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ABSTRACT Crash severity prediction is a challenging research area, where the objective is to accurately
assess the extent of severity of an injury resulting from road traffic accidents. The main aim of existing
studies is to precisely assess the potential severity of crashes under diverse circumstances, such as weather
conditions, vehicle attributes, road characteristics and layout, and traffic control factors. This effort aids
authorities in establishing effective emergency response systems. The novelty and objective of our work
involve contributing to this research area by employing a graph architecture to capture relationships among
various crash records to uncover any hidden patterns that traditional ML models might overlook. The
current study extends existing knowledge by leveraging Graph Neural Networks (GNN) and comparing
their performance to popular ensemble-basedmodels, which include ExtremeGradient Boosting (XGBoost),
Random Forest (RF), and Artificial Neural Networks (ANNs). Real data from the United Kingdom (UK)
was employed to achieve our goal. The data was obtained from the Department for Transport open data
portal. All models underwent training using the training dataset, followed by performance evaluation
using diverse metrics such as the accuracy, precision, recall, f1-score, Matthews Correlation Coefficient
(MCC), confusion matrix, and computational cost on the test dataset. Overall, our proposed GNN-based
model demonstrated better performance when compared to other models. Specifically, the GNN model
outperformed all other models across all metrics. For instance, the accuracy of the GNN model was 85.55%
as compared to 83.36%, 83.18%, and 83.27% for the XGBoost, RF, andANNmodels, respectively. TheGNN
model assisted in identifying hidden patterns by considering non-linear relationships among crash records.
Thus, the model had the potential to improve its ability to predict severe accidents, which could in turn
significantly improve emergency response efforts and reduce the likelihood of severe accidents resulting in
fatalities.

INDEX TERMS Categorical embedding, graph neural network, GraphSAGE, kNN graph, road crash injury
severity.

I. INTRODUCTION
Road safety research encompasses a wide array of topics and
is a multidisciplinary field of interest. Prediction of accident
injury severity is a popular area of research in road safety [1],
[2].With the rapid urbanization of cities and the concentration
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of private vehicles in urban areas, the topic has become of
the utmost importance due to increased accident rates [3].
The availability of various data sources, and data-driven
applications enables transport engineers to develop new pre-
diction models; thereby contributing to mitigate the effects of
crashes. The outcomes can be used in various sectors, includ-
ing the development of new policies, the modification of
the existing road infrastructure, the integration of prediction
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FIGURE 1. Crash injury severity levels.

models with external systems such as healthcare and emer-
gency services, and the promotion of different awareness
plans for the public.

In the literature, from the perspective of road transporta-
tion, a road crash or accident is described as an unforeseen
incident that occurs on a road [4]. Typically, it involves one or
moremotor vehicles, such as cars, trucks, or motorcycles, and
its consequences may lead to injuries, fatalities, or property
damage. Various prediction techniques exist depending on the
problem domain in road crashes. Some studies delved into
identifying road crash predictions to assess crash likelihood
and pinpoint high-risk areas where accidents are more likely
to occur [5], [6]. Another field of study related to crash pre-
dictions is the road crash rate prediction, which deals with the
estimation of crash frequency [7], [8], [9]. Lastly, crash sever-
ity injury prediction techniques aim to estimate severity levels
depending on various injury severity categories [1], which is
also the focus of this paper. Traffic crash severity prediction
is an active research area where the research community is
actively involved in risk assessment and mitigation of vehicle
crashes. Different studies have been done to identify relation-
ships between crash injury severity and different risk factors
associated with human traits, environmental factors, and road
geometry. Fig. 1 shows various categories of crash severity,
ranging from no injury or property damage only (PDO) to
fatalities at the higher end of the severity scale. Some authors
have employed three crash severity levels [10], [11] which
include PDO with no injuries, injuries, or fatalities.

Two types of techniques are popular in the literature for
crash injury severity predictions, which include classical
statistical modeling and machine learning (ML) techniques.
Traditional statistical models have historically held a domi-
nant position, where they played an essential role in helping
researchers discover the key factors that influence the severity
of injuries. Researchers use these models to investigate the
elements influencing the seriousness of traffic crashes [12],
[13], [14], [15], [16], [17]. However, such models rely on
a priori hypothesis to establish the expected relationships
between the variables of interest. In practice, these initial
assumptions may not accurately represent the true nature of
these variables, potentially leading to incorrect conclusions.
Additionally, statistical models are better suited for examin-
ing relationships in datasets with limited sample sizes and
features.

Recent developments in this field witnessed a surge in the
application of machine learning (ML) algorithms, owing to
their capacity to provide augmented precision. Adaptive and

highly accurate models can be produced using flexible, non-
parametric methods like ML and deep learning (DL). These
methods prove to be particularly advantageous in cases where
the connection between predictor attributes and the targeted
levels of injury severity remains poorly understood or exhibits
a highly nonlinear relationship [18], [19]. RF, a commonly
employed tree-based ensembleML technique, has been found
to be popular in different crash injury severity studies [20],
[21]. In addition to RF, other techniques that are promi-
nently used to predict crash injury severity include decision
trees [19], [21], support vector machines (SVMs) [22], and
XGBoost [19], [23]. Various studies used DL techniques to
predict road crash severity [22], [24], [25].

