝑛) =
𝑟

1+𝑤
. The 

w-NAF is just a generalization of NAF (𝑤 = 2). It simply inherits properties like uniqueness, no non-zero 

adjacent with the least non-zero density among other representation having the same coefficient set. The w-

NAF(n) can be computed similar to NAF(n). A reduction modulo 2𝑤 is done to ensure that w consecutive 

digits contain at most one non-zero digit [26] recodes unsigned binary representation into w-NAF, operating 

from right to left. Unfortunately, this type of w-NAF representation can only be generated from right to left 

due to the carry−over bit. Independently, by [28]–[30] introduced a left-to-right version equivalent to w-NAF 

which was able to perform scalar multiplication on-the-fly. The one due to Avanzi is called w-LtoR recoding. 
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Irrespective to operating direction, both algorithm produces minimal weight representation. 

However, the memory consumption level is still inefficient for a limited storage device. The search for a 

memory−less left-to-right algorithm only came to an end after [29] introduced a left-to-right memory-less 

algorithm called w-NAF*, a generalization of w-NAF. Interestingly enough, this algorithm bears all 

properties that belongs to w-NAF. Another left-to-right recoding technique called width w window MOF, 

shortened as w-MOF was due to [20] can also be used to decrease the non-zero density of MOF.  

Definition 8: w-MOF. Every integer 𝑛 ∈ ℤ+can be represented by w-MOF as: 
 

𝑛 =∑𝑐𝑖2
𝑖 = 𝑐𝑟2

𝑟 + 𝑐𝑟−12
𝑟−1 +⋯+ 𝑐12 + 𝑐0

𝑟

𝑖=0

 

 

where 𝑐𝑖 ∈  {|2𝑘 +  1| < 2𝑤 −  1 ∶  𝑘 ∈  ℤ+}, ⌊𝑙𝑜𝑔2𝑛⌋ ≤  𝜆(𝑛) −  1 ≤  ⌊𝑙𝑜𝑔2𝑛⌋ +  1 and 𝑣𝐴(𝑛) =
𝑟

1+𝑤
. 

The coefficient set for w-MOF is similar to that of w-NAF. The recoding process takes an unsigned 

binary representation into w-MOF in a quite similar way to the one from Avanzi. Moreover, it also has the 

same properties as that of w-NAF. Window methods is capable to reduce the non-zero density, but at the 

expense of precomputation for all elements within coefficient set excluding P. 

 

2.2.  m-ary representation 

The concept of binary representation can be extended to m-ary form. Only two changes are required 

for this transformation to work, the radix must now be generalized to 𝑚 =  2𝑘 for which 𝑘 > 1, and the 

coefficient set is now allowed to have any element less than m. Each element from the coefficient set needs to 

be precomputed prior computing Q. All elements contribute to the so-called addition sequence. 

Bos and Coster [30] discussed in depth on how to generate this sequence using an efficient vectorial addition 

chain. Similar to binary case, an integer n can be converted to a number of base m through an iterative 

division operation of n by m until the quotient is zero, taking the remainders as the result. The original study 

on unsigned m-ary representation is due to [31], [32]. 

Definition 9: unsigned m-ary. Every positive integer n can be represented by an unsigned m-ary form as: 
 

𝑛 =∑𝑑𝑖𝑚
𝑖 = 𝑑𝑡−1𝑚

𝑡−1 + 𝑑𝑡−2𝑚
𝑡−2 +⋯+ 𝑑1𝑚+ 𝑑0

𝑡−1

𝑖=0

 

 

where 𝑑𝑖 ∈ {0,1, … ,𝑚 − 1}, 𝜆(𝑛) = ⌊𝑙𝑜𝑔𝑚𝑛⌋ + 1, and 𝑣𝐴(𝑛) =
𝑚−1

𝑚
𝑡. Similar to unsigned binary case, this 

representation is unique for each integer. Consider 𝑚 =  𝑥𝑘, an unsigned m-ary can also be obtained by 

partitioning the 𝑚 =  𝑥1representation starting from the least significant bit by k size. Each partition should 

hold a value of less than m. An improved representation to unsigned m-ary was introduced, namely recoded 

m-ary allows negative coefficients into the set [33], based on the idea of recoded binary representation [11]. 

