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This thesis study the human discomfort feeling from the noise and Whole-Body 
vibration (WBV) exposure. The first part of the study involved the measurement 
of noise and vibration signals from five (5) vehicles operating on highway road. 
The whole-body vibration exposure on the seat-pan were averagely identified in 
the range of 0.1 to 0.8 m/s2 with operating speed from 40 to 110 km/h. The interior 
noise exposure was identified in the range of 65 to 75 dBA. In laboratory work, 
three (3) experiments were conducted to study human responses to noise and 
vibration. The first experiment involved thirty-six (36) combinations of the noise 
and random vertical vibration which imposed on twelve (12) subjects to study the 
subjective equivalence of noise and vibration. The subjective equivalence 
correlation was identified as 𝐿𝐴𝐸 = 35.04 log10 𝑎𝑣𝑑𝑣 + 79.122 where 𝐿𝐴𝐸 is the A- 

weighted sound exposure level and 𝑎𝑣𝑑𝑣 is the vibration dose value. The second 
experiment studied the discomfort feeling from the vibration on the seat pan in 
vibro-acoustic environment. Forty-two (42) combinations of noise and vibration 
were exerted to twelve (12) subjects which asked to be seated in a relaxed 
position on the vibration expander with a static feet support. Through the 
experiment, the discomfort model from vertical vibration expose on seat pan 
were identified as 𝜓𝑣 = 170.6082𝑎0.6662 where 𝜓𝑣 is the discomfort feeling from 

vertical WBV. The findings and data become the basis for analysis in the 
experiment three. The experiment was repeated in the third experiment with 
different condition where the static footrest was replaced with the vibrating 
footrest. Finally, a new model of discomfort from vibration and the noise in a 
vehicle cabin was proposed as 𝜓𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 170.6082𝑎0.6662(1 + ϵ𝑛 + ϵ𝑓−𝑛) where 

the ϵ𝑛 is the perturbation caused by noise exposure and the ϵ𝑓−𝑛 is the 

perturbation effect cause by vibration on feet with existence on noise exposure 
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Tesis ini mengkaji tahap ketidakselesaan manusia terhadap kebisingan dan 
getaran seluruh badan (WBV). Bahagian pertama kajian melibatkan pengukuran 
tahap kebisingan dan getaran dalam kenderaan yang beroperasi di atas jalan 
raya. Pendedahan terhadap WBV pada permukaan tempat duduk dalam 
kenderaan dikenalpasti pada julat 0.1 hingga 0.8 m/s2 pada kelajuan daripada 
40 sehingga 110 km/h. Tahap kebisingan dalam kenderaan dikenalpasti dalam 
julat 54 ke 75 dBA. Dalam kerja makmal, tiga (3) eksperimen telah dijalankan 
untuk mengkaji tindak balas manusia terhadap kebisingan dan getaran. 
Eksperimen pertama melibatkan tiga puluh enam (36) kombinasi rangsangan 
kebisingan dan getaran menegak rawak dikenakan terhadap dua belas (12) 
orang subjek untuk mengkaji persamaan subjektif antara kebisingan dan 
getaran. Perhubungan persamaan subjektif telah dikenalpasti sebagai 𝐿𝐴𝐸 = 
35.04 log10 𝑎𝑣𝑑𝑣 + 79.122 dimana 𝐿𝐴𝐸 adalah tahap pendedahan terhadap bunyi 
dengan pemberat A (A-weighting) dan 𝑎𝑣𝑑𝑣 adalah dose pendedahan terhadap 

getaran (VDV). Eksperimen kedua pula mengkaji ketidakselesaan terhadap 
getaran seluruh badan yang dikenakan pada permukaaan tempat duduk dalam 
persekitaran “vibro-acoustic”. Sebanyak empat puluh dua (42) kombinasi tahap 
kebisingan dan getaran telah dikenakan terhadap dua belas (12) subjek yang 
duduk dalam posisi badan selesa di atas permukaan mesin penala getaran 
dengan kaki diletak diatas permukaan yang statik. Memalui eksperimen ini, 
model ketidakselesaan terhadap pendedahan kepada getaran menegak pada 
permukaan kerusi dikenalpasti sebagai 𝜓𝑣 = 170.6082𝑎0.6662 dimana 𝜓𝑣 adalah 

tahap ketidakselesaan terhadap WBV. Dapatan kajian dan data-data daripada 
eksperimen ini menjadi asas kepada analisa dalam eksperimen ketiga. 

