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ABSTRACT 
The internal flow between disks is used in various applications, including rotating machinery, air-

cleaning machines, food processing technology, and gas turbine rotors. The present study analyses the 

nanofluid flow between a non-permeable, stationary disk and a permeable, rotating, shrinking disk. 

Radiation and heat generation effects are included in the proposed governing partial differential 

equations and boundary conditions. Then, non-linear ordinary differential equations and boundary 

conditions are derived through the similarity transformations for numerical computation in MATLAB. 

Dual solutions from the computation prompted a stability analysis; only the first solution is stable. 

Enhancing thermal radiation and heat generation parameters reduces and increases the temperature 

profile throughout the internal flow. Meanwhile, increasing the shrinking parameter and Reynolds 

number reduces the radial and tangential velocities in some regions close to the stationary, non-

permeable disk. 
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INTRODUCTION 

 

Cooling-air systems such as gas turbine rotors usually involve fluid flow over more than one disk. 

The disk may rotate in close proximity to a stationary casing or near another disk that is either co-

rotating or, less frequently, contra-rotating (Kilic and Owen, 2003). Due to various applications of 

flows between disks, researchers have actively conducted studies with different working fluids, 

physical conditions, and controlling parameters. One of the earliest studies on the fluid flow 

between disks was conducted by Rajagopal (1992). This study considered viscous and viscoelastic 

fluids, and the flow problem was solved for symmetric and asymmetric solutions. Soong (2003) 

and Kilic and Owen (2003) then examined the flow between two disks rotating independently and 

with different speeds, respectively. Then, Khan and Mahmood (2016) discussed the 

magnetohydrodynamics (MHD) flow of Oldroyd B-nanofluid between infinite stretching disks. 

The MHD nanofluid flow between stationary and rotating disks was then analysed by Upadhya et 

al. (2021). Bilal et al. (2022) then extended this study with chemical reactions. The broad 

applicability of flow between disks has prompted various other research (see Awati et al. (2018), 

Weghal and Ashraf (2020), Ahmadian et al. (2020), Habu et al. (2022), Usman et al. (2022), 

Hussain and Xu (2022), Jalili et al. (2023), Khan et al. (2023), Ghasemi and Gouran (2023), and 

Umavathi et al. (2023)). Recently, Yahaya et al. (2023) discussed the nanofluid flow between a 

non-permeable, stationary disk and a permeable, rotating disk in the presence of thermal radiation 

and heat generation. In this study, dual solutions were found when considering the shrinking case, 

and the highest heat transfer rate was produced by Mn-ZnFe2O4/C2H6O2 nanofluid.  

Numerical computation of a boundary value problem may result in a unique solution, no 

solution, or multiple solutions. For example, Zulkifli and Md Ali (2023) discovered dual solutions 

when considering the flow of nanofluid over a permeable shrinking sheet. A stability analysis can 
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be conducted to identify the physically meaningful solution among the obtained multiple solutions. 

Merkin (1986) showed the stability analysis on dual solutions, which helps determine the 

realizability of the solutions in real applications. This study was then referred to and followed by 

other researchers, such as Zainal et al. (2021), Lanjwani et al. (2023), and Duguma et al. (2023), 

when dealing with multiple solutions. In these studies, only one solution was found to be stable 

and physically meaningful. The stable solution was noted to have an initial decay of disturbance, 

while the unstable solution contained an initial growth of disturbance.  

In the current investigation, the flow problem by Yahaya et al. (2023) will be extended with a 

comprehensive study on the effects of thermal radiation and heat generation on the nanofluid flow. 

The boundary conditions and partial differential equations that control the flow problem will be 

simplified and numerically solved in MATLAB. Then, stability analysis will be carried out to 

identify the stable and significant solution for the present study.  