Definition 10: recoded m-ary. Given a positive integer n, its recoded m-ary representation is given by: 
 

𝑛 =∑𝑑𝑖
′𝑚𝑖 = 𝑑𝑡−1

′ 𝑚𝑡−1 + 𝑑𝑡−2
′ 𝑚𝑡−2

𝑡−1

𝑖=0

+⋯+ 𝑑1
′𝑚+ 𝑑0

′  

 

where 𝑑𝑖
′ ∈ {0, ±1,… ,±𝑚 − 1} and 𝑣𝐴(𝑛) =

3𝑡+1

8
+

5𝑡−1

2𝑡
≈

3

8
𝑡. This representation is however not unique for 

each n. In order to address this gap, Clark and Liang [34] came out with an idea of general non-adjacent form 

(GNAF) for any integer n. 

Definition 11: GNAF. Given a positive integer n, its GNAF representation can be expressed as: 
 

𝑛 =∑𝑑𝑖
′𝑚𝑖 = 𝑑𝑡

′𝑚𝑡 + 𝑑𝑡−1
′ 𝑚𝑡−1

𝑡

𝑖=0

+⋯+ 𝑑1
′𝑚 + 𝑑0

′  

 

with two conditions, |𝑑𝑖
′ + 𝑑𝑖+1

′ | < 𝑚, for all I and |𝑑𝑖
′| < |𝑑𝑖+1

′ | if 𝑑𝑖
′𝑑𝑖+1
′ < 0, where−𝑚 < 𝑑𝑖

′ < 𝑚. The 

average non-zero density denoted as 𝑣𝐴(𝑡,𝑚) of GNAF with radix-m is given by [35] as: 
 

𝑣𝐴(𝑡,𝑚) =

{
 
 

 
 𝑚 − 1

𝑚 + 1
𝑡 +

2𝑚

(𝑚 + 1)2
−

2

(𝑚 + 1)2𝑚𝑡 − 1
for 𝑡 even

𝑚 − 1

𝑚 + 1
𝑡 +

2𝑚

(𝑚 + 1)2
−

𝑚2 + 1

(𝑚 + 1)2𝑚𝑡
for 𝑡 odd
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where 0 ≤ 𝑡 ≤ 𝑚𝑡 − 1 for 𝑡 ≥ 1. For large t, it can be approximated to 
𝑚−1

𝑚+1
𝑡 [36]. The following is the 

properties of GNAF for every integer n. GNAF retains similar properties to that of NAF [17]. Among several 

versions of GNAF algorithms available, the one due to [35] takes an input of unsigned m-ary integer and 

operates from right to left. Twisting an idea from [16] for NAF, [34] used the formula (3𝑛 + 𝑛) − 𝑛 to 

produce a non-iterative GNAF algorithm for radix 3. Moreover, for an arbitrary radix-m, [34] produced an 

algorithm to accept signed m-ary form as an input. 

Many research were conducted to study the generation of GNAF from left to right. Earlier results 

showed that left to right GNAF algorithm is not possible to have. However, Kong et al. [37] proved it 

otherwise. They produced left-to-right GNAF by basing on the idea of left-to-right NAF recoding algorithm 

earlier. Another version of left-to-right algorithm was due to [38] who came out with another radix-m 

representation namely generalized star form (GSF). This algorithm processes unsigned m-ary representation 

for n from left to right. Moreover, they proved that this representation bears the minimal weight as that of 

GNAF. 

The approach of m-ary method is equivalent to partitioning the binary representation into a block of 

fixed window size and then convert each binary block into an equivalent radix-m integer. Although this 

method seems to reduce the number of terms through shortening the chain, the drawback is the need to 

precompute all elements of coefficient set. 