Eksperimen ini di ulang dalam eksperimen ketiga tetapi dengan keadaan 
berbeza dimana keadaan kaki subjek diletak kan pada permukaan yang 

menghasilkan getaran. Sebagai dapatan kajian yang akhir, model 
ketidakselesaan terhadap kebisingan dan getaran dalam kenderaan telah 

dicadangkan  sebagai  𝜓𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 170.6082𝑎0.6662(1 + ϵ𝑛 + ϵ𝑓−𝑛)  dimana  ϵ𝑛 
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adalah kesan gangguan daripada perdedahan terhadap kebisingan dan ϵ𝑓−𝑛 

adalah kesan gangguan daripada getaran pada kaki bersama pendedahan 
kepada kebisingan. 
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CHAPTER 1 
 
 
 

INTRODUCTION 
 
 

1.1 Research Background 
 

Determining human comfort in a vehicle cabin has been a great challenge for 
automotive manufacturers. It is the heart of the quality improvement works in a 
vehicle development since it plays a significant role in meeting customers 
expectation. In research, the interpretation of comfort is associated with 
discomfort where comfort is defined as the absence of discomfort (M. . Griffin, 
1996). Human comfort level in a vehicle cabin is caused by environmental factors 
such as temperature, noise, vibration and vision, and intrinsic factors which 
originate from human expectation, sensitivity of senses and behavior. Human 
exposure to noise and vibration in a vehicle cabin is one of the key factors in 
understanding an overall comfort level in a vehicle. In a vibro-acoustic system 
such as in a vehicle cabin, exposure to noise and vibration has a direct impact 
on a vehicle passenger. In the scope of a commercial and passenger vehicle, a 
seated person will be exposed to the vibration on the seat pan, back rest, feet 
and an additional of hand arm exposure for a driver. The exposure to noise and 
vibration are longer viewed as the only source of annoyance which need to be 
reduced. In fact, the appropriate noise and vibration exposure have been viewed 
as a source of pleasant driving experience and an attractiveness of a vehicle 
which are affecting the perception of the quality impression of a product (Genuit, 
2008). The understanding on the comfort level perceived from the noise and 
vibration by a human requires a multidisciplinary knowledge of noise and 
vibration from engineering, a theory of noise and vibration from physics, human 
physiology and senses, as well as human responses from psycho-physics which 
is a sub-field of an experimental psychology. 