In the context of road crash data, categorical features
represent distinct categories or labels, such as the driver’s
gender, vehicle type, or lighting conditions. The fundamental
characteristic of these features is their lack of inherent order.
Unlike numerical features, where values have a clear and
meaningful order (such as a road speed limit), categorical
values do not possess any inherent ranking or hierarchy.
This absence of inherent order has significant implications
for data handling in machine learning models. Therefore,
it becomes necessary to use appropriate techniques for encod-
ing or transforming them into a suitable format. Additionally,
crash severity data is typically categorical in nature, with only
a couple of features having numerical values, such as speed.
Hence, there is a need to preprocess them into high-quality
numerical data, using techniques such as embedding or in
sparse formats like one-hot encoding. In one-hot encoding,
each category value is transformed into a binary vector.
Because each unique category is represented by a different
binary vector in the dataset, this transformation can result in
high-dimensional data when there are many categorical val-
ues. Additionally, the one-hot encoding technique may lead
to high memory usage and longer modeling times, especially
when dealing with many categorical features [26]. Careful
consideration of these factors is essential when applying
such preprocessing techniques to crash severity data. Another
advanced method is the embeddings technique, which is used
to represent categorical data as continuous-valued vectors
in a lower-dimensional space. These continuous-valued vec-
tors are called embeddings [76]. Additionally, this method
enables models to comprehend the connections, parallels,
and associations between various categories that the one-hot
encoding method does not. These embeddings capture essen-
tial information about the categorical features while reducing
the dimensionality compared to one-hot encoding. In other
words, embeddings also help reduce the dimensionality of
data, which is also known as dimensionality reduction.

The k nearest neighbors (kNN) graph method is based
on the theory of kNN. kNN assists in predicting the label
of a new sample by examining the labels of the k most
similar samples within the dataset. The idea is that the label
of the new sample may share similarities with those of its
k-nearest neighbors [27]. The applications of the kNN
graph in machine learning include data classification and
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graph-based classification. The construction of a kNN graph
for high-dimensional data represents a crucial data structure
with numerous applications spanning diverse domains such
as data mining and machine learning. One of the proper-
ties of the kNN graphs is that they will always connect k
neighbors for a given node [28]. Reference [29] mentioned
that the kNN graph considered each data point in the dataset
as an individual graph node. It then established directed
edges connecting each graph node to its k nearest neighbors.
The aforementioned process systematically repeated for each
individual data point in the dataset.

This research presents the development and usage of a
DL model that employs the Graph SAmple and aggreGatE
(GraphSAGE) GNN model [30] to predict the severity of
injuries resulting from road accidents. Based on our initial
survey, it is found that no similar study on crash injury
severity prediction has been taken using GNN. One potential
explanation could be that the crash severity dataset lacks
the inherent graph structure necessary for GNNs, as these
models depend on input data with a graph-like structure.
Previous works on crash severity prediction using ML and
DL methods have utilized datasets to predict severe cases in
accidents but have failed to model the relationships among
the crash records in the form of a graph. Reference [31]
suggested that generating graph structures based on tabular
data could facilitate the understanding of samples relation-
ships and feature interactions present in the dataset. GNNs
have been gaining popularity in various fields and are con-
sidered one of the most prominent DL techniques, alongside
other competitive technologies and ensemble machine learn-
ing techniques. GNNs utilize graph structures to process and
extract information, making them particularly well-suited for
tasks such as edge link classification, node classification,
and graph classification [32]. In this study, our focus is on
predicting crash injury labels, which fall under the category
of node classification. GNN differs from traditional ML algo-
rithms, such as RF or SVM, by naturally capturing feature
correlations in graph-structured data through consideration
of the local and global neighborhoods of each node. In the
context of road crash data, the dataset is typically presented
in a tabular format. Tables are commonly used to represent
data in a generic manner. In contrast, graphs utilize a specific
data structure. To transform the crash dataset into a format
usable by GNN, a framework is required in which categorical
features of the dataset are first converted into embeddings.
These embeddings are then used to create a graph dataset.
In the graph representation, each node symbolizes an ele-
ment, which corresponds to a complete record in a table.
In graph theory, an edge is a fundamental element that estab-
lishes a connection between two nodes, thereby denoting their
relational association. In the context of this study, an edge
will represent an association between two crash data records.
In our case, each data record is characterized as a node, and
relationships among neighbors are recorded as edges. This
approach allows for the utilization of GNN’s capabilities in

capturing complex relationships and dependencies between
different elements of the crash dataset, ultimately enhancing
the prediction of injury severity in traffic accidents.

Taking everything into account, the proposed framework
brings forth the following significant contributions:

• Introducing a GraphSAGE GNN model designed to do
the prediction of crash injury severity using the data
records from the UK.

• Presenting a kNN graph-based approach for construct-
ing graph data from the UK accident records.

• Assessing the proficiency of the proposed framework by
comparing it with various popular ensemble models and
ANN model known for their effectiveness in predicting
crash injury severity.

II. RELATED WORK
A. EMBEDDING TECHNIQUES
Embedding techniques can be employed to represent categor-
ical data as continuous-valued vectors in a lower-dimensional
space, effectively mitigating memory overhead, especially
when dealingwith a large number of categorical features [76].
Traditional algorithms require numerical inputs, leading to
the utilization of encoding methods to transform categori-
cal values into numerical ones [33]. To generate categorical
embeddings, various techniques have been proposed. These
include using deep learning to create distributed represen-
tations for categories [33], capturing complex relationships
between categorical and numerical features through rep-
resentation learning [34], employing graph-based methods
to learn categorical data representations [35], and utilizing
domain knowledge and semantic similarity measures for
embeddings [36], [37]. All these methods aimed to convert
categorical features into numerical vectors, enhancing their
usability in machine learning algorithms and improving clas-
sification performance.

