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ABSTRACT 

Stochastic gradient descent (SGD) is one of the most common algorithms used in solving large 

unconstrained optimization problems. It utilizes the concept of classical gradient descent method 

with modification on the gradient selection. SGD uses random or batch data sets to compute gradient 

in solving optimization problems. It is an iterative algorithm with descent properties that reduces 

computational cost by using derivatives of random data points. This paper proposes a new SGD 

algorithm with modified stepsize that employs function scaling strategy. Particularly, the stepsize 

parameter is coupled with function scaling by storing the mean of gradients in the denominator. The 

performance of the method is evaluated based on the ability to reduce function value after each 

iteration, ability to attain the lowest function value when applied to solve the well-known zebra-strip 

problem. Our results indicate that the proposed method performed favourable to the existing method. 

 

Keywords. Large-scale optimization, binary classification; stochastic gradient method; adaptive 

stepsize; function scaling. 

 

 

INTRODUCTION 

Unconstrained optimization is defined as minimizing an objective function that are variables 

dependent with no specific constraint. Over the years, strategies to ensure a descent direction with 

a global convergence have been actively discussed. In the realm of machine learning, neural 

network and deep learning, a prevalent optimization technique is Gradient Descent (GD) (Qian 

(1999), Liang et al. (2020)). The conventional GD algorithm (Barani et al. (2021), Hao (2021)) 

falls under the first-order category, relying solely on the first derivative of the problem for 

parameter updates. When implementing the GD method, a critical factor is the step size denoted 

as 𝛼. The proper selection of 𝛼 is pivotal as it influences the convergence rate and computational 

cost while approaching the minimum. Ideally, α should maximize the reduction of the objective 

function at each step. The method involves constructing a sequence of iterates 𝑥𝑘, given by 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘, 

where 𝑝𝑘 is the search direction and in order to ensure that it is a descent direction, we require 

𝑝𝑘
𝑇∇𝑓(𝑥𝑘) < 0. Next, we also require the step size, 𝛼𝑘 to be positive, such that  𝛼𝑘 > 0. The GD 

methods also have other variant forms such as Batch Gradient Descent, Mini-batch Gradient 

Descent and Stochastic Gradient Descent (Duchi et al. (2011)) depending on the optimization 

problems. 
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LITERATURE REVIEW 

This section will explore the application of stochastic gradient descent (SGD) for addressing large-

scale unconstrained optimization problems (refer to Duchi et al. (2011), Xiao et al. (2012)). 

Stochastic gradient descent represents a distinct variant of the gradient descent technique, 

employing random or batch datasets to tackle optimization problems. This iterative algorithm, 

with descent properties, leverages derivatives from random data points to reduce computational 

costs. Stochastic gradient descent is particularly advantageous in dealing with large datasets, as it 

accelerates computation while maintaining descent properties. 

In terms of practical applications, stochastic gradient methods find extensive use in 

machine learning algorithms, particularly in neural networks. This approach minimizes problems 

using subsets of data rather than the entire dataset. The method is a variant of gradient descent, 

distinguished by differences in iteration updates, as outlined below:" 

𝑥𝑘+1
(𝑖)

= 𝑥𝑘
(𝑖)

− 𝛼∇𝑓(𝑥𝑘
(𝑖)

) + 𝛽𝑥𝑘
(𝑖)

. 

The SGD performs its parameter update per each training session compared to GD. 

 

Step Size Selection Strategy 

The strategy for selecting the step size holds significance in guaranteeing a substantial decrease 

in the function and convergence to a minimum point. In the context of stochastic gradient descent, 

opting for an adaptive method is prudent, given that we do not store the memory of every 

derivative per iteration. An adaptive method (Sopyla and Drozda (2015), Gonzaga and Schneider 

(2016), Yuan et al. (2017), Li et al. (2019)) can aid in selecting a step size that efficiently ensures 

a high convergence rate. In this paper, our emphasis is on enhancing the AdaGrad method, with 

the step size defined as 𝛼: 

𝛼𝑘 =
𝛼𝑘−1

√𝛼𝑡+𝜖
, 

where 𝛼𝑡 = ∑ (
𝜕ℎ

𝜕𝑤
)

2
𝑡
𝑖=1  and 𝜖 > 0. 