 
Human discomfort in a vehicle cabin is a very complex issue since it involves 
multiple internal and external factors that could affect the sensation based on the 
scope of the research. To simplify the condition, a passenger can be regarded 
as a part of a vibro-acoustic system coupled via the contact points of a steering 
wheel, seat, floor panels and pedal as a coupled person-machine system in 
vehicle cabin environment (Genuit, 2009). The exposure to the vibration can be 
categorized into two parts which are the whole-body-vibration (WBV) and the 
local vibration. The Whole-body vibration is about how the vibration transmitted 
to a human body affects the overall sensation or prevalence which can potentially 
affect health. The vibration is exerted at certain parts of the limbs but it affects 
the whole human body as if the whole body is undergoing vibration. It occurs 
when a human body part is supported by a vibrating surface and the vibration 
affects the other parts which is remote from the vibrating area (Mansfield, 2005). 
The effect of the WBV on human is associated with the feelings of discomfort, 
health issues (lower back pain), motion sickness, interference in activity and 
perception threshold. Previous studies indicated a strong evidence of correlation 
between the lower back pain with an exposure to the whole body vibration 
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(Bovenzi, Schust, & Mauro, 2017; Burström et al., 2017; Burström, Nilsson, & 
Wahlström, 2015; Health and Safety Executive, 2005; Ismail et al., 2015b; Robb 
& Mansfield, 2007; Rozali et al., 2009; Sani et al., 2015; Seidel, 2006; Troxel et 
al., 2016). The local vibration is the vibration effect on human where the effect 
only involves the body part which is in contact with the vibrating object or surface 
such as the hand-arm vibration (HAV) and the vibration on feet. The significant 
impact of an exposure to HAV has been associated with the white finger 
syndrome (Anselm et al., 2013; Bahri et al., 2016; Burgess & Foster, 2012; Fe, 
2001; Futatsuka et al., 2005; Sharma & Singh, 2016; Shivakumara & Sridhar, 
2010; Su et al., 2013; Welsh, 2012; Yamada & Sakakibara, 1994). In terms of 
human physiology, the construction of the hand arm and the foot knee system 
are similar which lead to a theory indicating that the vibration transmission on 
feet most likely to have the same effect as hand-arm vibration (HAV). 

 
 

The exposure to noise in a vehicle cabin originates from various parts in a motor 
vehicle such as the engine, transmission, exhaust, tire rolling noise, wind noise 
and powertrain parts which are transferred directly to human hearing in a vehicle 
through the structure borne or the airborne noise. The dominant pathway for low 
frequency noise between 400 Hz to 500 Hz is through the structure borne, 
whereby the mid to high frequency is through the airborne (Crocker, 2007). The 
objective evaluation of noise involves the measurement of the sound pressure 
level (SPL) or the psychoacoustics parameters such as loudness, sharpness, 
roughness and fluctuation strength. Various methods have been explored to 
precisely quantify the vehicle interior noise and subsequently determine the 
sound quality level of the vehicle (Al-Dhahebi et al., 2017; Duan, Wang, & Xing, 
2015; Eisele et al., 2010; Krylov, 2002; Musser, Manning, & Peng, 2012; Putra, 
Wong, & Jalil, 2014; Skrúcaný et al., 2015). The sensation towards noise is 
studied in psycho-physics where the responses from the noise stimuli can be 
correlated with the objective noise parameter by applying the Steven’s Power 
law. The growth function and constant were quantified to predict the human 
responses from noise. This concept has been used to quantify the discomfort 
level perceived by a human (or so-called annoyance) when exerted with the 
noise stimulus. 

 
Human exposure to noise and the whole-body vibration level in a vehicle cabin 
have been studied extensively which involved the work of measurement, 
evaluation and an assessment of noise and vibration level separately according 
to recognized standards. The measurement process involves the usage of a 
transducer which converts physical signal into electrical signal. The signal will 
then be amplified through the signal conditioning process before it undergoes 
through the signal processing stage where the signal will be filtered accordingly. 
The accelerometer is the transducer used for the vibration whereby the 
measurement microphone for quantifying the noise through the recording of a 
sound pressure fluctuation. The accuracy of the measurement will depend on 
the good selection of the sensitivity and the dynamic range of the transducer. 

 
 

Besides the measurement, the evaluation of noise and the vibration step are also 
important in order to consider “human factor” to the quantity measured. The 
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evaluation of process is done by referring the values to the related theory of 
human sensitivity to noise and vibration so that the value is quantified 
accordingly. The measured value will need to be evaluated with different 
weightings for different frequencies and directions. In the case of the whole-body 
vibration, the weighting of “Wk”,”Wd” and “Wf” were suggested in International 
Standard ISO 2631 part 1 (International Standard Organization, 1997) to quantify 
the vibration exposure on the seat pan, back rest, on the feet and in a recumbent 
position with respect to its translational axes of X-axis, Y-axis or Z-axis. It also 
depends on the mode of a human responses which can be in term of the comfort 
level, vibration perception, health related factor or motion sickness. In the 
quantification of the noise, the weightings used to address the human hearing 
sensitivity towards the frequency of sound are the A-weighting, B-weighting or 
C-weighting. Previous studies suggested some range of values of noise and 
vibration exposures on human in a vehicle but for different environment, 
condition and measurement setting (Galvagno, Vigliani, & Nesci, 2018; Nahvi et 
al., 2006; Nahvi, Fouladi, & Nor, 2009; Nassiri et al., 2014). Thus, these previous 
findings can be as references or benchmark, but not to be generalized to suit 
certain conditions in a study. 