Categorical features lack an inherent order, which
addresses the challenge of clustering categorical data,
a prevalent issue in machine learning. The problem arises due
to the absence of inherent order in categorical features. Refer-
ence [35] introduced a graph-based framework for categorical
data clustering that effectively acquires representations from
similarity graphs. The framework under investigation exhib-
ited its superiority over existing methodologies through
comparisons conducted on benchmark datasets. This note-
worthy achievement established its significance as a valuable
addition to the realm of categorical data clustering. Refer-
ence [33] addressed the common challenge of the necessity
to process categorical data for tasks such as classification
and regression in machine learning and deep learning. The
authors introduced a novel technique that involved assigning
a unique vector to each category, and the characteristics of
these vectors were obtained through the process of training
a neural network. The process encompassed the creation
of a data vocabulary, tokenization of categorical data, and
mapping it to word vectors through feature learning. When
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comparing this deep-learned embedding technique to one-
hot encoding, it was observed that the proposed technique
outperformed the latter, achieving a higher F1 score (89%)
compared to one-hot encoding (71%) when training data
using the Long Short-Term Memory (LSTM) model.

Reference [38] addressed the challenge of process-
ing mixed data comprising categorical and numerical
attributes and proposed an innovative solution called
Attribute-Weighted Isometric Embedding (AWIE) to enhance
data transformation quality. In AWIE, the authors combined
isometric embedding and attribute weighting, effectively
mitigating dimensionality expansion and improving classifi-
cation performance. Another novel approach to categorical
representation learning was termed the ‘categorifier’ by [39].
The proposed solution addressed the challenge of improving
representation learning beyond traditional set-theoretic meth-
ods. The article proposed a category-theoretic approach to
representation learning.

B. GRAPH DATA GENERATION
Reference [28] introduced methods for building graphs from
flat data and improved the performance of graph-based algo-
rithms. The authors discussed several methods, such as kNN,
for creating similarity-based graphs. Reference [40] gen-
erated a correlation graph using the Spearman correlation
approach. In order to ensure that the model received only
informative associations, the authors maintained the cor-
relations bigger than 0.55 in the graph and substituted a
bidirectional connection with a constant value of 1 to gen-
erate an adjacency matrix. The minimum value of 0.55 was
selected to provide a decent number of connections without
overwhelming the network. A secondary goal in selecting the
0.55 threshold was to achieve equilibrium among connections
and reduce the quantity of singleton nodes, or nodes that were
disconnected from any other node in the network.

Reference [41] used a tabular dataset and represented
patients as nodes in a kNN graph. The connections between
patients were represented by edges, which indicated the rela-
tionships between individuals based on the similarity of their
features. To determine how similar the feature vectors in data
records were to one another, the authors created a similar-
ity metric. To determine the edge information, the authors
employed the chosen measure to find the k-nearest neighbors
for every data record. After the kNN graph was built, the pro-
duced graph dataset was utilized in several models, including
GNNs.

GNNs are commonly utilized in graph prediction applica-
tions, including graph classification and node classification.
GNNs have shown great accuracy in graph classification
tasks. Studies have been proposed to enhance the accuracy
and utilization of GNN models [41], [42]. Reference [43]
proposed a novel architecture called Boosted GNN (BGNN),
which was a combination of Gradient Boosted Decision Trees
(GBDT) and GNN, to address the challenge of graphs with
tabular node features. It combined the strengths of GBDT
and GNN in a unique way. While GBDT exceled at handling

heterogeneous tabular data, GNNs were proficient in captur-
ing the graph structure. The work demonstrated significant
performance improvements over existing GBDT and GNN
models through extensive experimental comparisons on var-
ious graphs with tabular features. Reference [41] proposed a
fusion model, comprised of the GNN and tabular data mod-
els, for predicting chronic kidney disease, where the former
model helped in identifying complex connections between
kidney patients and their medical illnesses, and the later
model carefully handled patient-specific features.

C. CRASH INJURY PREDICTION
Crash injury severity studies utilized various statistical
methodologies and traditional machine learning, tree-based
ensemble, and deep learning models. For example, probit
models were utilized by [2] to examine characteristics that
influence the degree of injuries sustained in truck-related
incidents. In recent years, an increasing amount of research
used random parameter models to analyze the severity of
injuries sustained in road accidents [44], [45], [46]. A DL
model for predicting accident severity built on the TabNet
framework, called TabVAE, was proposed by [24]. The sug-
gested TabVAEmodel selected and extracted features through
amulti-step decision-making process. To predict injury sever-
ity, the TabVAE model comprised multiple networks: the
observation network gathered observed data; the hetero-
geneity network used contrastive learning and variational
autoencoder technique extracted unobserved heterogeneity;
and the aggregation network combined the observed and
unobserved data. Reference [47] forecasted road accidents
and employed various ANN models to predict the severity
of road crashes. Reference [48] conducted a literature review
of the neural network methodologies that were used in the
analysis of traffic accidents. Their review encompassed a
selection of articles, primarily focusing on the prediction of
crash severity. The researchers also provided concise guid-
ance regarding the thoughtful selection of appropriate neural
network techniques tailored to the specific type of accident
prediction.

