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A B S T R A C T   

Bacillus velezensis FS26 is a bacterium from the genus Bacillus that has been proven as a potential probiotic in 
aquaculture with a good antagonistic effect on Aeromonas spp. and Vibrio spp. Whole-genome sequencing (WGS) 
allows a comprehensive and in-depth analysis at the molecular level, and it is becoming an increasingly sig-
nificant technique in aquaculture research. Although numerous probiotic genomes have been sequenced and 
investigated recently, there are minimal data on in silico analysis of B. velezensis as a probiotic bacterium isolated 
from aquaculture sources. Thus, this study aims to analyse the general genome characteristics and probiotic 
markers from the B. velezensis FS26 genome with secondary metabolites predicted against aquaculture patho-
gens. The B. velezensis FS26 genome (GenBank Accession: JAOPEO000000000) assembly proved to be of high 
quality, with eight contigs containing 3,926,371 bp and an average G + C content of 46.5%. According to 
antiSMASH analysis, five clusters of secondary metabolites from the B. velezensis FS26 genome showed 100% 
similarity. These clusters include Cluster 2 (bacilysin), Cluster 6 (bacillibactin), Cluster 7 (fengycin), Cluster 8 
(bacillaene), and Cluster 9 (macrolactin H), which signify promising antibacterial, antifungal, and anti-
cyanobacterial agents against pathogens in aquaculture. The probiotic markers of B. velezensis FS26 genome for 
adhesion capability in the hosts’ intestine, as well as the acid and bile salt-tolerant genes, were also detected 
through the Prokaryotic Genome Annotation System (Prokka) annotation pipeline. These results are in agree-
ment with our previous in vitro data, suggesting that the in silico investigation facilitates establishing B. velezensis 
FS26 as a beneficial probiotic for use in aquaculture.   

1. Introduction 

Aquaculture infections are one of the most pressing issues facing the 
aquaculture industry today and failing to address this issue will lead to 
national and global food shortages. Immunomodulatory additives, such 
as antimicrobial peptides, herb extracts, probiotics, prebiotics, and 
synbiotics, are widely employed in aquatic diets to increase the quality 

and sustainability of aquaculture production [1,2]. Among them, pro-
biotic seems to be effective in controlling infection and reducing the 
emergence of antibiotic-resistant bacteria in the environment. Bacillus 
species are among the most widely used and early adopted probiotics in 
aquaculture, and their use as dietary supplements can boost fish immune 
systems and disease resistance [3,4]. In this regard, Bacillus toyoi is the 
first probiotic Bacillus introduced in aquaculture by Kozasa in the year 
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1986 [5]. 
Another Bacillus species, Bacillus velezensis, displays high antibacte-

rial potential because its genome contains several coding sequences 
involved in the biosynthesis of polyketide and peptide antibiotics [6]. 
Identifying all prospective gene clusters for secondary metabolites in 
hundreds of newly sequenced genomes has proven exceedingly chal-
lenging due to biochemical complexity, the availability of unknown 
enzymes, and the scattered nature of the needed specialist bioinfor-
matics tools and resources. The antibiotics and secondary metabolite 
analysis shell (antiSMASH) pipeline, on the other hand, is the first to be 
capable of identifying biosynthetic loci for the entire range of known 
secondary metabolite compound classes, including polyketides, 
non-ribosomal peptides, terpenes, aminoglycosides, aminocoumarins, 
indolocarbazoles, lantibiotics, bacteriocins, nucleosides and beta-lactam 
[7]. Even though the antagonistic activity of B. velezensis FS26 towards 
pathogenic Vibrio spp. and Aeromonas spp. is proven, further study on 
the identity of the compounds is worth to be evaluated extensively for 
extended probiotic purposes, especially against different types/species 
of aquaculture pathogens. 

Aside from secondary metabolites, a probiotic marker analysis of 
newly discovered probiotics is necessary to determine their properties 
and compare them with the existing commercial probiotics [8]. stated 
that the use of genotyping is valuable to identify species diversity, in-
vasion, diseases, stress biomarkers, genomic assessment, and evolution 
in fisheries and aquaculture. Traditionally, researchers have focused on 
a restricted set of specific DNA fragments to identify genetic markers or 
variations in the target organism. Due to the rapid development of 
next-generation sequencing technology, the entire genomes of various 
strains of probiotic bacteria have been sequenced. This scientific and 
technological progress has increased our understanding of the re-
lationships between genotypes and functions. It should be highlighted 
that while generic mechanisms for underlying probiotic effects can be 
connected to taxonomic categories (genus or species), specific mecha-
nisms are strain-specific [9]. 

