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Abstract— Speech recognition from a distance, also known 

as far-field automatic speech recognition, uses machine learning 

for processing. However, environmental conditions often 

corrupt speech recorded from a distance, causing disturbances. 

To obtain desired speech from corrupted signals, various 

techniques are used, such as de-reverberation, source 

separation, denoising, and acoustic beamforming. The aim is to 

design a robust and multi-condition adaptive system in far-field-

based automatic speech recognition systems. This review paper 

focuses on speech enhancement for the future of speech with 

progressive technologies like deep learning and machine 

learning. It highlights the extensive research on beamforming-

based speech enhancement over the past few years, based on 

different techniques, performance, advantages, limitations, and 

scope for improvement. Finally, this paper explores the smart 

city applications that benefited from speech enhancement and 

beamforming.  

Keywords—Speech Enhancement, Beamforming, IoT, 

Industry 4.0, Smart City, Artificial Intelligence. 

I. INTRODUCTION  

Speech signal processing, including speech enhancement, 
speech recognition, and speaker recognition in a system, has 
evolved to recognize and take the required steps to process the 
signal for real-time application. Speech signals are complex, 
but inherently easy to obtain, and there are different noises 
around. Speech enhancement techniques have become a 
crucial part of this field as they help reduce noise, improve 
speech quality, reduce distortion, and minimize unwanted 
signals to the greatest possible level [1]. This review 
highlights the extensive research on speech enhancement 
using beamforming. 

Real-time applications such as Google, Alexa, and Siri are 
prevalent [2]. Researchers are focusing on a far-field 

environment as applications are prevalent in all 
interdisciplinary fields of home automation, industry 4.0, 
healthcare, and "smart city" projects. In the past few years, the 
field of speech enhancement has grown with the development 
of denoising techniques such as spectral subtraction [3], 
Wiener filtering [4], subspace methods [5], and statistical 
model algorithms [6]. However, the denoising techniques face 
limitations in suppressing noise in non-stationary 
environments. Enhancement techniques include the widely 
used Weighted Prediction Error (WPE) method [7]. WPE uses 
linear filtering to remove late reverberation by reducing Room 
Impulse Response (RIR) length, but it does not deal with noise, 
and performance degrades in unstable RIRs. Another de-
reverberation technique is inverse filtering, which uses 
deconvolution to recover the effects of RIR, although it faces 
problems in fully implementing the system [8]. Since 2010, 
the focus on speech enhancement and speech-related systems 
was shifted to deep learning. Commercial applications of 
systems that rely solely on speech face intensified background 
noise; distance involves multiple source images, speech 
distortion, reverberant speech, and dramatically affects 
accuracy.  

In recent years, the development of speech enhancement 
techniques has been outlined in several studies [9][10][41]. 
These techniques have been implemented using neural 
network (NN) in different domains to extract features, 
proposed time-synchronized clean and noisy speech pairs, 
such as feature mapping [11], and time-frequency masking 
depicted high performance in low SNR at very high 
reverberant conditions [12].  

Joint training with an acoustic model is another effective 
enhancement with NN that performs significantly better than 
the conventional method [13]. CLDNN, which is a 
combination of Convolution Neural Network (CNN), Long 
short-term memory (LSTM), and deep neural network (DNN), 
outperforms individual modules by reducing the word error 
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rate (WER) value. It is interesting to note that CNN with 
LSTM performed better than DNN with LSTM and the better 
selection of weight initialization was uniform random weight 
initialization than Gaussian random weight initialization [14]. 
Other systems have proposed multichannel speech 
enhancement for ASR systems by combining acoustic models 
with deep neural network frameworks [15], and these 
techniques outperform traditional enhancement beamforming 
methods. The study reported in [16] claims that the model can 
be made robust by training the system with various 
microphone settings to account for data mismatches.  

Furthermore, the quality of training provided to the NN is 
also an essential factor in providing robustness [17]. Training 
a system with the most realistic test environment can 
continuously improve the system, but it is practically difficult 
to obtain such a training set with a very realistic environment. 
Recently, researchers have generated data for solving issues 
of far-field or distant talking environments by considering 
suitable real-time noises and reverberations, such as DIRHA, 
CHIME-6 challenge, and SRI [18][19]. Based on research so 
far, this paper focuses on the field of beamforming-based 
speech enhancement. 

II. CONTRIBUTION OF THIS PAPER  

This paper discusses the recent advancements in speech 
enhancement using Beamforming and the improvements that 
have been made in this technology. The article also 
categorizes the methods used to overcome the main 
limitations of different techniques. Finally, it outlines the 
significant changes that have been made to applications using 
these techniques. 