 
 

In an automotive noise and vibration harshness (NVH) practice, the noise and 
vibration in a vehicle are evaluated and assessed separately. The bench- 
marking process will be identified as the target objective evaluation. The noise 
and vibration level will be measured, and the quality refinement will be conducted 
to meet the benchmark values of the noise and vibration. The recent 
advancement in the study of human response to the noise and vibration 
suggested that the noise and vibration caused different effect on human when it 
is exposed separately and as a combined modality. The interaction between the 
effect of noise towards discomfort from the vibration and the effect of vibration 
towards discomfort from the noise could lead to a different interpretation of the 
real comfort felt by a human in a vehicle cabin. In addition, the effect of “masking” 
between noise to noise, vibration to vibration, noise to vibration and vibration to 
noise will alter the comfort and subsequently cause a misleading evaluation on 
the comfort level when evaluating the noise and vibration separately in a vehicle 
cabin. 

 
The integration of knowledge in a human response to noise and vibration into 
the knowledge of automotive NVH is an important step towards improving the 
vehicle quality refinement process. It involves the application of psycho-physics 
investigation towards stimuli (noise and vibration) which convert into a 
meaningful model to predict the comfort or discomfort level from the noise and 
vibration in a vehicle. Thus, this study investigates the human discomfort level 
when exposed to the combined noise and the whole-body vibration in the vibro- 
acoustic environment such as in a vehicle cabin. It explores the application of 
knowledge in human response to noise and vibration into an automotive 
refinement process for noise, vibration and harshness (NVH). The concept of 
subjective equivalence of noise and vibration are further explored with applicable 
interpretation. The perturbation effect caused by different stimulus to the 
discomfort from the whole-body vibration in a vehicle is also investigated. The 
vehicle quality assessment from the noise and vibration in a vehicle cabin is 



© C
OPYRIG

HT U
PM

4  

proposed for an enhanced comprehensive approach in the vehicle development 
stage. 

 
 

1.2 Research Objectives 
 

The aim of this research is to enhance the understanding of how a human 
respond to the effect of noise and vibration as combined modalities, and 
subsequently predict the discomfort from the whole-body vibration in vibro- 
acoustic environment. The predictive model explores the improved method on 
quantifying the discomfort level in a vehicle cabin from the combination of noise 
and vibration. The main objective of the research is to predict the human feelings 
of discomfort from the combination of noise and the translational whole-body 
vibration in a vibro-acoustic environment. To address the research gap from the 
literatures, some important research questions need to be answered. 

1. What is the range of the noise and vibration level exposed to a human 
when a vehicle operates at different speeds on a typical highway road? 

2. How is the subjective equivalence curve of the noise and the vibration 
being formulated? The curve quantifies the subjective feeling of human 
from exposure to the combination of noise and vibration. The 
investigation of subjective equivalence of the noise and the vibration will 
improve the understanding of how the noise can be subjectively felt as 
the same sensation towards the vibration which leads to the knowledge 
of relative discomfort feeling between the noise and the vibration. 

3. How do the interior noise exposure and the vibration on the foot rest 
affect the feelings of discomfort from the whole-body vibration? The 
application of the perturbation theory is introduced to address the 
perturbation effect caused by an additional stimulus in discomfort. 