 

MATHEMATICAL FORMULATION 

 

Figure 1 illustrates the physical model of the steady flow problem. A nanofluid is considered to 

flow between a stationary, non-permeable disk (lower disk) and a permeable, rotating, shrinking 

disk (upper disk) separated by a distance 𝑙 . Here, the distance 𝑙  is assumed to be very small 

compared to the radii of the disks (Ahmadian et al., 2020). (𝑟, 𝜑, 𝑧) are cylindrical coordinates with 

𝑟 − axis measured in the vertical direction and 𝑧 − axis measured in the horizontal direction. The 

rotating upper disk has a velocity of Ω 𝜀 with Ω as the angular velocity. Meanwhile, 𝜀 (0 < 𝜀 ≤ 1) 

is a regulator which controls the rotation of the disk with 𝜀 > 0  for rotation and 𝜀 = 0  for a 

stationary disk. Then, the nanofluid is composed of water (H2O) and ethylene glycol (C2H6O2) 

suspended by cobalt ferrite (CoFe2O4) and Mn-Zn  ferrite (Mn-ZnFe2O4) nanoparticles. The 

nanofluid temperature is given by 𝑇, while the temperature of the lower and upper disks is 𝑇1 and 

𝑇2, respectively.  

 

 
Figure 1. Physical model of the flow problem. 

 

Governing equations and boundary conditions 

The governing boundary layer equations for the flow problem can be expressed as (Upadhya et 

al., 2021):   
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𝑢 
𝜕 𝑤

𝜕 𝑟
+ 𝑤 

𝜕 𝑤

𝜕 𝑧
=
𝜇𝑛
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1

𝑟
 
𝜕 𝑤

𝜕 𝑟
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1
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1

𝑟
 
𝜕 𝑇

𝜕 𝑟
+ 
𝜕2𝑇

𝜕 𝑧2
],              (5) 

 

with thermal radiation and internal heating considered in the energy equation (5). The boundary 

conditions are:  

 
𝑢(𝑟, 0) = 0, 𝑣(𝑟, 0) = 0, 𝑤(𝑟, 0) = 0,         𝑇(𝑟, 0) =  𝑇1    at    𝑧 = 0,                      (6) 
𝑢(𝑟, 𝑙) = 0,       𝑣(𝑟, 𝑙) = 𝑟 Ω λ,        w(𝑟, 𝑙) =  𝜀 𝑤0,        𝑇(𝑟, 𝑙) =  𝑇2  at   𝑧 = 𝑙.                     (7) 

 

In the above equations, 𝑢, 𝑣, and 𝑤 are the velocity components along the 𝑟, 𝜑, 𝑧 −axes. Meanwhile, 

𝑤0 is the constant mass flux velocity with 𝑤0 > 0 for suction and 𝑤0 < 0 for injection, 𝑝 is the 

pressure, 𝑄0 is the heat generation/absorption coefficient, 𝑞𝑟 is the radiation heat flux, and 𝜆(< 0) is 

the shrinking parameter. 

Correlations and thermophysical properties of nanofluid 

The correlations and thermophysical properties of the nanofluid are given in equation (8) and Table 

1, respectively:  
𝜇𝑛
𝜇𝑓
=

1

(1 −  𝜙)2.5
,

𝜌𝑛 = (1 − ϕ) 𝜌𝑓 +  𝜙 𝜌𝑠,

𝑘𝑛
𝑘𝑓
=
𝑘𝑠  + 2 𝑘𝑓  − 2 𝜙 (𝑘𝑓  −  𝑘𝑠)

𝑘𝑠  + 2 𝑘𝑓   +  2 𝜙 (𝑘𝑓  −  𝑘𝑠)
,

(𝜌𝐶𝑝)𝑛 =
(1 −  𝜙) (𝜌 𝐶𝑝)𝑓 +  𝜙 (𝜌 𝐶𝑝)𝑠.  }

 
 
 

 
 
 

.                                          (8) 

 

Table 1. Thermophysical properties of water, ethylene glycol, CoFe2O4, and Mn-ZnFe2O4 

nanoparticles (Ahmed et al., 2019) 

Properties Water Ethylene glycol CoFe2O4 Mn-ZnFe2O4 

Thermal conductivity, 𝒌 [W/m 

K] 

0.613 0.349 3.7 5 

Heat capacity, 𝑪𝒑 [J/kg K] 4 179 2 382 700 800 

Density, 𝝆 [kg/m3] 997.1 1 116.6 4 907 4 900 

Prandtl number, 𝑷𝒓 6.96 204 - - 

 

The suffixes 𝑛, s, and f represent the nanofluid, nanoparticles, and base fluid, respectively. Further, 

𝜙 is the nanoparticle volume fraction, 𝜇 is the dynamic viscosity, 𝜌 is the density, 𝑘 is the thermal 

conductivity, and 𝜌𝐶𝑝  is the effective heat capacity with 𝐶𝑝  as the heat capacity at constant 

pressure.  