III. RELATED WORK 

Beamforming-based speech enhancement can be divided 
into two main parts: data-dependent (e.g. delay and some 
beamformer) and data-independent (e.g. minimum variance 
distortion less response (MVDR), the generalized sidelobe 
canceller (GSC), and the linear constrained minimum 
variance (LCMV) beamformer). Hybrid techniques are 
popular among adaptive beamforming approaches. The study 
uses the Kronecker product to achieve far-field wideband 
speech signals using frequency-domain Beamforming of 
large sensor arrays. This approach splits a Uniform Linear 
Array (ULA) into smaller virtual versions called virtual 
ULAs (VULAs) and uses fewer data to estimate the statistics 
obtained from these VULAs in the form of Minimum 
Variance Distortion-free Response (MVDR) beamformers 
from individual arrays. Kronecker products later used 
combinations of these beamformers resulting in hybrid 
beamforming techniques, with half used as conventional 
beamforming and the other half used as MVDR beamformers 
[20]. When using time-frequency masking, batch and block 
processing is inefficient as they evolve to frame-by-frame 
processing in practical applications. MVDR beamforming 
utilizes frame-by-frame upscaling to boost the signal without 
delay to eliminate these problems. It combines MVDR with 
unidirectional Recurrent neural network (RNN) using 
masking estimation based on the Woodbury matrix identity. 
This approach successfully outperforms CHIME-3 baseline 
simulation with a short delay time [21]. With the increasing 
capabilities and efficient performance of deep neural 
networks. Acoustic beamforming implements deep 
eigenvectors as a part of a binary neural network (BNN) 
which estimates the presence of speech using probability 

masks obtained from the generalized eigenvalue (GEV) 
beamformer. It is implemented on CHIME-4 data, enabling 
better audio quality signals and reducing its computational 
requirements. In multi-path propagation, there are several 
challenges like reduction in SNR. A study suggests selecting 
elements in the codebook of Analog Beam-Formers (ABF) to 
obtain the highest sum rate. Generally, multi-carrier signals 
obtain the usage information of a single angle of arrival 
through learning in the system. The proposed system is a 
novel machine learning (ML)/DL architecture that 
continuously operates and avoids spectral efficiency loss due 
to periodic switching to a dedicated ABF to estimate the 
required statistics [23]. The CHIME-3 challenge in multi-
microphone conditions is a WSJ sentence recorded from a 
distance using a tablet using six microphones in a bus, street, 
cafe, and pedestrian noisy condition [24]. The baseline 
achieves a WER of 33%, but the proposed speech recognition 
notably achieves a WER rate of 11.4% [25]. However, in 
2019, the most effective results were obtained for multi-
microphone front-end speech recognition processing at 2.7% 
WER using an acoustic model topological combination of 
CNN layers with factorized time-delay neural network 
(TDNN) layers [26]. 

The Chime-5/6 challenge examines a dinner party scene 
with spontaneous dialogue, variable noise environments, 
reverberation and distortion. Despite the harsh conditions, the 
baseline can achieve a WER rate of 80%. After better 
architectural implementation of the backend system, 60% of 
the WER can be achieved. When source separation is 
combined with de-reverberation on a multi-microphone 
system, a WER rate of 43.2% is obtained [26]. CHIME-6 
outperforms other systems with a significant 30.5% WER in 
2020. Its concepts include deep learning-based iterative 
speech separation, SNR-based array selection, front-end 
fusion modeling, and official training data augmentation 
techniques [27]. The REVERB challenge combines text cues 
with WSJ datasets. These datasets were recorded from the far 
field at 2-3 m from the source and microphone array [28]. In 
a single-channel microphone system, the baseline achieved a 
WER rate of 44% in 2014. Implementation of the robust 
system resulted in an improvement from the baseline to 
22.2% [29][30].  

A significant result was achieved by modifying the front 
end and adding a multi-microphone system. A WER rate of 
6.14% was achieved using an MVDR beamformer 
implemented to cancel out the direct path signal. The real and 
imaginary (RI) components of that signal was used to filter 
the non-target signal for dereverberation [31].  

Table I highlights some critical points in several studies 
involving state-of-the-art speech processing for ordinary and 
far-field-based speech enhancement. The study focuses on 
recent years, from 2018 to the present. The widespread use of 
deep learning, neural network-based mask estimation, and 
machine learning-based beam selection can address the issue 
of noisy, reverberant, and complex conditions.  