Several investigations on Bacillus species and their potential pro-
biotic have been carried out utilising both in vitro and in vivo settings. 
Whole-genome sequencing (WGS), on the other hand, can provide 
additional assistance in the investigation of potential mechanisms of the 
organism as a probiotic. The combined outcomes of genomic, in vitro, 
and in vivo research, according to Khullar et al. [10]; have enhanced the 
assessment of Bacillus species and their probiotic capabilities. In this 
study, the potential probiotic B. velezensis FS26 was used as a bacterium 
for in silico analysis. B. velezensis FS26 is a potential probiotic bacterium 
isolated from the gut of giant freshwater prawn (Macrobachium rose-
nbergii) [11]. Although there have been numerous studies on probiotic 
bacterial genomes, there is limited in silico analysis for B. velezensis as a 
potential probiotic isolated from aquaculture sources. Thus, this study 
aims to analyse the general genome characteristics and probiotic 
markers from the B. velezensis FS26 genome with secondary metabolites 
predicted against aquaculture pathogens. 

2. Methods 

2.1. Collection of Bacillus velezensis FS26 

Bacillus velezensis FS26 (16 S rRNA GenBank Accession number: 
MZ960133) was obtained from the Department of Microbiology, Faculty 
of Biotechnology, Universiti Putra Malaysia, Selangor, Malaysia. The 
bacterium was previously isolated by Sam-on et al. [11] from the gut of 
giant freshwater prawn (M. rosenbergii). The bacterial isolate showed 
potential probiotic characteristics based on in vitro evaluation and can 
be regarded as safe as it does not have γ-hemolytic properties against red 
blood agar [11]. 

2.2. Genomic DNA extraction and sequencing 

Bacillus velezensis FS26 was cultivated overnight in nutrient broth 
medium at 30 ◦C, and bacterial cells were collected by centrifuging the 
overnight cultures at 12,000 rpm for 5 min. Wizard Genomic DNA Pu-
rification Kit (Promega, USA) was used to extract genomic DNA from the 
collected cells. Prior to sequencing, the DNA was barcoded along with 
other microbial DNA through the PCR barcoding process using Rapid 
PCR Barcoding Kit’s protocol (SQK-RPB004) (Oxford Nanopore Tech-
nologies, UK). The sequencing was conducted on a MinION MK1C 
sequencer using a R9.4.1 flow cell (Oxford Nanopore Technologies, UK) 
at Nanyang Technological University, Singapore. 

2.3. Base calling, assembly, gene prediction, and functional annotation of 
Bacillus velezensis FS26 genome 

Base calling was done using Guppy v3.2.2 to produce FASTQ files 
using the base-calling model of dna_r9.4.1_450bps_hac.cfg. Demulti-
plexing of FASTQ files was performed using the Guppy barcoder. Once 
demultiplexed, the FASTQ files were assembled using Flye, a long-read 
assembler to produce contigs (https://doi.org/10.1038/s41587-019-00 
72-8). The draft sequences from Flye were corrected using Medaka 
(https://github.com/nanoporetech/medaka). The genome sequence 
was then annotated using the RAST tool kit (RASTtk) on the PATRIC 
platform (https://www.patricbrc.org/). The genome sequence for 
B. velezensis FS26 was submitted to GenBank (https://www.ncbi.nlm. 
nih.gov/GenBank/) and assigned GenBank Accession JAO-
PEO000000000, BioProject ID PRJNA882923, and BioSample Accession 
SAMN30955092. 

2.4. Average nucleotide identity of Bacillus velezensis FS26 genome 

The average nucleotide identity (ANI) of B. velezensis FS26 was 
analysed using JSpeciesWS (https://jspecies.ribohost. 
com/jspeciesws/#analyse). Fifteen genomes of B. velezensis obtained 
from JSpeciesWS genome DB (database) were used to compare the ANI 
with the B. velezensis FS26 genome. The percentage similarity was rep-
resented in a heatmap graph constructed using ClustVis tools (https:// 
biit.cs.ut.ee/clustvis/). 