Non-linear ordinary differential equations and boundary conditions  

By using the Rosseland approximation and the Taylor series, 𝑇4 ≈ 4𝑇∞
3𝑇 − 3𝑇∞

4 , and equation (5) 

can be written as (Bataller, 2008; Ishak, 2010; Magyari and Pantokratoras, 2011): 

 

𝑢 
𝜕 𝑇
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1
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 (
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𝜕2𝑇
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16 𝜎∗ 𝑇2
3

3 𝑘∗
 
𝜕2𝑇

𝜕 𝑧2
)] +

𝑄0

(𝜌 𝐶𝑝)𝑛

 [(𝑇 − 𝑇2)𝜃(𝜂)], 

(9) 
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with 𝑞𝑟  as the radiative heat flux, 𝜎∗  and 𝑘∗  denote the constant of Stefan-Boltzmann and the 

coefficient of mean absorption, respectively.  

Then, the following similarity variables are introduced (Upadhya et al., 2021): 

 

  𝑢 =  𝑟Ω 𝑓′(𝜂),     𝑣 =  𝑟 Ω 𝑔(𝜂),    𝑤 = −2 𝑤0𝑓(𝜂),   𝜃(𝜂) =  
𝑇  −   𝑇2
𝑇1 − 𝑇2

,

𝑝 = −
1

2
𝜌𝑓 𝑟

2 Ω2 𝐴 + 𝜌𝑓 𝑤0
2 𝑃(𝜂),     𝜂 =

𝑧 Ω

𝑤0
,

}
 

 

,                 (10) 

 

where the prime denotes differentiation with respect to 𝜂 and 𝐴 is an arbitrary constant. 

Next, the pressure term in equations (2) and (4) are eliminated to obtain: 

 
𝜕
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 (
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𝑟
)                                                       

=
𝜇𝑛
𝜌𝑛
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𝜕

𝜕 𝑧
(
𝜕 

𝜕 𝑟
 (
𝑢

𝑟
)) +

𝜕

𝜕 𝑧
 (
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𝜕 𝑧2
) −

𝜕

𝜕 𝑟
(
𝜕2 𝑤

𝜕 𝑧2
)],                                                   (11) 

 

and after substituting (10) into equations (3), (9), and (11), we obtain the following non-linear 

ordinary differential equations: 

𝑓′′′′ = 𝑅𝑒
𝜌𝑛/𝜌𝑓

𝜇𝑛/𝜇𝑓
(−2 𝑓𝑓′′′ − 2𝑔𝑔′),                                                                 (12) 

𝑔′′ = 𝑅𝑒
𝜌𝑛/𝜌𝑓

𝜇𝑛/𝜇𝑓
(2𝑔𝑓′ − 2𝑓𝑔′),                                                                             (13) 

𝜃′′ =
𝑃𝑟𝑅𝑒

(
𝑘𝑛
𝑘𝑓
+
4
3
 𝑅𝑑)

(𝜌𝐶𝑝)𝑛
(𝜌𝐶𝑝)𝑓

(−2𝑓 𝜃′ − 
𝑄 𝜃

(𝜌𝐶𝑝)𝑛/(𝜌𝐶𝑝)𝑓

),                           (14) 

 

Here, 𝑃𝑟 is the Prandtl number, 𝑅𝑒 is the Reynolds number, 𝑅𝑑 is the radiation parameter, and 𝑄 

is the heat generation/absorption parameter, given by: 

 

𝑃𝑟 =  
(𝜇𝐶𝑝)𝑓 

𝑘𝑓
,   𝑅𝑒 =

𝑤0
2

Ω 𝜈𝑓
,   𝑅𝑑 =

4 𝜎∗ 𝑇2
3

𝑘𝑓 𝑘
∗
,    𝑄 =

𝑄0
Ω (ρ𝐶𝑝)𝑓

, 

where 𝜈 = 𝜇/𝜌 is the kinematic viscosity. The boundary conditions become: 