Reference [49] used an LSTMneural network formodeling
traffic accident-related factors and predicting accident sever-
ity classes. The authors used two fully connected layers on top
of the LSTM layers to accelerate learning and to align the out-
put dimensions of the LSTM layer with the number of crash
severity classes. The final output layer, constituting a fully
connected feed-forward layer, was designed to directly map
the learned features to the crash severity classes. To avoid
overfitting, dropout layers were also incorporated into the
architecture. Table 1 lists a compilation of recent references
on different ML and DL models that were used for predicting
crash injury severity.

III. DATA DESCRIPTION
A. ABOUT THE DATASET
The dataset utilized in this research was the UK road accident
dataset, accessible at [58]. The original dataset contained
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TABLE 1. Compilation of recent references on ML models for predicting crash severity.

approximately 200,000 records. The data was preprocessed to
remove null, noisy, or incomplete entries. Subsequently, the
data was filtered to retain only vehicle-to-vehicle accidents;
thus, the number of records was reduced to about 100,000.
The processed dataset exhibited an inherent class imbalance,
necessitating the application of random under sampling to
reduce the number of records from the majority class. The
dataset encompassed various feature categories, including
crash severity type, road configurations, spatial and temporal
factors, environmental variables, and vehicle characteristics.
Notably, all variables within the dataset were categorical. The
final dataset included data from 2011 to 2016 for the purpose

of developing and testing the models. The predictions were
based on a dataset of 7611 crash instances. Table 2 offers a
comprehensive overview of these features, presenting their
respective frequencies and the distribution of severity labels.
Additionally, certain attributes from the original dataset, such
as age, gender of the driver, or the presence of police involve-
ment, were omitted from this subset. This decision was made
to streamline the identification of severity types with a mini-
mal set of features, as many crash attributes remain unknown
until an initial emergency or police response occurs. The pri-
mary objective here is to proactively classify severity types,
enabling the consideration of appropriate actions in advance.
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FIGURE 2. A subset of graph data for a sample crash record with ID ‘0’.

B. DATASET PREPARATION
Incorporating GNNs for classification necessitated a funda-
mental data transformation process wherein the data was
structured into a graph representation. Within this graph
structure, entities were represented as nodes, and their inter-
connections were denoted as edges. The first step involved in
the conversion of the tabular dataset into a graph structure was
to transform each data record into a node within the graph.
The collection of 16 features in the dataset corresponding
to each node (record) served as attributes for the respective
node within this graph representation. Since the UK dataset
was divided into five feature types, which included road
configuration, spatial configuration, vehicle characteristics,
environmental conditions, and temporal variables, features in
each feature type were further encompassed by different sub-
features, e.g., temporal variables included day of the week
and time ranges. PCA based embedding technique was used
to convert these categorical values into embeddings [80].
To establish connections between these nodes, relationships
needed to be identified. One such method involved creating
edges between nodes based on certain feature similarities
that surpassed a predefined threshold. One such method is
to use kNN graph algorithm, which can help establish inter-
connections between nodes and their k nearest counterparts,
determined by shared feature similarities. Once the PCA
based embeddings were generated, graph data was prepared
in which each node has k neighbors showing similar relation-
ships to the node under consideration. PCA embeddings were
used to establish connections (edges) among graph nodes dur-
ing the data processing technique for constructing graph data.
Fig. 2 mainly illustrates a subset of a graph data pertaining
to a crash record with ID ‘0’ and showing its relationships
or interconnections with 20 neighboring crash records which
are resulted from kNN graph algorithm.

IV. METHODOLOGY
In this study, the performance of the GNN model was
investigated using the factors mentioned in Table 2. To com-
pare its performance with popular machine learning models,
we selected RF [59], XGBoost [60] and Multi-Layer Percep-
tron (MLP) based ANNs [61]. These techniques were chosen
due to their widespread use in classification problems as well

as their ability to resist overfitting and their tendency for high
predictive accuracy [62], [63], [64]. Ensemble methods, both
RF and XGBoost models, incorporate the predictions of mul-
tiple individual models, thereby reducing bias and variance.
Similarly, ANNs are known for their learning techniques
using nonlinear functions, which help map input features to
target variables [61]. The details of the GNN architecture
are discussed in the next section. Afterwards, the evaluation
metrics that were used in this study are presented. The Grid-
SearchCV optimization technique, which is used to select and
fine-tune different hyperparameters pertaining to the GNN
model and the other models, is discussed in Section IV(C).

A. GNN MODEL
Graph Neural Network (GNN), a subset of DL neural net-
works, is specifically designed to process data structured as
graphs. GNN models are specialized DL networks designed
for processing graph data. Graph data is typically defined as
G = (V, E), where V denotes nodes (entities) and E denotes
edges (relationships) between nodes. Despite its voluminous
and complex structure, graph data can be represented using
adjacency matrices. In the case of an undirected graph, the
adjacency matrix exhibits symmetry. In this representation,
each node corresponds to a row and column in the matrix, and
edges are represented as matrix entries. GNNs have various
applications, including node classification, link prediction,
and graph classification.