The techniques listed under speech enhancement and 
beamforming are used to remove noise or reverberation from 
corrupted speech. Some techniques focus on both, while 
others aim to suppress noise and reduce speech distortion. 
However, despite combining these techniques, there has been 
no overall success in enhancing and eliminating corrupted 
speech. 



Table I.  Evaluated study of Beamforming in speech technology 

 
Usage Advantage Limitation/Issues 

The review discusses 

the four topics of 

acoustic impulse 

response models, 

spatial filler design 

criteria, parameter 

estimation algorithms, 

and optional post-

filtering techniques. 

[32]. 

 

Beamformers with 

the acoustic impulse 

response model, the 

spatial filter design 

criterion, the 

parameter estimation 

algorithm, and 

optional post-filtering 

require four 

transverse 

perspectives. 

However, the 

application of 

other technologies 

requires 

significant 

advancements. 

Using a binary neural 

network can estimate 

the presence of speech 

with a probability mask 

obtained from GEV-

PAN beamformers 

corrupted by the four 

types of noises [22]. 

 

Deep eigenvector 

beamforming obtains 

better speech quality 

and is 

computationally 

inexpensive. 

Accurate 

estimation of BNN 

in non-stationary 

environment is an 

issue. 

MNMF parameters are 

initiated and 

incremented to 

improve performance 

in unknown noisy 

environments by using 

online MVDR 

beamforming [34]. 

 

Even with changing 

acoustics, the system 

can adapt to speech 

from any place in the 

house. 

Computationally 

complex with 

inversions of SCM 

with MNMF. It 

still depends on 

steering vector 

estimations. 

The microphone’s 

implementation is   

external to overcome 

the possibility of 

degraded speech in 

noisy conditions for 

hearing aid using a 

beamformer for 

binaural speech 

enhancement [35]. 

 

Using an external 

microphone array, the 

look direction of the 

hearing aid user 

controls the beam 

pattern to improve 

intelligibility.   

Also, a binaural 

enhancement 

objective measure 

improves 

intelligibility. 

 

The analysis of 

simulated data 

happens at a 

shallow SNR level 

in a reverberant 

environment. The 

direction of the 

head controls the 

direction of 

capturing the 

signal, but it is not 

necessarily 

detected in real-

time accurately. 

To develop versatility 

in using neural 

networks on 

microphone pairs at 

different spacing and to 

use time-frequency 

mask to obtain estimate 

target and noise 

covariance matrices 

used for generalized 

eigenvalue (GEV)  

beamforming [36]. 

 

Overall experiments 

improve in SDR from 

4.78dB to 7.69dB on 

various array 

geometries. 

 

However, 

considering one 

interfering source, 

the latency is 

around 5s, making 

it riskier in real 

time applications.  

In order to deal with 

speech distortions in 

the presence of intense 

noise, the proposed 

system uses mask-

based LSTM for noise 

suppression, and the 

convolutional encoder-

decoder network 

(CED) for speech 

restoration uses a 

spectral mapping 

technique [37]. 

 

In unseen and highly 

non-stationary 

environments, 

achieved results are 

0.1 value better than 

state of the art in 

terms of PESQ.  

However, the 

improvement is 

not yet significant, 

and the method of 

combination used 

under higher 

mismatch may 

collapse. 

 

 

 

For multichannel 

speech enhancement, 

Beamforming and 

It helps improve 

intelligibility and 

speech quality in the 

There was an 

improvement in 

the PESQ, STOI, 

post-filtering are 

combined based on the 

neural network under 

the concept of single-

channel post 

filtering with the phase 

correction [38]. 

   

presence of multiple 

speakers due to a 

combination of post-

filtering. 

and SSNR only 

after the post-

filtering process, 

but the neural 

network-based 

Beamforming did 

not uplift the 

results from the 

MVDR method. 

Instead, it leads to 

unnecessary 

complexities with 

fewer 

improvements in 

values.  

A joint parabolic 

reflector (PR) model is 

used with a neural 

beamformer to remove 

interference speech and 

background noise from 

a noisy environment 

[39]. 

Under-five different 

noises, the 

experiment was 

carried out at various 

noise levels. Relative 

improvements 

noticed in the noisy 

conditions were 0.28 

in STOI, 1.31 in 

PESQ, and 11.9 in 

fwSegSNR. 

 

The system is 

complex, 

spectrograms 

show more  

significant 

distortions at high 

frequencies, and 

the PR model 

introduces speech 

distortions in the 

target voice. 

Kronecker product for 

far-field broadband 

speech signals 

implemented using 

frequency-domain 

beamforming of large 

sensor arrays. It splits 

the uniform linear 

arrays into smaller 

virtual versions called 

VULAs [40]. 