2.5. Genome mining of secondary metabolites of Bacillus velezensis FS26 
genome 

AntiSMASH bacterial version (https://antismash. 
secondarymetabolites.org/#!/start) was used to analyse and predict 
the secondary metabolites of B. velezensis FS26 genome. Moreover, the 
biosynthetic pathway of complete genes for secondary metabolites was 
evaluated using BlastKOALA (KEGG Orthology and Links Annotation) 
(https://www.kegg.jp/blastkoala/). 

2.6. Genome mining of probiotic markers of Bacillus velezensis FS26 
genome 

Prokka (https://github.com/tseemann/prokka) was used to anno-
tate the B. velezensis FS26 genome. In order to accomplish a rich and 
reliable annotation of genomic bacterial sequences, Prokka coordinates 
a range of existing software tools [12]. Probiotic markers from the 
B. velezensis FS26 genome were obtained and analysed based on the 
annotation. 

3. Results and discussion 

3.1. Comprehensive Genome Analysis of Bacillus velezensis FS26 

The assembled genome for B. velezensis FS26 was generated using the 
Comprehensive Genome Analysis service at the PATRIC website created 
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by Wattman et al. [13] and annotated using the RASTtk system devel-
oped by Brettin et al. [14]. The Comprehensive Genome Analysis service 
provides a genome that has been constructed, and an overview of the 
annotated features is provided in Table 1 and Fig. 1. The overall length 
of the eight contigs in this assembled genome was 3,926,371 base pairs 
(bp), with an average G + C content of 46.5%. There are 29 ribosomal 
RNA (rRNA) genes, 75 transfer RNA (tRNA) genes, and 4061 protein 
coding sequences (CDS) in this genome. This corresponds to the base 
pair of the B. velezensis GY65, LG37, and WLYS23 genomes, which are 3, 
915,569 bp, 3,915,568 bp, and 3,915,551 bp, respectively. Furthermore, 
the average G + C content of B. velezensis GY65, LG37, and WLYS23 
genomes was 46.5%, which was similar to B. velezensis FS26 [15–17]. 

3.2. Average nucleotide identity of Bacillus velezensis FS26 

The ANI approach is commonly used for defining species boundaries 
and verifying identification. It is also a straightforward metric with great 
scalability for large data sets [18]. The comparisons of the nucleotide 
similarity of eleven complete B. velezensis genomes and B. velezensis FS26 
genome were conducted using jSpeciesWS and visualised as the heatmap 
in Fig. 2. According to Fig. 2, B. velezensis LG37, WLYS23, and GY65 
showed the highest ANI similarity to B. velezensis FS26 at 99.99%. 
Interestingly, like B. velezensis FS26, all three strains were previously 
isolated from aquaculture sources [15–17]. Moreover, B. velezensis 
KMU01 has the lowest ANI similarity percentage to B. velezensis FS26 at 
97.42%. B. velezensis KMU01 was isolated by Heo et al. [19] from fer-
mented kimchi, a different source from B. velezensis FS26. Additionally, 
the ANI percentage for B. velezensis SQR9, FZB42, G341, and 83 was less 
than 99%, and all of these bacteria were previously isolated from plant 
sources [20–23]. These findings demonstrate that the ANI of B. velezensis 
genomes is connected to the source of isolation, demonstrating that 
B. velezensis FS26 is substantially similar to B. velezensis that adapted to 
aquaculture. According to the ANI threshold percentage similarity, more 
than 95% ANI indicated similar species [24], proving the species iden-
tification of B. velezensis FS26, as all ANI findings for eleven B. velezensis 
genomes with B. velezensis FS26 are more than 97% similar. 