In the context of this study, node classification is a sig-
nificant application in graph analysis. It aims to predict the
label associated with each node. Labels can represent types,
categories, or attributes, among other possibilities. Success-
ful node classification techniques often rely on exploiting
interconnections between nodes. As discussed in [65], a key
concept in this domain is ‘‘homophily’’ [66], which refers
to nodes sharing attributes with their neighbors in the graph.
ML models can be constructed based on homophily to assign
similar labels to connected nodes in a graph [67].

The main function of GNN is to learn representations
for nodes and edges within a graph. To accomplish this,
data is collected from nodes that are in the neighborhood
of the target node. Typically, each node is represented
as a low-dimensional vector, which encodes not only the
node’s characteristics, but also its interactions with other
nodes (i.e., its edges) within the graph. Furthermore, a GNN
network consists of one or more layers designed to effi-
ciently capture increasingly complex features of the graph.
It accomplishes this by aggregating important data from the
surrounding neighborhood of each individual node at each
layer. In essence, GNNs are structured to progressively under-
stand and represent the intricate relationships and properties
of the graph.

There are different types of GNN models that exist
including Graph Convolutional Network (GCN) [68], Graph
Attention Networks (GAT) [69], and Graph Sample and
Aggregated (GraphSAGE) [30], [75]. The key function
that differentiates GNNs from other neural networks is the
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TABLE 2. Dataset and its features.
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TABLE 2. (Continued.) Dataset and its features.

FIGURE 3. GraphSAGE sample and aggregate approach structure.

Message Passing Neural Network (MPNN). MPNN operates
by iteratively updating the state for each node in a graph

through a process involving message aggregation and state
update. Depending on the specific type of GNN being used,
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such as GCN, GAT, or GraphSAGE, the details of how
MPNN is applied may vary. These GNN variants incorpo-
rate different mechanisms for message aggregation and state
updates.

Our study used GraphSAGE network which is a model
that generates feature representations of graph nodes, which
are useful for predictions and graph analysis [30]. Both
GraphSAGE [30] and GAT [69] are enhancements to GCN.
GraphSAGE takes an inductive approach, learning rules from
training data and applying them to test data. On the other
hand, GCN uses a transductive approach, which means it has
limitations when it comes to generalizing to unseen data [30].
GCN also becomes computationally expensive as the num-
ber of convolutional layers increases. GraphSAGE and GAT,
similar to GCN, are designed to capture neighboring features
based on graph structures. During model training, for each
node, GAT uses the attention technique to compute attention
scores for its neighbors. This process becomes computation-
ally expensive, particularly for large and dense graphs [81].
In contrast, GraphSAGE addresses this issue by employing
sampling techniques to handle the computational challenges.

In GraphSAGE, the target node’s neighbors are randomly
selected at first. Subsequently, the target node and its neigh-
boring nodes are collectively aggregated to generate a novel
feature representation for the target node. The newly cre-
ated vector comprises the feature information of the target
node as well as its neighboring nodes. Also, GraphSAGE
enhances model optimization by using small batch training
and different aggregator functions for neighbors’ features.
The aggregation function, which takes the representations of
a node’s neighbors as input and produces a new representation
for the node, is the most important component of a GNN
layer. There are three types of aggregator functions: mean
aggregator, LSTM aggregator, and pooling aggregator. The
mean aggregator computes the mean of adjacent vectors. The
LSTM aggregator uses LSTM networks to properly man-
age and evaluate data received from nearby nodes, whereas
the Pooling aggregator employs max-pooling after neural
network-based neighbor processing.

Fig. 3 illustrates the flow of the sample and aggregate
approach for GraphSAGE. Initially, nodes will be sampled in
the network from the local neighborhood of the considered
node. Then, child node information will be aggregated at
the first level using a selected aggregate mechanism, e.g.,
the mean aggregator. In our study, we used mean aggregator
function. In the second pass, the final aggregation will happen
at the node level.

B. EVALUATION METRIC
To gauge the efficacy of the embedding-based kNN graph-
constructed proposed model, well-established metrics for
binary classification were used in this study. These metrics
included accuracy, precision, recall, and f1-score. These met-
rics helped in identifying valuable insights into the model’s
ability to generalize as well as make accurate predictions,
ultimately guiding its optimization. In addition, a confusion

matrix was also computed to identify true positive (TP), false
positive (FP), false negative (FN), and true negative (TN)
metric values [18], [33]. To understand further, TP denoted
the accurate identification of severely injured records by the
classifier model. FP represented instances where non-severe
records were erroneously classified as severe, TN signified
the correct classification of non-severe records, and FN indi-
cated cases where severe records are incorrectly classified as
non-severe.

Accuracy =
TP + TN

TN + FP + FN + TP
(1)

In this study, accuracy was quantified by calculating the
ratio of true predictions (TP +TN) to the total number of
predictions made (TP + FP + TN + FN), where TP and TN
denoted cases in which the model correctly predicted actual
severe and non-severe cases, respectively. On the other hand,
FN and FP represented cases where the model incorrectly
predicted actual severe and non-severe cases, respectively,
by marking them as non-severe and severe. The TP, FP, TN,
and FN values were also helpful in computing precision and
recall.