 
𝑓(0) = 0,   𝑓′(0) = 0,   𝑔(0) = 0, 𝜃(0) = 1,

𝜃(1) = 0,   𝑓′(1) = 0, 𝑔(1) = 𝜆, 𝑓(1) = −𝜀/2 .         
} .                                  (15)   

 

STABILITY ANALYSIS 

 

Following the previous studies, the dimensionless time variable, 𝜏 = Ω𝑡  with 𝑡  as time, is 

introduced into the similarity variables (10) to form: 

 

  𝑢 =  𝑟Ω 𝑓′(𝜂, 𝜏),     𝑣 =  𝑟 Ω 𝑔(𝜂, 𝜏),    𝑤 = −2 𝑤0𝑓(𝜂, 𝜏),   𝜃(𝜂, 𝜏) =  
𝑇  −   𝑇2
𝑇1 − 𝑇2

,

𝑝 = −
1

2
𝜌𝑓 𝑟

2 Ω2 𝐴 + 𝜌𝑓 𝑤0
2 𝑃(𝜂, 𝜏),     𝜂 =

𝑧 Ω

𝑤0
.

}
 

 

.            (16) 
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Then, time-dependent derivatives are included in equations (2) to (5) for unsteady flow 

equations: 

 

𝜕 𝑢

𝜕 𝑡
+ 𝑢 

𝜕 𝑢

𝜕 𝑟
+ 𝑤 
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],                           (17) 
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𝑢
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𝜕 𝑣
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𝑣
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𝜕 𝑤
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1
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1
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𝜕2𝑤
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𝜕 𝑇
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[
1

𝑟
 
𝜕 𝑇

𝜕 𝑟
+ 
𝜕2𝑇
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1

(𝜌 𝐶𝑝)𝑛
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𝜕 𝑧

+
𝑄0

(𝜌 𝐶𝑝)𝑛

 (𝑇 − 𝑇2).         (20) 

 

After eliminating the pressure term in equations (17) and (19), we obtain the following: 

 
𝜕

𝜕 𝑧
(
𝜕 𝑢

𝜕 𝑡
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𝜕

𝜕 𝑟
(
𝜕 𝑤

𝜕 𝑡
) +

𝜕
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(𝑢 

𝜕 𝑢

𝜕 𝑟
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𝜕

𝜕 𝑧
(𝑤 

𝜕 𝑢

𝜕 𝑧
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𝜕

𝜕 𝑟
 (𝑤 

𝜕 𝑤

𝜕 𝑧
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𝜕

𝜕 𝑧
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𝑣2

𝑟
)                                  
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𝜇𝑛
𝜌𝑛
 [
𝜕

𝜕 𝑧
(
𝜕 

𝜕 𝑟
 (
𝑢

𝑟
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𝜕

𝜕 𝑧
 (
𝜕2 𝑢

𝜕 𝑧2
) −

𝜕

𝜕 𝑟
(
𝜕2 𝑤

𝜕 𝑧2
)].                                                   (21) 

 

The similarity variables (16) are substituted into equations (18), (20), and (21), which results: 

 
1

𝑅𝑒

𝜇𝑛/𝜇𝑓

𝜌𝑛/𝜌𝑓
 
𝜕4 𝑓

𝜕 𝜂4
+ 2 𝑓 

𝜕3 𝑓

𝜕 𝜂3
+ 2 𝑔 

𝜕 𝑔

𝜕 𝜂
−

𝜕3 𝑓

𝜕 𝜂2 𝜕 𝜏
= 0,                    (22) 

1

𝑅𝑒

𝜇𝑛/𝜇𝑓

𝜌𝑛/𝜌𝑓
 
𝜕2 𝑔

𝜕 𝜂2
+ 2 𝑓 

𝜕 𝑔

𝜕 𝜂
− 2 𝑔 

𝜕 𝑓

𝜕 𝜂
−
𝜕 𝑔

𝜕 𝜏
= 0,                   (23) 

1

𝑃𝑟𝑅𝑒

1

(𝜌𝐶𝑝)𝑛/(𝜌𝐶𝑝)𝑓

 (
𝑘𝑛
𝑘𝑓
+
4

3
 𝑅𝑑) 