3.3. Secondary metabolite prediction from Bacillus velezensis FS26 
genome 

In our previous study [11], B. velezensis FS26 showed the ability to 
secrete antimicrobial substances against pathogenic Aeromonas hydro-
phila, Aeromonas veronii, Vibrio parahaemolyticus, Vibrio alginolyticus, and 
Vibrio campbellii using agar well diffusion method. The AntiSMASH 
analysis of the B. velezensis FS26 genome was conducted to predict the 
secondary metabolites potentially associated with these antimicrobial 
activities. The analysis revealed 12 secondary metabolite gene clusters 

in Table 2. Cluster 4, Cluster 5, Cluster 6, Cluster 9, and Cluster 10 
exhibited 100% similarity to the secondary metabolites fengycin, 
bacillaene, macrolactin H, bacilysin, and bacillibactin, respectively. 
Meanwhile, Clusters 1 (difficidin) and 11 (surfactin) showed 93% and 
82% similarity, respectively. The remainder exhibited no percentage 
similarity, but the genes were discovered in the genome nucleotide se-
quences, which are Clusters 2, 3, 7, and 8. 

According to Fig. 3, the secondary metabolites predicted on the 
B. velezensis FS26 genome can be classified into three categories. Three 
clusters of the seven secondary metabolite genes were found to encode 
the biosynthetic enzymes involved in the synthesis of non-ribosomal 
lipopeptides, which are produced by large enzyme complexes of non- 
ribosomal peptide synthetases. These enzymes are fengycin, bacilli-
bactin, and surfactin. Non-ribosomal peptides are molecules that fall 
within the category of secondary metabolites and serve a range of pur-
poses, such as those of toxic substances, siderophores, pigments, and 
antibiotics. Like other proteins, their creation is not reliant on the ri-
bosomal machinery [25]. In addition, the secondary metabolites of 
bacillaene, macrolactin H, and difficidin were synthesized by polyketide 
synthase (PKs) and bacilysin was synthesized by a 
ribosome-independent pathway. Table 2 presents the results of the 
antiSMASH analysis predicting five potential secondary metabolites in 
the B. velezensis FS26 genome that showed 100% similarity to the 
database, including fengycin, bacillibactin, bacillaene, macrolactin H, 
and bacilysin. 

Fengycin is an antifungal lipopeptide complex generated by many 
Bacillus species, including Bacillus subtilis and B. velezensis [27–29]. The 
structure is made up of α-hydroxy fatty acid coupled to a peptide portion 
made up of ten amino acids, eight of which are structured in a cyclic 
form (Fig. 3). Fengycin causes the fungal hyphae to be ultrastructurally 
destroyed. Thus, hyphae treated with fengycin have unconsolidated 
cytoplasm and cell walls that are gapped and/or detached from the cell 
membrane [30,31]. No study has been found on the pure fengycin 
secreted by Bacillus species against pathogenic fungi in aquaculture, and 
most of the reports are related to the phytopathogens in crops. Patho-
genic fungi, such as Saprolegnia and Achyla, are reported to be the most 
prevalent fungus discovered to cause cotton wool disease, which affects 
the body, fins, and mouth of fish [32,33]. As a result, the fengycin 
predicted in the B. velezensis FS26 genome is a promising antifungal 
peptide that may be employed to combat cotton wool disease and other 
pathogenic fungi-caused illnesses in aquaculture. 

A non-ribosomal peptide called bacillibactin, discovered in the 
bacterium B. subtilis, serves as a catecholic siderophore in the acquisition 
of iron, which is essential for the life of the host [34]. Iron intake 
regulation is required to prevent oxidative damage, which can be 
aggravated by excess iron in the cell, and most bacteria rely on the 
DNA-binding protein ferric uptake repressor to control and regulate the 
expression of iron uptake genes [35]. Previous studies demonstrated 
that bacillibactin antibiotic detection on marine Bacillus amyloliquefa-
ciens MTCC 12,713 had good inhibitory activity against drug-resistant 
pathogens, such as methicillin-resistant Staphylococcus aureus, 
vancomycin-resistant Enterococcus faecalis, Pseudomonas aeruginosa, and 
Klebsiella pneumoniae [36]. These data strengthen the potential of 
bacillibactin secondary metabolites detected in the B. velezensis FS26 
genome as broad-spectrum antibacterial agents towards pathogenic 
bacteria in aquaculture. 