 

Nesterov Momentum 

The Nesterov momentum (Serafino et al. (2018), Yang et al. (2018, 2019), Yang (2021)) 

represents an upgraded version of the standard momentum, involving the computation of a 

decaying moving average of projected positions in gradients rather than actual positions. This 

modification enhances momentum and regulates velocity, slowing down as the optimal point is 

approached. The Nesterov iteration formula is expressed as follows, with momentum defined as 

𝛾: 

𝑥𝑘+1
(𝑖)

= 𝑥𝑘
(𝑖)

− 𝛾𝑣𝑘−1 + 𝛼∇𝑘𝐽(𝑘 − 𝛾𝑣𝑘−1). 

 

Nesterov momentum has been shown to accelerate convergence, especially in scenarios where the 

optimization landscape has long, curved valleys. It helps in controlling the momentum to avoid 

overshooting the minimum and, in turn, improves the efficiency of optimization algorithms. 
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ALGORITHMS 

The standard (plain) SGD algorithm with default stepsize 𝛼 = 0.1 is given by the following 

algorithm: 

Require: Learning rate default α = 0.1. 

Require: Initial parameter �̂� = 0. 
Require: Initial parameter 𝑤 = 0.  

 while stopping criterion not met  

 do sample from the training set {𝑥(1), … , 𝑥(𝑚)} with corresponding targets 𝑦(𝑖) 

Compute gradient estimate: �̂� ←  
1

𝑚
∇𝑤 ∑ 𝐿(𝑓(𝑥𝑖; 𝑤), 𝑦(𝑖))𝑖  

Apply update: 𝑤 ← 𝑤 − 𝛼�̂� 

end while 

 

In its standard setting, SGD algorithm used a fixed stepsize through the iterations. By 

incorporating the Adagrad strategy (given below) of storing the information of previous iterations 

in the gradient, we modified the algorithm by incorporating mean-gradient formula with scaling 

properties and a large step size with momentum which is 1.0. 

The MAGrad algorithm is given as follows: 

 

Require: Learning rate α = 1.0. 

Require: Stopping criterion, i =  10,000 iterations 

Require: Initial gradient 𝑔0 = 0 

Require: Initial parameter 𝑤 = 0. 

 while stopping criterion not met  

 do sample from the training set {𝑥(1), … , 𝑥(𝑚)} with corresponding targets 𝑦(𝑖) 

Compute gradient estimate: 𝑔𝑡 ←  ∇𝑤 ∑ 𝐿(𝑓(𝑥𝑖; 𝑤), 𝑦(𝑖))𝑖  

Compute 𝑣 : 𝑣𝑡+1 ←
1

𝑛
. ∑ 𝑣𝑡 +𝑖 𝑔𝑡

2 

Apply update: 𝑤 ← 𝑤 − 𝛼
𝑔𝑡

√𝑣𝑡+1+𝜖
 

end while 

 

To demonstrate the effectiveness of our approach, we apply the MAGrad algorithm to address a 

binary classification problem featuring a zebra stripe-like pattern. The computational experiments 

were conducted on an ASUS Zenbook 14 laptop, equipped with a 512 GB SSD disk drive, 32 GB 

of onboard memory, and powered by an Intel Core i7-1165G7 Processor. This setup allowed us 

to seamlessly run multiple software applications concurrently. MATLAB and Maple 18 were 

employed for executing the numerical experiments and obtaining the results. 

Following the recommendation of Li (2021), we evaluate the proposed algorithm on the specified 

binary classification problem with the zebra stripe-like pattern. Additionally, we compare its 

performance against some methods currently in use, namely RMSProp and ADAM algorithm 

(Kingma and Ba (2014)). 

The test problem utilized 𝑥1 and 𝑥2 as their input features that were uniformly distributed in [0,1]. 

We defined the class label to be: 

 

𝑦 =  𝑎(𝑥1, 𝑥2)  =  mod(round(10𝑥1  −  10𝑥2), 2). 

 

We denoted the command mod as the modulus and round as the round off operator that helped to 

round off a real number to the nearest integer. The defined zebra stripe like pattern to be trained 

was shown as per Figure 4.1 below. The classifier employed in this scenario is a two-layer 

feedforward neural network with 100 hidden nodes. To adhere to common practices in neural 
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networks, we normalized the input features before presenting them to the network. Additionally, 

we initialized the network coefficients for a specific layer as random numbers, with their variance 

proportionate to the inverse of the number of nodes connected to the layer. The chosen activation 

function is tanh, a nonlinear function. The training cost is measured by cross-entropy loss. 