𝜕2 𝜃

𝜕 𝜂2
+ 2 𝑓 

𝜕 𝜃

𝜕 𝜂
+ 

𝑄 𝜃

(𝜌𝐶𝑝)𝑛/(𝜌𝐶𝑝)𝑓

−
𝜕 𝜃

𝜕 𝜏
= 0,                   (24) 

 

with the boundary conditions: 

 

𝑓(0, 𝜏) = 0,   
𝜕 𝑓

𝜕 𝜂
 (0, 𝜏) = 0,   𝑔(0, 𝜏) = 0, 𝜃(0, 𝜏) = 1,

𝜃(1, 𝜏) = 0,   
𝜕 𝑓

𝜕 𝜂
 (1, 𝜏) = 0, 𝑔(1, 𝜏) = 𝜆, 𝑓(1, 𝜏) = −

𝜀

2
 .         

}
 

 

.                 (25) 

 

Next, we consider the following perturbation function (Waini et al., 2022): 

 
𝑓(𝜂, 𝜏) = 𝑓0(𝜂) + 𝑒

−𝛾𝜏 𝐹(𝜂, 𝜏), 
𝑔(𝜂, 𝜏) = 𝑔0(𝜂) + 𝑒

−𝛾𝜏 𝐺(𝜂, 𝜏),                                                       (26) 
𝜃(𝜂, 𝜏) = 𝜃0(𝜂) + 𝑒

−𝛾𝜏 𝐻(𝜂, 𝜏), 
 

with 𝛾 as the eigenvalue. The arbitrary functions 𝐹(𝜂, 𝜏), 𝐺(𝜂, 𝜏), and 𝐻(𝜂, 𝜏) and their derivatives 

are relatively smaller than 𝑓0(𝜂), 𝑔0(𝜂), and 𝜃0(𝜂) and their derivatives. Equation (26) will be 

substituted into equations (22) to (25) to obtain the eigenvalue problem. Then, 𝐹(𝜂, 𝜏) = 𝐹0(𝜂), 
𝐺(𝜂, 𝜏) = 𝐺0(𝜂) , and 𝐻(𝜂, 𝜏) = 𝐻0(𝜂)  when 𝜏 = 0  to determine the initial decay or growth of 

disturbance in the solutions (Weidman et al., 2006). Thus, the linearised eigenvalue problem is 

given by:  
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1

𝑅𝑒
 
𝜇𝑛/𝜇𝑓

𝜌𝑛/𝜌𝑓
 𝐹0
′′′′ + 2 𝑓0 𝐹0

′′′ + 2 𝐹0 𝑓0
′′′ + 2 𝑔0 𝐺0

′ + 2 𝐺0 𝑔0
′ + 𝛾 𝐹0

′′ = 0,                      (27) 

1

𝑅𝑒
 
𝜇𝑛/𝜇𝑓

𝜌𝑛/𝜌𝑓
 𝐺0

′′ + 2 𝑓0 𝐺0
′ + 2 𝐹0 𝑔0

′ − 2 𝑔0 𝐹0
′ − 2 𝐺0 𝑓0

′ + 𝛾 𝐺0 = 0,                   (28) 

1

𝑃𝑟𝑅𝑒
 

1

(𝜌𝐶𝑝)𝑛
/(𝜌𝐶𝑝)𝑓

  (
𝑘𝑛
𝑘𝑓
+
4

3
 𝑅𝑑) 𝐻0

′′ + 2 𝑓0 𝐻0
′ + 2 𝐹0 𝜃0

′ +
𝑄

(𝜌𝐶𝑝)𝑛
/(𝜌𝐶𝑝)𝑓

 𝐻0 + 𝛾 𝐻0

= 0,                                                                                                                                            (29) 
 

along with the boundary conditions: 

 
𝐹0(0) = 0,   𝐹0

′(0) = 0,   𝐺0(0) = 0, 𝐻0(0) = 0,

𝐻0(1) = 0,   𝐹0
′(1) = 0, 𝐺0(1) = 0, 𝐹0(1) = 0.         