 

Hybrid beamforming 

techniques use one 

half as a traditional 

Beamforming and the 

other as MVDR, 

which leads to better 

extraction of the 

desired signal. 

The drawbacks of 

each beamforming 

technique still 

affect the 

performance. 

Moreover, it is yet 

to find application 

in a non-stationary 

environment. 

A novel ML/DL 

architecture for 

continuously operating 

the system avoids 

spectral efficiency 

losses from periodic 

switching to a 

dedicated ABF for the 

estimation of required 

statistics [23]. 

 

kNN and SVC 

approaches achieve 

around 95% of the 

achievable sum 

rate with optimal 

beam selection. 

Architecture is 

complex. 

To implement different 

spatial arrangements 

using MVDR 

Beamforming for a 

hearing aid person in a 

cocktail party scenario 

[42]. 

The microphone 

position on the 

forehead is most 

desirable as it leads to 

better 

communication. In 

addition, adding 

virtual microphones 

in the cocktail party 

scenario increases 

efficiency in low SNR 

scenarios.  

 

Due to the input 

data size of 2s, the 

delay of the 

proposed network 

architecture is too 

long to be 

applicable in an 

actual hearing aid 

application. 

The proposal of U-Net 

applies to a multi-in 

and multi-out 

architecture using 

neural Beamforming 

for multichannel 

speech enhancement 

[43]. 

Implementing Skip 

connection for the 

convolutional U-Net 

creates better utility 

of information. 

 Linear array 

formation and 

higher time 

consumption are 

significant 

limitations for 

real- time 

application.  

 

The HRI scenario 

requires an accurate 

estimation of the target 

source location and 

direction in a time-

In the HRI 

experiment, the 

average WER 

obtained by speech 

recognition engine is 

However, in real-

time, any 

introduced 

inaccuracies and 

latency in the 



varying acoustic 

channel [44]. 

 

19% lower than 

publicly available 

APIs and 34% lower 

than human testing 

modalities. 

system cannot be 

afforded. 

DNN is combined with 

a set of AD-HOC 

microphone arrays to 

reduce the probability 

of distant field 

environment 

occurrences. In 

addition, it requires the 

development of a 

simple time framework 

to synchronize 

channels with different 

delays [45]. 

 

The model with deep 

learning gave a 2.82 

SDR value at high 

SNR and -6.67 at low 

SNR. 

The novel system 

faces stability 

issues, feature 

extraction, and 

design under more 

critical acoustic 

conditions.  

 Practically 

implemented single 

and multi-microphone 

systems in video 

conferencing rooms 

[46].   

It focuses on the real-

time scenarios 

towards far-field 

multichannel 

performances of the 

systems. 

 

This section 

discusses the 

limited challenge 

scope for the 

experiments.  

  

     The architectures utilized in these techniques consider 

controlled environments up to a maximum of 5 meters. 

Therefore, the significance of the results is relative. 

An improvement in SDR is observed, ranging from 4.78 dB 

to 7.69 dB, using GEV beamforming on the LibriSpeech ASR 

dataset. The IEEE Corpus obtains values such as 0.28 in 

STOI, 1.31 in PESQ and 11.9 in fwSegSNR. 

     Most of these systems are effective but complex to apply 

to real-time applications. Time variant-invariant systems are 

rarely considered, but they are essential when dealing with 

real-time applications. It is a well-known fact that speech 

enhancement based on beamforming utilizing AI approaches 

requires high computational resources and is energy power-

consuming. Due to these challenges, implementing real-time 

applications is difficult [55]. However, some approaches can 

help overcome these challenges, such as cloud computing 

services [54]. Recently, a proposed method based on the 

wireless acoustic sensor network (WASN) platform of 

distributed microphones has shown real-time performance in 

speech enhancement based on beamforming using neural 

networks, smart sensors, and cloud and big data technologies 

[56][57]. These technologies can help to deliver smart 

services and applications in real-time. 

IV. INTERNET OF THINGS WITH SPEECH TECHNOLOGY 

The internet of things (IoT) is an evolving topic that has 

taken root in every sector of life; the post COVID world has 

needed rapid advancements in businesses, especially in 

healthcare. Internet is the backbone of this technology, and 

due to its ever-growing use, IoT can contribute to the 

betterment of communication [33, 47]. Speech enhancement 

based on Beamforming will be essential in applications that 

will be based on IoT, which is considered the future 

deployment of most of the technologies. In 2020, Amazon 

announced hundreds of millions of Alexa users across the 

globe; this shows the demand and impact value of voice-

controlled devices in the future. In addition, these devices use 

speech signals as commands, quality and intelligibility of 

these signals is very important to have sufficient experience. 