 

2.3.  ψ-ary representation 

This representation exploits the properties of endomorphism of an elliptic curve 𝐸 defined over  

𝔽2 [39], [40]. It works only with specific family of curves known as anomolous or Koblitz curves defined as 

𝐸/𝔽2. The group denoted by 𝐸(𝔽2𝑚) is defined over an extended field, having an order only divisible by an 

odd large prime. For this, m supposedly be a prime such that 2𝑚becomes nearly prime. Indeed, the subgroup 

𝐸(𝔽2) has an order of either 2 or 4 and this value divides #𝐸(𝔽2𝑚). Consider #𝐸(𝔽2𝑚) = 𝑓𝑢 where  

#𝐸(𝔽2)=f, and #𝐸𝑢(𝔽2𝑚) = 𝑢 such that 𝐸𝑢(𝔽2𝑚) be a main subgroup of 𝐸(𝔽2𝑚). The main subgroup has 

been found suitable for cryptographic application. Efficient arithmetic is based on decomposing n by 

Frobenius map ψ for which an execution of doubling or its multiples 𝜓𝑖  for 𝑖 ∈ ℤ+can be obtained almost for 

free. The ψ-expansion of n allows the computation of nP with only additions. Endomorphism doublings is 

just a cyclic shift of the vector representation using normal basis of 𝔽2𝑚 and therefore requires insignificant 

amount of time. Smart [41] proved that this representation does exist for every n and not arbitrarily long with 

coefficients having absolute values of less than 7. Similar to the binary case, ψ-ary representation for n can be 

obtained by repeated division of n by ψ where the digits 𝑏𝑖  are the remainders.  

Definition 12: an element 𝑛 ∈ ℤ[𝜓] can be represented by ψ-ary as: 

 

𝑛 =∑𝑏𝑖𝜓
𝑖 = 𝑏𝑟−1𝜓

𝑟−1 + 𝑏𝑟−2𝜓
𝑟−2

𝑠−1

𝑖=0

+⋯+ 𝑏1𝜓 + 𝑏0 

 

where 𝑏𝑖 ∈ {0,1} and 𝑣𝐴(𝑛) =
𝑠

2
. Since ψ is an element of euclidean domain ℤ[(1 + √−7)/2], any element 

of the ring is uniquely represented by this representation. In addition, as mentioned by  

Morain and Olivos [18] for binary representation, where elliptic curve point subtraction costs insignificant 

resource, NAF like representation for ψ-ary called ψNAF can also be obtained. 

Definition 13: an element 𝑛 ∈ ℤ[𝜓] can be represented by ψNAF as: 

 

𝑛 =∑𝑏𝑖
′𝜓𝑖 = 𝑏𝑠−1

′ 𝜓𝑠−1 + 𝑏𝑠−2
′ 𝜓𝑠−2

𝑠−1

𝑖=0

+⋯+ 𝑏1
′𝜓 + 𝑏0

′  

 

where 𝑏𝑖
′ ∈ {0, ±1} and 𝑣𝐴(𝑛) =

𝑠

2
. In ψNAF, every positive integer n has a unique representation, and no 

two consecutive non-zeros is allowed. To compute 𝑙(𝑛), let N(n) be the norm of 0 ≠ 𝑛 in ℤ[𝜓]. If 𝑠 > 30, 

then 𝑙𝑜𝑔2(𝑁(𝑛)) − 0.55 < 𝑙(𝑛) < 𝑙𝑜𝑔2(𝑁(𝑛)) + 3.52 [26]. Computation of ψNAF(n) is similar to that of 

NAF(n) although in the case of ψNAF, n is now an algebraic integer and the recoding process is a little more 

complicated, for various details refer to [26]. However, there is a drawback, using standard ψNAF 

representation the length of its representation is twice the length of NAF(n) [42]. Due to this, ψNAF 

representation is not necessarily to be more efficient than using binary NAF. 

In overcoming this, Meier and Staffelbach [43] showed that for every Koblitz curve with ψ defined 

over 𝔽2𝑚, there is a ψ-expansion for n of length m having ψNAF representation, namely reduced ψNAF. 
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Observed the fact that (𝜓𝑚 − 1)(𝑃) = 𝜓𝑚(𝑃) − 𝑃 = 𝑃 − 𝑃 = ∞ for any 𝑃 ∈ 𝐸(𝔽2𝑚). For if  

𝑛 ≡ 𝑛′𝑚𝑜𝑑 (𝜓𝑚 −  1) then 𝑛𝑃 = 𝑛′𝑃. Hence 𝑙(𝑛′) ≈ 𝑙(𝜓𝑚 − 1) ≈ 𝑚 ≈ 𝑙(𝑁𝐴𝐹(𝑛)) and 𝑠 = 𝑚. The 

length of ψNAF(n) is now shortened to that of NAF(n). Since cryptographic operation takes place in the main 

subgroup 𝐸𝑢(𝔽2𝑚), consider 𝑃 ∈ 𝐸𝑢(𝔽2𝑚), then the following expression is true. 