4. How can a comprehensive model of discomfort from the noise and 
vibration in a vehicle cabin be developed? 

 
Specifically, four research objectives have been identified to address these 
concerns. These objectives are: 

 
1. to identify the range of noise and vibration exposure of a passenger 

vehicle operating on highway with different operating conditions; 
2. to investigate the subjective equivalence of the noise and vibration in a 

vehicle by formulating the subjective equivalence curve of discomfort 
from the combination of the noise and vibration. 

3. to investigate the perturbation effect caused by noise and the foot- 
transmitted vibration towards discomfort from the vertical whole-body 
vibration; and 

4. to formulate a novel model for predicting the discomfort from the noise 
and vibration in a vehicle cabin. 

 
It is hypothesized that the range of noise and vibration exposure for a passenger 
vehicle operating with different speeds on the highway road is consistent with 
the previous findings from the literatures with the same condition of 
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measurement and evaluation. The usage of different backgrounds such as 
different vehicle types, different operating speeds and a potentially different road 
surfaces roughness on the highways are expected to produce different values of 
noise and vibration. However, the range is expected to be consistent. The other 
research concern is that the subjective equivalent curve which is expected to be 
different based on the range of noises and vibrations, as well as the frequency 
content used in the study. However, the similar trend is expected to be derived 
accordingly. The quantification of masking or synergistic effect caused by the 
noise and the foot-transmitted vibration on discomfort from the whole-body 
vibration and the application of perturbation theory are expected to produce more 
realistic approximation to predict the discomfort level in a vehicle cabin. 

 
 

1.3 Research Scope and Limitation 
 

The research scope and limitation were determined earlier while planning the 
research work. The work was narrowed down to smaller scope to prevent more 
complexity and uncertainties. The scope and limitation of the research can be 
discussed in term of field work and laboratory experiment. 

 
1.3.1 Scope and limitation in field work 

 
This research focuses on investigating the noise and the vibration in vehicle 
cabin of five used vehicles with updated record of periodic maintenance and no 
major problem while in operation. The vibration measurement work in the 
vehicles focused only on the seat pan, back rest and foot rest as to reflect the 
vibration occur to vehicle passenger in relaxed upright seating posture with the 
head not touching the head rest. Therefore, the vibration on the steering wheel 
and head rest was excluded in the research. The measurement of the vibration 
is limited to the translational vibration of x- y- and z-axis from the vehicle seat- 
pan, back rest and foot rest. The vibration on the vehicle floor is only measured 
in a vertical direction. The vibration measurement only considers the vibration 
from 1 to 100 Hz. This is aligned with ISO 2631-1 which indicated that the 
vibration measurement frequency range to study comfort must consider 0.5 Hz 
to 80 Hz and the frequency below 1 Hz only suitable to study motion sickness. 
In addition, the frequency band limitation for the frequency weighting band- 
limiting filters is indicated to be at 100 Hz for the low pass (International Standard 
Organization, 1997). For noise, the range was selected to be 20 Hz to 20000 Hz 
which according to the range of human hearing and quantified using A-weighting. 
The condition for all the vehicles were ensured to follow the same setting as 
below: 

 
1) All vehicles were driven on the same road lane during measurement. 
2) The measurement only involve vehicle at speed of 40,60,90 and 110 

km/h. 
3) All vehicle window will remain closed during the measurement period. 
4) The age of all the vehicles used was between 4 to 17 years with valid 

periodic maintenance record and did not produce any abnormal noise 
and vibration during operation on highway road. Therefore, no 
significance difference due to vehicle condition and age. 
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5) The extreme condition which can cause extreme signal of noise of noise 
and vibration was avoided. As the control measure, the measurement 
was conducted without pass-by noise from heavy vehicles, motorcycle 
and very minimal pass-by noise from another vehicle. The road also 
considered smooth highway road without pot hole, rumble strip, bumps 
or other type of irregularities. 