Bacillaene is a secondary metabolite of the polyene class that was 
identified and extracted from the fermentation broth of a B. subtilis strain 
[37]. It is a well-known antibiotic that has mostly gone unstudied due to 
its notorious volatility. According to the patent submitted by Stan-
nek-göbel et al. [38]; the bacillaene produced by B. amyloliquefaciens 
DSM 33014 showed a significant effect on V. parahaemolyticus DSM 
10027, a pathogenic bacterium that infects crustaceans. Acute hep-
atopancreatic necrosis disease in the white leg shrimp, Litopenaeus 
vannamei, is related to the marine Gram-negative bacteria 
V. parahaemolyticus, which has caused significant financial losses in 

Table 1 
Genome assembly and annotation of Bacillus velezensis FS26.  

Assembly and annotation Details 

Contigs 8 
GC Content 46.5% 
Plasmids 0 
Contig L50 1 
Genome Length 3,926,371 bp 
Contig N50 2,068,990 
CDS 4061 
tRNA 75 
rRNA 29 
Repeat Regions 25 
Partial CDS 0 
Miscellaneous RNA 0 
Chromosomes 0 
Genbank Accession JAOPEO000000000 
BioProject ID PRJNA882923 
BioSample Accession SAMN30955092  

M.F.S. Sam-on et al.                                                                                                                                                                                                                           
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Southeast Asian marine aquaculture [39]. Similar to the study reported 
by Sam-on et al. [11]; B. velezensis FS26 showed a good antagonistic 
effect on V. parahaemolyticus PKK24, which is probably due to the 
secretion of bacillaene antibiotic that warrants further confirmatory 
studies. 

Macrolactins are remarkable metabolites with antibacterial action 
against a variety of therapeutically relevant infections. They also have 
anti-inflammatory, antifungal, antibacterial, and anticancer properties. 
They are macrolides having 24-membered lactone rings that differ in 
their chemical structures, except for macrolactin H which contains 22- 
membrane lactone rings [40,41]. Genes involved in macrolactin pro-
duction are frequently found on the genomes of B. velezensis strains, but 
not on the genomes of Bacillus siamensis or B. amyloliquefaciens strains 
[42]. It was reported that macrolactin G until M (including macrolactin 

H) showed an antagonistic effect on S. aureus IFO 12732 [40]. S. aureus 
is known as the most common pathogen detected in marine seafood 
worldwide, including fish and shrimp. Consuming aqua products 
infected with these bacteria and their enterotoxin may lead to human 
food poisoning [43,44]. Hence, the macrolactin H detected in the 
B. velezensis FS26 genome is a prospective antibacterial agent to solve 
the foodborne pathogen caused by S. aureus in aquatic beverages. 

Bacilysin, the simplest peptide antibiotic known, was established in 
1946 as an antibiotic generated by a strain of B. subtilis that induced 
partial lysis of S. aureus growth culture [26,45,46]. Based on the results 
in Fig. 4, all six enzymes required for bacilysin biosynthesis were 
completely detected in the B. velezensis FS26 genome. The biosynthesis 
of bacilysin starts from prephanate to bacilysin together with six en-
zymes involved, which are prephenate carboxy-lyase (3-[(4 
R)-4-hydroxycyclohexa-1,5-dien-1-yl]-2-oxopropanoate-forming) (EC 
4.1.1.100), 3-[(4 R)-4-hydroxycyclohexa-1,5-dien-1-yl]-2-ox-
opropanoate isomerase (EC 5.3.3.19), bacilysin biosynthesis 

Fig. 1. A circular graphical display of the distribution of the genome annotations for Bacillus velezensis FS26 with subsystems and genes frequencies.  

Fig. 2. Heatmap of pairwise genome comparisons between 11 Bacillus velezensis 
genomes and Bacillus velezensis FS26 genome based on the Average Nucleotide 
Identity (ANI) using jSpeciesWS genome database. Heatmap analysis were 
constructed using ClustVis website (https://biit.cs.ut.ee/clustvis/). Bacillus 
velezensis FS26 is denoted as FS26. 

Table 2 
List of the putative gene clusters encoding for secondary metabolites by anti-
SMASH analysis in Bacillus velezensis FS26 genome.  