 

(𝜓 −  1)
𝜓𝑚 −  1

𝜓 − 1
𝑃 = 𝒪 

 

for if (𝜓 −  1) ≠ 𝑂, then 
𝜓𝑚− 1

𝜓−1
= 𝒪. Therefore 𝑛′′ ≡ 𝑛 𝑚𝑜𝑑 (

𝜓𝑚− 1

𝜓−1
) and obviously ψNAF(𝑛′′)=ψNAF(𝑛) 

follows. That the equation is equivalent to each other, reduced ψNAF can be used in place of ψNAF in scalar 

multiplication. The average non-zero density is also reduced to 
𝑚

3
. The right-to-left ψNAF recoding 

algorithms [26] responsible to compute this modular reduction can also be found in [44]. It was shown that 

Frobenius map allows a replacement of many expensive elliptic curve’s doublings and additions with fewer 

elliptic curve additions and some power evaluations in a finite field. By this way, it improves the speed of up 

to 50% on curve of this sort compares to general methods. 

 

 

3. DISCUSSION 

The fact is many ideas have been developed to transform integer into some form that can cheaply be 

operated by computer. The simplest form would be the binary (2-ary) form which can be directly operated 

since computer only deals with ‘0’s and ‘1’s. The fact is basic operations allowed are addition and doubling 

which are known to be the least costly. Nevertheless, m-ary representation can also be beneficial in certain 

conditions. This unsigned representation is further manipulated by allowing negativity of operation 

producing a signed representation and thus achieving minimality of non-zero digits and limiting non-zero 

adjacency. We observed that many ideas and methods have been brought forward for solving an addition 

chain problem. The methods mainly manipulate the representation of number in terms of basis and what 

operations are allowed as well as its orientation. Different representation results in different addition chain as 

well as its length. 

Table 1 shows topological properties of integer representations. Given an integer, various techniques 

have been developed to produced the aforementioned representations. One way to classify the techniques is 

the selection of the allowed operations. Unsigned representation allows only addition and doubling, whereas 

signed operation includes a subtraction operation. Another way would be the direction we operate the 

representation. Some techniques begin with the least significant bit (right-to-left) while others most 

significant bit (left-to-right). The rest of the columns specifies the intrinsic properties of the representations 

namely uniqueness, non-zero adjacency and non-zero density. These three properties play the most important 

role in reducing the number of operations and hence increase the performance of the entire encryption time. 

 

 

Table 1. Properties of integer representations 
Representation Sign R->L L->R Uniqueness No non-zero adjacency Minimal non-zero density 

Unsigned binary unsigned      

Signed binary signed      

NAF signed      
MOF signed      

CR signed      

𝜓NAF signed      

wNAF signed      
wMOF signed      
Unsigned m-ary unsigned      

Recoded m-ary signed      

GNAF signed      
GSF signed      

 

 

Needless to say, the aforementioned techniques chosen for discussion were based on the efficiency 

of its execution. They have been practically proved to save the power, storage and time. There are also other 

representations that are conceptually exceptional, based on some mathematical theorem [45]–[50]. Although 

some of these concepts were shown to be advantageous, their practicality has never been applied and thus its 

efficiency is doubtful. 
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4. CONCLUSION 

Integer representation plays an important role in ensuring cheap computational operation in 

computer system and thus the efficiency of the entire application. It happens to be more important when 

dealing with big numbers in application such that of cryptography. Approaches such as controlling the 

number of operations executed, the type of operations used, the environment within which the operation 

takes place are known to improve the computational speed. Cryptography deals with complex computation of 

modular arithmetic involving multiplication and exponentiation operation within certain algebraic structure. 

This complexity is normally reduced to repetitive tasks of much simpler operations such as addition and 

doubling which directly correspond to zero and one in the equivalent binary representation. In some cases, 

subtraction can be added together in signed representation. That makes the solutions to be categorized into 

two generic groups namely unsigned and signed representation. By adding an extra operation in signed 

representation, the entire time factor can be shortened. However, this limit to the selection of specific 

environment and parameters. In general, one would enjoy experiencing the evolution of these subject. 
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