} .                        (30) 

 

Here, the boundary condition 𝐹0
′(1) = 0 is relaxed to form 𝐹0

′′(0) = 1 for the possible range of 

eigenvalues (𝛾1 < 𝛾2 < 𝛾3 < 𝛾4 < ⋯) that will be computed using the bvp4c solver in MATLAB 

(Zainal et al., 2021). The smallest eigenvalue, 𝛾1, decides the solutions’ stability, with a positive 

value referring to a physically meaningful and stable solution with decaying disturbance. In 

contrast, a negative value denotes an unstable solution with a growing disturbance that may 

promote boundary later separation.  

 

RESULTS AND DISCUSSION 

 

The numerical solution generated by the bvp4c solver is compared with the approximate solution 

obtained by Kavenuke et al. (2009). The previous study calculated the solution using the 

perturbation technique and Paté’s approximation. The results from both studies show a good 

agreement, as shown in Fig. 2.  

 
Figure 2. Comparison of the current −𝑓′(𝜂) profile with the previous study. 

 

The computation of boundary value problems (13) to (15) using the bvp4c solver in MATLAB 

produces dual solutions. In the following results, the solutions are termed the first and second 

solutions. These solutions are generated by different initial guesses made in the solver. Thus, it is 

crucial to determine the stability and significance of these solutions. Through stability analysis, 

we identify the first solution as the stable solution while the second solution is unstable. The values 

of 𝛾1 for the first and second solutions are tabulated in Table 2. 
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Table 2. Smallest eigenvalues for solutions of various 

nanofluids when 𝜙 = 0.2, 𝜆 = −1, 𝜀 = 1, 𝑅𝑒 = 9, 𝑅𝑑 = 0.3 , 

and 𝑄 = 0.1 

Nanofluid 𝛾1 

 First solution Second solution 

CoFe2O4/H2O 0.38353 -0.27080 

Mn-ZnFe2O4/H2O 0.37739 -0.27002 

CoFe2O4/C2H6O2 0.13611 -0.19540 

Mn-ZnFe2O4/C2H6O2 0.13639 -0.19420 

 

The effects of nanoparticle volume fraction on the nanofluid flow and thermal fields are 

depicted in Fig. 3. The increase in 𝜙 enhances the radial and tangential velocities near the lower 

and upper disks. However, the axial velocity near the rotating upper disk reduces with the 

increment of 𝜙, as shown by the profile in Figure 3a. In Figure 3d, it can be noticed that the increase 

in 𝜙 has different effects on the temperature profile of the water-based nanofluids and ethylene 

glycol-based nanofluids. The temperature profiles of the ethylene glycol-based nanofluids rise 

with 𝜙, but the opposite is obtained for the water-based nanofluids.   

 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 

Figure 3. Profiles of (a) axial velocity, (b) radial velocity, (c) tangential velocity, and (d) 

temperature with different nanoparticle volume fractions when  𝜆 = −1, 𝜀 = 1, 𝑅𝑒 = 9, 𝑅𝑑 = 0.3, 

and 𝑄 = 0.1. 

 

Figure 4 portrays the impacts of shrinking parameter on the profiles of the nanofluid’s 

temperature and axial, radial, and tangential velocities. As presented in Figs. 4a and 4c, the 

augmentation of |𝜆| reduce the axial and tangential velocities of the internal flow between the 

disks. However, the increase in |𝜆| affects the radial velocity differently in the region near the 

lower disk, between the disks, and the upper disk, as shown in Fig. 4b. The 𝑓′(𝜂) profile near the 

lower disk decreases with |𝜆|. Away from the non-permeable lower disk, the radial velocity profile 

improves with |𝜆|. In contrast, a decreasing behaviour is seen in the region near the permeable 

upper disk for the radial velocity profiles of the water-based nanofluids. Meanwhile, the 

temperature profiles of water- and ethylene glycol-based nanofluids in Fig. 4d diminish with the 

increase in the magnitude of the shrinking parameter. 
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(a) 

 
(b) 

 
(c) 
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(d) 

 

Figure 4. Profiles of (a) axial velocity, (b) radial velocity, (c) tangential velocity, and (d) 

temperature with different values of the shrinking parameter when  𝜙 = 0.2, 𝜀 = 1, 𝑅𝑒 = 9, 𝑅𝑑 =
0.3, and 𝑄 = 0.1. 