Precision =
TP

FP + TP
(2)

The precision metric was computed using the ratio of actual
predicted severe cases (TP) over all samples that were pre-
dicted as severe cases (TP + FP), where FP denoted cases
where non-severe cases were predicted as severe cases and
TP indicated actual predicted severe cases. It demonstrated
the model’s ability to make accurate positive predictions,
indicating how many of the predicted positive cases were
positive.

Recall or Sensitivity or TPR =
TP

TP + FN
(3)

On the other hand, the recall metric, also referred as the true
positive rate (TPR) or sensitivity, was calculated using the
ratio of actual severe cases (TP) over all samples that were
truly severe cases (TP+ FN). In other words, recall evaluated
the ability of the model to accurately detect all instances
of positive records within the set of actual positive records.
To summarize, recall in a model referred to its ability to
correctly recognize all positive instances, while precision per-
tained to its ability to accurately identify only those instances
that are relevant.

F1 − score = 2 ×
Precision × Recall
Precision + Recall

(4)

We also employed the F1-score to evaluate model perfor-
mance, which is a harmonic mean of recall and precision.
This metric helps in identifying a value that would balance
both precision and recall values.

The other two metrics that are seldom used are TPR and
false positive rate (FPR) [18]. TPR was calculated using the
same method as recall. However, FPR quantified the percent-
age of negative records (non-severe accidents) that the model
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mistook for positive records (severe cases).

FPR

=
FP

FP + TN
(5)

MCC

=
TP × TN − FP × FN

√
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

(6)

Another metric commonly used in classification problems
is the Matthews Correlation Coefficient (MCC). Similar to
accuracy, this metric also utilized TN, FP, FN, and TP, and
its value ranged from −1 to 1, where −1 indicated the worst
performance and +1 denoted the best performance of the
model [77]. It differed from accuracy in away that it produced
a high value only in cases where it could correctly predict the
majority of positive records as well as negative records [78].
McNemar’s test [82], which was a statistical significance
test [83], was also used. It was used to test null hypothesis
to compare predictions of selected machine learning models.

Lastly, a confusion matrix was also used to assess the
efficacy of models by utilizing all key metrics (such as TN,
FP, FN, and TP) [18], [33]. For the binary classification
problem, the matrix is represented by a 2× 2 table, as shown
in Fig. 4.

C. HYPERPARAMETER OPTIMIZATION
In order to optimize the performance of the model, vari-
ous hyperparameters were adjusted using a GridSearchCV
technique, with the objective of maximizing the accuracy
metric employed for evaluating themodel. Using a systematic
grid search, multiple network architectures and configura-
tions were evaluated to determine the optimal network for
predicting the severity of traffic accident injuries. In Table 3,
configurations for hyperparameter optimization using Grid-
SearchCV for various ML models are outlined. For the
‘GNN’ model, embedding dimensions for categorical data
were optimized, in addition to the number of hidden layers,
hidden neurons, and drop rate. Also, while constructing the
graph, the number of neighbors, mode value, and metric
values are also optimized. The ‘num_neighbors’ attribute
represented the value of ‘k’ used to determine the number
of nearest neighbor nodes sampled for each node during the
aggregation step.

For the RF model, hyperparameter options such
‘n_estimators,’ ‘max_depth,’ ‘min_samples_split,’ ’max_
features,’ ‘min_samples_leaf,’ and ‘criterion’ were opti-
mized. The criterion option was helpful in determining on
how the impurity of nodes was measured when building
the trees. On the other hand, max_features hyper parameter
helped in better generalization of the model while controlling
the number of features that shall be considered at each split
in the tree. Similarly, for the ‘XGBoost’ model, hyperpa-
rameter configurations for ‘n_estimators,’ ’learning_rate,’
‘max_depth,’ ’min_child_weight,’ ‘gamma,’ ’subsample,’

FIGURE 4. Confusion matrix structure.

and ‘colsample_bytree’ were shown. In XGBoost, the
n_estimators parameter helped increase the number of boost-
ing rounds, which can improve the model’s performance.
Similarly, a higher value of the max_depth parameter allowed
individual trees in the ensemble to capture more complex
patterns. Lastly, for MLP based ANNs, various architectures
ranging from single layer to multiple hidden layers were
considered during hyper parameter trainings. To introduce
non-linearity to the ANN model, different activation func-
tions were also explored. ‘‘Adam’’ or ‘‘sgd’’ were used
as solver functions. More details on the hyperparameters
of XGBoost, RF, and ANN can be found at [70]. These
configurations served as a roadmap for the hyperparameter
tuning process, systematically exploring different parameter
combinations to optimize the performance of selected ML
and DL models.

Fig. 5 illustrates the experimental setup of optimized pre-
diction models. The UK crash dataset served as the basis
for the modeling of the four models namely: GraphSAGE,
RF, XGBoost, and ANN. For this study, we proposed an
embedding-based GraphSAGE GNN model. For the GNN
model, a data preparation step was undertaken, and to achieve
our goal, we used the Principal Component Analysis (PCA)
embedding technique [71] to convert all categorical variables
into embeddings. Then, we used the popular K-neighbor
graph-based model to construct a graph that considered data
records, relationships among each other.

Afterwards, we used the GraphSAGE model to predict
node level classification to infer whether node data records
related to severe or non-severe class. The performance of
the model was assessed using a set of metrics. On the other
hand, for the RF, XGBoost, and ANN models, preprocessing
involved converting categorical features into one-hot encod-
ing. These prepared datasets were then utilized to train these
models. Similar to the GNN model, their performance is also
evaluated against a set of predefined metrics.