Home automation, media entertainment, and security systems 

are the first movers to the largest customers in the market. 

Human interaction with machines has rapidly changed from 

using simple words such as” hi”, “thank you”, and “sorry” to 

using speakers, security systems, locks, smart home 

appliances, thermostats. The expansion of voice shopping is 

estimated to reach billions by 2022 [48]. Usually, the distance 

of the speaker from these devices will be more than 4 meters, 

because of this reason the need of speech enhancement based 

on beamforming come to the picture and become very urgent. 

Fig. 1 is a depiction of applications under IoT-based speech 

intelligence systems integrated with beamforming.                       

      Voice-controlled applications are emerging rapidly; Data 

hogging is one of the major issues that can be solved. 

Furthermore, voice data hogging is necessary for the success 

of voice-controlled networks integrated in real-time for 

industrial and life science applications [49].        

      “Last mile” language adoption is the biggest asset in 

voice-enabled technology that aims to include thousands of 

global languages from local dialects to the “last mile”, where 

network solutions are hardest to reach. It is an innovative way 

to preserve the language and cultural history and bring the 

world closer. The biggest challenge is data availability in all 

global languages, making it challenging to train artificial 

intelligence (AI) platforms. In each language, word 

formation, pronunciation, grammar, and usage are very 

diverse and vary in complexity from each other.  

      Privacy by design (PbD) is another requirement for 

vehicles, homes, stores, workstations, and data security 

industries. Privacy has become the biggest concern of the 

future and maintaining personal files of customers has 

challenges. The new 5G technology has become a cyber 

security priority, earning customers’ trust and protecting 

products. Privacy by design protects personally identifiable 

information (PII) in processes and systems [49]. 

      Artificial emotional intelligence is self-explanatory, 

focusing on more natural expressions and communication 

with machines. A better understanding of a person’s 

emotional state reveals more about the surroundings and 

accepting the natural state for better mental health [49]. 

 
Fig. 1. Speech based IoT applications integrated with beamforming. 

V. INDUSTRY 4.0 AND SMART CITY  

    “Smart city” is a vast concept that includes many merged 

small-scale techniques. These techniques have a set of 

required parameters, but the wide range of connecting 

multiple devices is one essential criterion to cover an entire 

city base station [50]. Industry 4.0 applies small and large-

scale manufacturing unit for better control and monitoring. 

One of the most important areas that speech enhancement 

based on beamforming required to be involved with Industry 

IoT based speech 

intelligence 

Freedom from Voice 

data hogging

The “Last mile” 

for language 

adoption

Privacy by 

Design (PbD)

Artificial 

Emotional 

Intelligence



 
 
Fig. 2. Applications based on beamforming with IoT. 

 

4.0 and smart city applications such as automotive industry. 
Moreover, car voice controlling is essential service that can 

help to control the car by the voice command and the quality 

of these signals is crucial to have sufficient performance [51]. 

However, in such environment there are many noise sources 

that make such service very challenging because of the 

outside noise and interfering passengers signals [52]. Fig. 2 

is a description of futuristic applications of Beamforming in 

different technologies. After the attack of the coronavirus, the 

world improved healthcare systems. Even before the 

pandemic, the development of “smart systems” had made 

great strides, but the need for “smart hospitals” and “smarter 

technologies” became important and took center stage [53]. 

For example, the patients with voice pathologies don’t 

require to refer the doctors and they can easily get the 

feedback from doctors without the need of leaving their home 

[54], but in order to have accurate and robust system speech 

enhancement based on beamforming is required to be 

integrated with such service. 

 

VI. CONCLUSION 

      The creation of revolutionary breakthroughs will be risky. 

Advances in IoT and machine learning continue to evolve, 

and the lines of integration have become thinner and thinner 

over time. Challenges faced are relatively different, but some 

common issues such as rapid response, real-time dynamic 

environment simulation, and data security are recurring. This 

review highlights the role of beamforming in future 

technologies such as IoT and artificial intelligence. It 

extensively discusses the application and role of Industry 4.0 

concepts. These technologies are undergoing huge 

improvements as they conquer real-time applications more 

clearly. The latest research in Table I encourages new 

researchers to find solutions to complexity, faster speed, 

better coverage, and better technical sustainability. Hybrid 

models are popular because of their ability to accumulate 

individual skills and the new complexity added to them. 

Exploring ideas, creating balance, and innovating the future 

based on present challenges is a pertinent summary of this 

study’s review of speech-based technology. 
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