 

Then, the velocities and temperature profiles with various values of Reynolds number are 

depicted in Fig. 5. The axial velocity profile in Fig. 5a shows a reducing trend for the region near 

the stationary lower disk as the value of 𝑅𝑒 increases. However, the axial velocity profile rises 

when approaching the rotating upper disk. In contrast, the radial velocity profile at the region near 

the disks diminishes as 𝑅𝑒 increases, as shown in Fig. 5b. Meanwhile, the tangential velocity 

profile throughout the internal flow reduces as 𝑅𝑒 increases. Similar behaviour is observed for the 

temperature profile in Fig. 5d, except around the upper disk. The temperature profiles for the 

water-based nanofluids show an increasing trend with 𝑅𝑒 near the upper disk. Since 𝑅𝑒 =
𝑤0
2

Ω 𝜈𝑓
, the 

increase in 𝑅𝑒 denotes the enhancement of suction and the reduction of kinematic viscosity and 

angular velocity. Consequently, it induces the declination of the velocity profile, as obtained in 

Fig. 5c. In addition, suction allows heated fluid to be removed from the permeable surface, which 

leaves behind cold fluid that causes the temperature profile to drop (Ajibade et al., 2021). Thus, 

this explains the results generated in Fig. 5d with the increasing values of 𝑅𝑒.                             
 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 

Figure 5. Profiles of (a) axial velocity, (b) radial velocity, (c) tangential velocity, and (d) 

temperature with different values of Reynolds number when  𝜙 = 0.2, 𝜀 = 1, 𝜆 = −1,𝑅𝑑 = 0.3, 

and 𝑄 = 0.1. 
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Figure 6. Profiles of temperature with different values of heat generation/absorption parameter 

when  𝜙 = 0.2, 𝜀 = 1, 𝜆 = −1, 𝑅𝑑 = 0.3, and 𝑅𝑒 = 9. 

 

Meanwhile, the negative value of 𝑄 represents heat absorption, while the positive value implies 

heat generation. An additional heat source in the system due to the increased heat generation 

parameter promotes the increase of the temperature profile, as obtained in Fig. 6. Similar behaviour 

was recorded by Upadhya et al. (2021) and Bilal et al. (2022). 

In contrast, the presence of the thermal radiation parameter reduces the temperature profile, as 

shown in Fig. 7. As Bilal et al. (2022) explained, the increase in radiation from the fluid surface 

cools down the fluid and causes the temperature profile to drop. 

 

 
 

Figure 7. Profiles of temperature with different values of radiation parameter when  𝜙 = 0.2, 𝜀 =

1, 𝜆 = −1, 𝑄 = 0.1, and 𝑅𝑒 = 9. 

 

CONCLUSION 

 

In the present study, the internal flow of nanofluid between disks is analysed. The working fluid 

consisting of different combinations of nanoparticles and base fluid (i.e., CoFe2O4/H2O, Mn-

ZnFe2O4/H2O, CoFe2O4/C2H6O2, and Mn-ZnFe2O4/C2H6O2) are considered in this flow problem. 

Partial differential equations and boundary conditions governing the flow problem are 
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incorporated with thermal radiation and heat generation effects. Then, similarity transformations 

are utilised for deriving the non-linear ordinary differential equations and boundary conditions for 

numerical computation in MATLAB. The computation obtained dual solutions, and the stability 

analysis confirmed that only the first solution is stable. Other findings can be summarised as 

follows: 

1. The temperature profile of the ethylene-glycol-based nanofluids (i.e., CoFe2O4/C2H6O2 and 

Mn-ZnFe2O4/C2H6O2) rises with the addition of nanoparticle volume fraction, contrary to 

the water-based nanofluids (i.e., CoFe2O4/H2O and Mn-ZnFe2O4/H2O).   

2. The profiles of axial and tangential velocities diminish with the increase in the shrinking 

parameter. 

3. The increase in Reynolds number reduces the tangential velocity profile of the nanofluid. 

4. The augmentation of the heat generation and radiation parameters elevates and reduces the 

temperature profile, respectively.   
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