V. FINDING AND ANALYSIS
Fig. 6 illustrates the top-level structure of the GraphSAGE
model, leveraging the capabilities of GNNs. The figure also
outlines the components and flow of the model for predict-
ing accidents based on various factors. PyTorch Geometric
(PyG), a DL library based on PyTorch [72], was employed
to implement a GraphSAGE-based GNN model. This library
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FIGURE 5. The experimental setup of optimized prediction models.

TABLE 3. Configuration for hyperparameters optimization using
GridSearchCV.

incorporates various graph-related functions, optimization
techniques, loss functions, and activation functions. These
include the SAGEConv layer, dropout layer, and the ReLU
activation function. SAGEConv is an improved and advanced
version of GraphSAGE [73]. SAGEConv enables the simul-
taneous learning of both the topological structure of each
node’s neighborhood and the distribution of node features
within that neighborhood [74]. It achieves this enhancement
by using a more powerful convolutional operator, allow-
ing it to capture intricate features. SAGEConv also differs
from GraphSAGE in terms of its aggregation method, where
SAGEConv considers node degrees and computes the aggre-
gate representation as the normalized average of neighbor

representations. This approach enables SAGEConv to capture
finer graph structure details, leading to amore comprehensive
representation.

The Google Colab platform served as the platform for
configuring the coding environment, while the Python pro-
gramming language was employed to create custom code,
leveraging libraries like NumPy, Pandas, PyTorch, and PyG,
among others. Embeddings were generated using the PCA
functionality of the scikit-learn library. Graph data was then
constructed using the kneighbors_graph of the sklearn neigh-
bors class and the torch_geometric data method. The dataset
was randomly divided into 70% training set, with 30%
evenly split between validation and test sets. GridSearchCV
was employed to optimize several parameters, as discussed
previously.

In this section, we demonstrated the results of research
that compared how well all machine learning models,
GraphSAGE, RF, XGBoost, and ANN, predicted the severity
of crash injuries. These models were evaluated based on
metrics, including accuracy, precision, recall, and F1-score,
and the results were presented in Table 4. As indicated,
the GraphSAGE model achieved the highest accuracy of
85.55%, followed by XGBoost with an accuracy of 83.36%,
and ANN and RF with 83.27% and 83.18%, respectively.
While comparing the results related to other performance
metrics, it was observed that the GraphSAGE achieved a
better recall of 0.777 as compared to other models, indicating
its ability to identify severe accidents better than the other two
models. It also indicated that the GraphSAGE model helped
in minimizing false negative (FN) cases where severe cases
could have incorrectly been classified as non-severe. On the
other hand, it also exhibited a precision of 0.915, which was
better than other models, including the RF precision value of
0.886, the XGBoost precision value of 0.900, and the MLP
value of 0.875, suggesting that the GNNmodel also helped in
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FIGURE 6. Graph neural networks model architecture.

TABLE 4. Performance comparison of GNN (GraphSAGE), RF, XGBoost, and ANN models.

minimizing the non-severe cases as severe (i.e., FP) compared
to other models. In other words, the GraphSAGE model
improved both precision and recall values, thus identifying
severe as well as non-severe cases more effectively. It was
also found that XGBoost results were comparable to those of
RF in identifying severe injury crashes.

To further explore the performance of the proposed Graph-
SAGE model, its confusion matrix was critically analyzed
and compared with the confusion matrices of the XGBoost,
RF, and ANN models, as shown in Fig. 7. The confusion
matrix helped in identifying model performance in terms of
its capabilities in predicting TP, TN, FP, and FN predictions.
The GraphSAGE model surpassed other models in terms
of classification performance. In the testing dataset, out of
1135 crash records, 432 records were accurately classified
as ‘‘severe’’ accidents. While analyzing confusion matrices,
it was also observed that the GNN model showed improve-
ment in TP as compared to other models, indicating that the
GNN model was a good predictor of severe cases. It was
also found that its TN values were comparable to other
models, although XGBoost performed a little better in this
case. It was found that all models had similar capabilities for
identifying non-severe cases. Similarly, it was noted that TP
or TN values got the gain by lowering FP and FN values.
To address this concern and to verify which model performed
well overall, we also computed MCC scores for all models.
The results indicated that the GNN model had better overall

performance as compared to other models. This suggested
that the GNN model showed the capability to make correct
predictions for both the majority of severe and non-severe
crashes.

The GraphSAGE model also had a lower FPR despite
misclassifying some crash records compared to the other
models. The FPR measures how often a model incorrectly
labels a negative sample as positive. With the lowest FPR
value, GNN model outperformed other models, indicating its
ability to minimize false positives. This suggested that the
model can assist the emergency response team in focusing
resources on severe cases and prioritizing their responses
effectively. The GNN model also surpassed the other models
in terms of TPR, which is equivalent to recall, with a value
of around 0.777. Similarly, AUC values were also presented
in the table, identifying the overall effectiveness of the GNN
model in identifying severe cases. The GNN model showed
an AUC value of 0.902, which was slightly lower than the
XGBoost value of 0.907, indicating that both models had
similar performance in discriminating between severe and
non-severe crashes.