Cluster Type From To Most similar 
known 
cluster 

Similarity 

1 transAT-PKS 551,750 640,289 difficidin 93% 
2 T3PKS 772,752 813,479 – – 
3 terpene 878,817 898,943 – – 
4 NRPS, 

betalactone, 
transAT-PKS 

927,680 1,061,991 fengycin 100% 

5 transAT-PKS, 
NRPS,T3PKS 

1,135,732 1,236,301 bacillaene 100% 

6 transAT-PKS 1,455,494 1,543,728 macrolactin 
H 

100% 

7 lanthipeptide 
class-ii 

1,710,293 1,732,959 – – 

8 terpene 1,859,675 1,880,415 – – 
9 other 308,655 350,073 bacilysin 100% 
10 RiPP-like, 

NRPS 
886,399 938,190 bacillibactin 100% 

11 NRPS 202,961 268,369 surfactin 82%  

M.F.S. Sam-on et al.                                                                                                                                                                                                                           
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oxidoreductase (BacG), bacilysin biosynthesis transaminase (BacF), 
L-dihydroanticapsin (EC 1.1.1.385), and L-anticapsin (EC 6.3.2.49). The 
complete bacilysin biosynthesis pathway containing all six genes in the 
B. velezensis FS26 genome is in accordance with the B. velezensis FZB42 
(previously known as B. amyloliquefaciens) genome [47,48]. The baci-
lysin generated by B. velezensis FZB42 exhibits anticyanobacterial ac-
tivity against the hazardous alga Microcystis aeruginosa and can be used 
as a targeted biocontrol agent, according to a study by Wu et al. [49]. As 
a result, this information can be utilised to forecast the anti-
cyanobacterial activity of B. velezensis FS26 against pathogenic algae in 
aquaculture, which also remains to be explored. 

Table 3 compares the secondary metabolites predicted by the anti-
SMASH analysis in the B. velezensis FS26 genome to other published 
probiotic bacterial genomes in aquaculture. Numerous secondary me-
tabolites have been predicted in B. velezensis strain FTC01, 
B. amyloliquefaciens strain 78-1, and B. subtilis strain WS1A, including 
butirosin A/B, macrolactin H, bacillaene, fengycin, bacillibactin, baci-
lysin, difficidin, bacilloathiazol A-N, plipastatin, plantazolicin, surfactin, 
andalusicin A/B, pulcherriminic acid, and 1-carbapen-2-em-3-carbox-
ylic acid, which corresponds to the B. velezensis FS26 genome. More-
over, fusaricidin B, ubericin K, and nisin A are anticipated in the 
genomes of Pediococcus pentosaceus strain MR001, Lacticaseibacillus 
paracasei strain DTA93, and Lactococcus lactis subsp. lactis strain 
WFLU12, respectively. The genomes of Weizmannia coagulans strain 
DSM 1 = ATCC 7050, Lacticaseibacillus rhamnosus strain TK-F8B, 

Bifidobacterium animalis strain TK-J6A, and Lactiplantibacillus pentosus 
strain MP-10, on the other hand, showed no results for the secondary 
metabolites predicted based on the antiSMASH analysis. 

3.4. Prediction of probiotic marker genes in the Bacillus velezensis FS26 
genome 

Aside from the secondary metabolites predicted in the B. velezensis 
FS26 genome, probiotic marker genes are also among the important 
criteria for a good probiotic in aquaculture. The B. velezensis FS26 
genome demonstrated good adhesion capability in the intestine using 
auto-aggregation, co-aggregation, and hydrophobicity tests, according 
to Sam-on et al. [11]. This result correlates to the Prokka annotation 
results in Table 4, which detected numerous proteins responsible for 
intestinal adhesion. Lipoprotein signal peptidase (LspA gene) and 
moonlighting proteins, such as glutamine-binding periplasmic protein 
(GlnH gene) and elongation factor Tu (Tuf gene), were found in the 
genome of B. velezensis FS26, which are also known as mucus adhesion 
domain protein (MucBP). This protein is in charge of ligands or effector 
molecules that contribute to host adhesion, auto-aggregation, and/or 
co-aggregation with pathogenic bacteria. Furthermore, LspA is corre-
lated with MucBP which was also detected in the B. velezensis FS26 
genome. These findings are consistent with [50]; who discovered similar 
MucBPs (LspA, GlnH, and Tuf genes) in probiotic Lactobacillus pentosus 
MP-10. Similarly [51], indicated that LspA was identified in probiotic 
Lactobacillus salivarius UCC118. 