 
 

In term of the safety of the measurement process, the vehicle driver must 
possess a valid driving license and was asked to focus on the driving all the time 
during the session. The driver is required to just listen to the instruction of the 
vehicle speed that need to be driven. All the road safety regulations were 
followed strictly. The random vibration measured on the seat pan, back rest of 
the seat and the feet in vehicle originated from the vehicle powertrain, road 
excitation and engine which transferred through vehicle structure, to the vehicle 
seat then reach human who seated on the vehicle seat. For noise, the recorded 
noise in vehicle cabin on highway road would capture the vehicle interior noise 
as well as exterior noise. However, the pass-by noise from other vehicle during 
driving had been minimized during measurement period. The measurement was 
conducted without any heavy vehicle or motorcycle pass-by nearby the vehicle 
during the session. 

 
1.3.2 Scope and limitation for laboratory experiment 

 
For the lab experiment, the vibration stimulus only involves the random vertical 
vibration with frequency range of 1 to 20 Hz which generated by electrodynamic 
shaker. The noise stimulus for the lab experiment was only limited to the study 
of noise exposure level for 61, 71, 77, 84, 87 and 89 dBA which reproduced from 
noise sample from a sedan vehicle at the operating speed of 60 km/h. The 
human subjects were instructed to pay attention and only evaluate the noise 
stimulus from the head phone and the vibration stimulus from the vibration 
shaker. The safety measures taken for the laboratory experiments are as below: 

1) The subject must wear the 2-point safety belt which provided during the 
experiment. 

2) The subject must fill up the consent form before participate in the 
experiment. 

3) The emergency button is available on the vibration machine. In the case 
of emergency, the subject is required to say ‘stop”. Then the emergency 
button will be pushed immediately. 

 
 

Besides, only healthy subjects were selected for the experiment. All the subjects 
were interviewed and declared to have no hearing issues and no disease related 
to back pain or musculoskeletal disorder. The vibration limited on the seat pan 
and foot. No backrest is considered as it will add the complexity to the model and 
can change human responses due to the vibration exerted on backrest. 
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1.4 Novelty and Contribution 
 

The research involves an in-depth investigation on the human discomfort 
feelings from the combination of the noise and the vibration exposure in a vehicle 
cabin. The novelty parts of the research are 

 
1)  The formulation of the new predictive model of a human discomfort from the 

combined noise and the vibration by quantifying the perturbation effect from 
noise and vertical vibration on footrest. The significant contribution of the 
research work is a new method to quantify human discomfort from the 
combination of noise and vibration. 

2) The investigation of the antagonistic and the synergistic effects from the 
interaction of the noise exposure and the vibration of feet to the discomfort 
from the whole-body vibration. The concept of the “perturbation effect” is 
introduced as part of an overall discomfort model using the perturbation 
theory. 

3) The new subjective equivalence curve was formulated to improve the 
understanding of the relative discomfort from the noise and the vibration. 
The work of measurement and the evaluation of noise and vibration signal 
in vehicles contribute to strengthen the existing literatures for the similar 
work conducted in Malaysia environment. It would be beneficial for any 
future work related to the vehicle interior noise and vibration. 

 
The new predictive model of discomfort from noise and vibration will contribute 
to the potential application in automotive industry. Vehicle manufacturer can 
apply the model to evaluate the relative discomfort level from noise and vibration 
in vehicle cabin during vehicle refinement process. In term of contribution to any 
standards, the new model is believed to be more accurate compared to 
evaluation using relative value of the stimulus (either noise or vibration). The 
synergistic effect or antagonistic effect will tend to make the evaluation to be 
underestimate or overestimate from the real feeling of discomfort. As the vibro- 
acoustic environment exert both noise and vibration stimuli concurrently, the 
complexity to describe discomfort level can be approach using this new model. 
The effect of synergistic and antagonistic of noise and vibration can be reviewed 
by the National Standards Center such as SiRIM to improve the existing 
standardized methodology on measuring and evaluating noise and vibration in 
a vibro-acoustic environment. 