Since both the GNN and MLP (ANN) models belonged to
the class of neural networks, we also compared their perfor-
mances in terms of performance losses, as shown in Fig. 8.
It was found that the GNN model took less time to converge,
indicating the efficiency of the GNN architecture in capturing
complex patterns in a lesser duration.
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FIGURE 7. Confusion matrix for crash injury severity for different models.

FIGURE 8. Performance losses for the GNN and MLP (ANN) models.

Cross-validation with 10-fold was also used to evaluate
the overall performance of all models. The average over-
all accuracy for each model was 83.40%, 82.80%, 81.52%,
and 82.18% for the GNN, XGBoost, RF and MLP (ANN)
models, respectively. In addition, precision, recall, and F1
score were also presented. The results indicated that the GNN
model performedwell overall in terms of overall effectiveness
in predicting severe cases. Its F1-score, being the highest
among the compared models, suggested that the GNN model
achieved a good balance between precision and recall, imply-
ing that the GNN model exhibited better performance in
correctly classifying severe cases whileminimizing both false
positives and false negatives.

We also utilized the McNemar test to evaluate the statis-
tical significance of the performances of our models. The
purpose of the test was to evaluate the null hypothesis and
determine if the two comparison models exhibited a similar
level of disagreement with the test predictions. We used
the Mcnemar (Statsmodels) python library to analyze and
compare the performance of the GNN models with other
models. The GNN, XGBoost, and MLP (ANN) all had
similar error rates, indicating that there was no significant
difference between them (p > 0.05). However, the GNN
and RF models did show different error rates, suggest-
ing that there was a significant difference between them
(p <= 0.05).
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TABLE 5. Cross validation performance measures of all models.

TABLE 6. Memory usage and computational overhead comparison for
models.

In terms of computation cost, both the GNN and MLP
(ANN) models took more time during training due to the
nature of their architecture and complexity as compared to
RF and XGBoost, which are tree-based ensemble models.
In addition, in terms of memory footprint, the graph data
required more memory space, but the trained GNN model
itself took less memory footprint as compared to all other
models.

VI. CONCLUSION
In this study, we used the GraphSAGE model to predict the
severity of road crash injuries. Our goal was to determine the
severity of these injuries and categorize them as either severe
or non-severe. To the best of our knowledge, this was the
first attempt to investigate the viability of using GNN to pre-
dict the severity of road crash injuries. Specifically, we took
advantage of GraphSAGE’s ability to analyze graph-based
data quickly and effectively in the context of binary clas-
sification. The rationale behind the research was to exploit
relationships among various crash records to uncover any
hidden patterns that traditional ML models might overlook.
The ability to predict an accident’s severity would be greatly
aided if these underlying patterns could be identified. This
would aid in both emergency preparation and accident pre-
vention. Furthermore, we presented an approach in this study
for creating graphs that used a kNN graph to create edges
between records. The graph was created using a balanced
crash severity dataset from the UK, which included spatial
and temporal factors, road configuration, vehicle characteris-
tics, and environmental conditions.

We divided the dataset into training, validation, and
testing subsets, with splits of 70%, 15%, and 15%, respec-
tively. We evaluated GraphSAGE based GNN and other
machine and deep learning models using metrics such as
accuracy, precision, recall, F1-score, MCC, AUC, and the
confusion matrix. The testing accuracy for the GraphSAGE

model reached 83.55%, surpassing the performance of other
models, and similar results were observed for other per-
formance metrics. These results showed that our proposed
embedding-based GraphSAGE model was better than other
commonly used ensemble models for predicting the severity
of crash injuries.

Compared to traditional models, the proposed GNNmodel
can leverage graph data to capture relationships and depen-
dencies within accident data (which is structured in graph
format). By representing crashes as nodes and their relation-
ships as edges of a graph, the proposed GNN model can
effectively learn both nodes’ features as well as their relation-
ships. Traditional models usually identify similar data points
based on feature importance towards the target variable [79],
whereas the proposed GNN model, due to its architectural
design, recognizes relationships among data points, thus con-
sidering both the edge connectivity within the graph and the
information embedded in the nodes. The captured informa-
tion can then be used to identify similar data observations
and to design and implement solutions, such as changes
to road infrastructure, improved traffic signage, and traffic
awareness, to enhance road safety.

VII. LIMITATION AND FUTURE WORK
Initially, the dataset exhibited an imbalance in its nature.
In this study, the random undersampling method was utilized
to achieve a balanced class distribution and to evaluate pre-
diction models. However, the random undersampling method
may lead to the removal of important data observations that
can cause underfitting of the model. Current imbalance han-
dling techniques are not well-suited for GNNs in their present
form. While techniques like SMOTE exist, their applicabil-
ity to graph data necessitates thorough evaluation in future
research. To mitigate this limitation, we plan to explore
different sampling techniques, such as cost-sensitive meth-
ods, to address the challenges of class imbalance. In future
work, we intend to investigate the effect of different sampling
techniques on the performance of GNN in crash severity
modeling. Looking ahead, our future endeavors will also
focus on exploring the utilization of imbalanced multiclass
datasets for predicting crash severity using GNNs.

The GNN model is considered a black box model and
therefore lacks the explanatory capability necessary to under-
stand its decision-making process. Our future work also aims
to address this limitation by incorporating interpretability
features into our model architecture to gain deeper insights
into both the graph architecture and the contributing factors
that influence the performance of our model.
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