An additional important requirement for a successful probiotic in 
aquaculture is tolerance to acid and bile salts. B. velezensis FS26 could 
endure 0.3% bile salt and acidic conditions for 3 h, as demonstrated by 
Sam-on et al. [11]. This information is consistent with the Prokka’s gene 
annotation output in Table 4, which identified numerous genes in the 
B. velezensis FS26 genome that are associated with bile salt and acid 
tolerance. Bile salt can prevent the growth of bacteria by rupturing the 
bacterial cell membrane [52]. Table 4 shows three proteins identified as 
bile salt-tolerant genes in the B. velezensis FS26 genome, including a 
chaperone (DnaK), an oligopeptide-binding protein (OppA), and an 
enolase (Eno). However, no bile salt hydrolase protein (BshA) was found 
in the genome of B. velezensis FS26. These results are in agreement with 
[53] that detected several bile salt-tolerant genes (DnaK, Eno, and 
OppA) in probiotic Lactiplantibacillus plantarum WCFS1, TL2766, 
MPL16, CRL681, and CRL1506, but no BshA was detected in all strains. 

Probiotic microorganisms must meet crucial standards for acid 
tolerance to survive in the host’s upper gastrointestinal tract [54]. Based 
on Table 4, 10/33/60 kDa chaperonin, ATP-dependent protease pro-
teolytic subunit, cold shock protein, and TRAP-T-associated universal 
stress protein were discovered as acid-tolerant proteins in the 
B. velezensis FS26 genome. These findings are in line with that of [10]; in 
which the genomes of Bacillus isolates contained stress proteins 
conferring acid tolerance, including chaperonin, cold shock protein, and 
TRAP-T-associated universal stress protein. However, the isolates also 
had an additional protein that could withstand acidity, known as F1F0 
ATP acid-tolerant protein. Aside from that, Nguyen and Kim [55] 
detected ATP-dependent protease proteolytic subunit as an acid-tolerant 
protein in the probiotic L. lactis WFLU12, similar to that of B. velezensis 
FS26. The prediction of the adhesion-related genes in the host’s 

Fig. 3. Classification of antimicrobial peptides predicted by antiSMASH anal-
ysis on Bacillus velezensis FS26 genome. The compounds with highlighted box in 
orange are synthesized by non-ribosomal peptide synthetases (NRPSs); yellow 
colours are synthesized by polyketide synthase (PKSs); blue colour compound 
bacilysin is synthesized by a ribosome independent pathway. The chemical 
structure of the secondary metabolites was retrieved from PubChem NCBI [26] 
pubchem. ncbi.nlm. nih.gov). 

Fig. 4. Bacilysin biosynthesis of Bacillus velezensis FS26 genome. The result was analysed using BlastKOALA. EC 4.1.1.100 is prephenate carboxy-lyase, EC 5.3.3.19 is 
3-[(4 R)-4-hydroxycyclohexa-1,5-dien-1-yl]-2-oxopropanoate isomerase, BacG is bacilysin biosynthesis oxidoreductase, BacF is bacilysin biosynthesis transaminase, 
EC 1.1.1.385 is L-Dihydroanticapsin and EC 6.3.2.49 is L-anticapsin. 
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intestinal tract, as well as the acid and bile salt-tolerant genes as the 
probiotic markers in the B. velezensis FS26 genome, is supported in the 
previous in vitro study by Sam-on et al. [11]. 

4. Conclusion 

In conclusion, the in silico prediction by several bioinformatic tools 
against the genome of B. velezensis FS26 indicates that the predictions 
are consistent with the previous in vitro data by Sam-on et al. [11]. 
Fengycin, bacillibactin, bacillaene, macrolactin H, and bacilysin were 
anticipated by the antiSMASH analysis in the B. velezensis FS26 genome 
with 100% similarity to the available database. In addition, B. velezensis 
FS26 genome mining identified numerous genes that function as pro-
biotic markers in terms of host intestinal adhesion, as well as acid and 
bile salt tolerance. Further research on in vivo applications is required to 
demonstrate the efficacy and safety of these probiotic potential bacteria 
in a real-aquaculture environment. 
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