 
 

1.5 Research planning and thesis arrangement 
 

1.5.1 The research milestone 

To achieve the research objectives, the sequence of research works has been 
designed according to the needs of information and the necessary 
understanding before commencing to the formulation of the predictive model. 
The first stage of literature reviews accumulated the required basic knowledge 
related to human response from the combination of noise and vibration as well 
as the progress on the development of human response model which spans from 
the basic idea on quantifying noise and vibration separately into the idea to 
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model the responses to noise and vibration as a combined stimuli. The recent 
progress of the knowledge on interaction of noise and vibration stimulus on 
human sensation has open up an idea of new predictive model of discomfort 
from noise and vibration based on the concept adapted from perturbation theory. 
The model is expected to be applicable in automotive noise, vibration and 
harshness (NVH) refinement process. 

 
 

The second stage involves the measurement and evaluation of noise and 
vibration signal in vehicle. The field study verified that the range of noise and 
vibration stimuli used in the laboratory experiments so that the result from the 
experiment can be applied to the case of noise and vibration exposure in vehicle 
cabin. Besides, the literatures related to noise and vibration exposure for 
operating vehicle in Malaysia was found to be scarce. The work of measurement 
and evaluation of noise and vibration signal in this research is expected to 
contribute to the existing literatures in terms of verifying or providing new 
perspective of noise and vibration exposure in vehicle cabin. It is vital to highlight 
that the objective of the measurement was not to study the comparison of vehicle 
brands. The key information behind this measurement work was to obtain the 
range of noise and vibration exposure in operating vehicles and study the 
consistency of the findings with existing literatures of noise and vibration 
exposure in operating vehicle. The idea was that the field study in the literatures 
were conducted in different environment setting. Highway road on different 
geographical surface, different vehicle used and different soundscape might 
cause different vibration excitation. The significant impacts of the field 
measurement work are to: 

1) Contribute in verifying or compare the existing literature of the range of 
noise and vibration exposure in vehicle with various operating speed on 
highway road. 

2) Verify that the noise and vibration exposure used for this research 
include the range on exposure in vehicle so that the resulting model can 
be applied to predict discomfort state in vehicle cabin. 

 
The third stage involves a psychophysics experiment to study the subjective 
equivalence from noise and vibration. As human perceives noise and vibration 
differently, the relative sensation from noise and vibration will improve the 
understanding on how human perceive discomfort from the two different stimuli. 
This will contribute to the framework of modelling the sensation to the noise and 
the vibration as a combined modality. The output of this experiment was the 
subjective equivalence curve of noise and vibration. The fourth stage was the 
extension of the third experiment where the experiment was conducted with 
different setting to study how human responses when exerted with different 
combination of noise and vibration level. The feeling of discomfort was evaluated 
by human subjects and translated into mathematical expression through 
statistical approach. The experiment produced an equation of human discomfort 
from whole-body vibration. The effect for perturbation noise also can be 
quantified when the data of this experiment combined with the final experiment. 
The summary of overall flow as in Figure 1.1. 
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Measurement, and evaluation of noise and vibration 

exposure in vehicle cabin 

 
Critical review on research background and literatures 

 
Start 

Perturbation effect caused by noise on the discomfort 

from whole body vibration 

Current model of discomfort feeling from vertical whole- 

body vibration 

Perturbation effect caused by vibration on feet on the 

discomfort from whole body vibration with the existence 

of noise stimulus 

The last experiment was designed to study the perturbation effect of noise and 
vibration on feet on the discomfort from whole-body vibration of human in vibro- 
acoustic environment. The study involved the development of vibrating footrest 
which will vibrate relative to the vibration of the shaker expander. Human subject 
would feel the vibration generated on the seat as well as at the feet at different 
vibration magnitude ratio. The analysis of the result produced the perturbation 
effect caused by the existence of vibration on the feet. The ultimate outcome of 
the research is a predictive model of discomfort from noise and vibration which 
can be applied to analyze noise and vibration exposure in vehicle through 
relative comparison value. The formulation also introduced a chart of 
perturbation effect of noise to the discomfort from whole-body vibration, as well 
as the perturbation. The application of the overall discomfort equation was 
discussed in the scope of automotive noise, vibration and harshness refinement 
work. The equation could be applied to identify the “relative” discomfort feeling 
of passenger from noise and vibration in vehicle cabin. The relative value can be 
quantified by setting the benchmark level that need or desired to be achieved. 

 
 
 
 
 
 

 
Objective 1 

achieved 

 

 

Objective 2 

achieved 

 

 

 

 

 

 

Objective 3 

achieved 

 

 

 

 

 

Objective 4 

achieved 

 

 

Figure 1.1: The simplified flow chart of the research project 

 
End 

Formulation of predictive model of discomfort from 

noise and vibration in vehicle cabin 

Subjective equivalence of noise and vibration 
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The findings from this research are expected to open up a different perspective 
on noise and vibration assessment in vibro-acoustic environment. The 
quantification of interaction between two stimuli of noise and vibration to human 
paved the way to more accurate prediction of how noise and vibration affects 
human discomfort level. The current practice of noise and vibration assessment 
as a separate entity has been successfully applied by neglecting the significance 
of the antagonistic or synergistic effect of noise and vibration. This can lead to a 
misleading indication of the real feeling or effect to the human. 

 
1.5.2 Thesis arrangement 

 
The thesis is divided into five chapters including the introduction, literature 
reviews, the research methodology, result and discussion as well as conclusion. 
Chapter 1 discusses the research background of a human response to noise and 
vibration. The research questions are generated based on the current issues and 
previous research findings which lead to the current research needs. The 
research objectives are identified as a guide to develop the research 
methodology and the case study. 

 
Chapter 2 highlights the literature review which consists of fundamental 
principles of a human response to the noise annoyance and the discomfort from 
the whole-body vibration. The related previous research literatures are reviewed 
in detail. The concept of noise and vibration as a combined stimulus are 
elaborated extensively to highlight the importance of this study. 

 
 

Chapter 3 elaborates on the methodology used in the research which involves 
laboratory experiments as well as the field measurement of the noise and the 
vibration in vehicles on highway roads. In overall, three psycho-physics 
laboratory experiments had been carried out for this research. The setting of all 
the three experiments were elaborated in term of the facility, machines and 
apparatus, the experiment instruction, safety measures, human subjects, human 
subject consent as well as the noise and the vibration source for the experiment. 
The reproduction of the vibration stimulus in the laboratory involves the usage of 
the electrodynamic shaker which set to produce different levels of random 
vertical vibration magnitude. The noise reproduction generated from the 
recorded sound in a vehicle operated on the road. 

 
 

Chapter 4 focused on the result and discussion of the research findings in the 
field study and the three laboratory experiments. The work of measurement and 
evaluation of noise and the vibration exposure to a human in a vehicle cabin 
were elaborated extensively. The vibration exposure on seat pan, backrest and 
foot rest in vehicle were discussed in details. The noise exposure in vehicle cabin 
operating speed of 40,60,90 and 110 km/h were tabulated analyzed. Finally, the 
range of noise and vibration exposure in vehicle within 40 to 110 km/h were 
discussed and compared with previous literatures. The findings from the three 
laboratory experiments also discussed thoroughly. The first experiment 
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highlighted the new subjective equivalence curve was derived from the 
experiment and the equation was applied to verify discomfort model from this 
research. The second experiment highlighted the new model o discomfort from 
noise and vibration. The last experiment produced the perturbation effect charts 
from noise and vibration on feet and subsequently led to the formulation of a new 
model of overall discomfort from noise and vibration. 

 
 

Chapter 5 summarized the thesis by elaborating the conclusion and 
recommendation. The conclusion recap on how the objectives of the research 
were achieved and the potential application of the new model which developed 
from this research work. The recommendation outlined the future research gap 
as well as further extensive work that can be considered to improve the model. 
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