 

 

 

 

 

 
 

Figure 4.1 Binary Classification Problem with Zebra Stripe Like Pattern 

 

A convergence test using d’Alembert’s criterion is used:  

Suppose that there exists 𝑟 such that: 

 

lim
𝑛→∞

|
𝑎𝑛+1

𝑎𝑛
| = 𝑟. 

 

The series is convergent when 𝑟 <  1 and divergent when 𝑟 >  1. For 𝑟 =  1, the convergence 

test will be inconclusive. We will take the average of 𝑟 for each method to determine its 

convergence. 

 

NUMERICAL RESULTS 

To benchmark the performance of the algorithms under consideration, a convergence test using 

d’Alembert’s criterion is used:  

Suppose that there exists r such that: 

 

lim
n→∞

|
an+1

an
| = r. 

 

The series is convergent when r <  1 and divergent when r >  1. For r =  1, the convergence 

test will be inconclusive. We will take the average of r for each method to determine its 

convergence. 
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Table 1: Iteration 1 and 10,000 for generated by the algorithm 

Method 
Cost, 𝒓 

𝑖 =  1 𝑖 =  10000 

RMSProp with 𝛼 =  0.01 0.7621 0.4335 

Adam 0.7541 0.4239 

MAGrad 0.7403 0.3386 

 

 

Table 2: Execution time of the algorithm 

Method 
Time (second) 

Average minimum 

RMSProp with 𝛼 =  0.01 9.705 9.234 

Adam 9.288 8.952 

MAGrad 9.961 9.266 

 

Table 1 shows that all of the methods are able to converge with MAGrad achieves the lowest 𝑟 

towards the end of iterations. In term of execution time, the performance of the methods is 

comparable. 

 

 

 

 
Figure 2: Performance of RMSProp in Term of r 
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Figure 3: Performance of Adam in Term of r 

 

 

 
 

Figure 4: Performance of Standard MAGrad in Term of r 

 

As observed in Figure 2 – 4, performance of all the methods has a downward trend for its function 

value even though they are non-monotone. However, we can observe that the magnitude of 𝑟 for 

both RMSProp and Adam is getting larger as they progressed throughout the iterations. On the 

other hand, for the proposed MAGrad method, we can notice a spike in the function value in the 

early iteration due to large step size but the algorithm can adapt quickly and reduce the function 

value significantly and managed to maintain a low noise range towards the end of the iterations. 

Hence, we can deduce that the proposed method possesses scaling properties that can help to 

restrain the noise produced from randomization of SGD method. 
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CONCLUSION 

MAGrad utilizes the mean of the gradient norm stored at the adaptive stepsize formula to retain a 

low range of noise as the iterations progressed. Hence, the step size chosen is large compared to 

the default step size for the other existing methods. This strategy also incorporated momentum 

into the updates, and it ensures a fast convergence. For future study, we would like to experiment 

on the proportionality of different step size constants vs the number of data sets when implemented 

with MAGrad. 

 

REFERENCES 

Barani, F., Savadi, A., & Yazdi, H. (2021). Convergence behavior of diffusion stochastic gradient 

descent algorithm. Signal Processing, 183, 108014. 

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive Subgradient Methods for Online Learning 

and Stochastic Optimization. Journal of Machine Learning Research, 12, 2121-2159. 

Gonzaga, C., and Scheneider, R. (2016). On the steepest descent algorithms for quadratic 

functions. Computational Optimum Application, 523-542. 

Hao, W. (2021). A gradient descent method for solving a system of nonlinear equations. Applied 

Mathematics Letters, 106739.  

Kingma, D. P., and Ba, J. (2014). Adam: A method for stochastic optimization." arXiv preprint 

arXiv:1412.6980. 

Li, X., Shi, J., Dong, X., & Yu, J. (2019). A new conjugate gradient method based on Quasi-

Newton equation for unconstrained optimization. Journal of Computational and Applied, 

372-379. 

Li, X. (2021). Preconditioned stochastic gradient descent. 

  (https://www.mathworks.com/MATLABcentral/fileexchange/54525-preconditioned-

stochastic-gradient-descent), MATLAB Central File Exchange. Retrieved September 20, 

2021. 

Liang, D., Ma, F., & Li, A. (2020). New Gradient-Weighted Adaptive Gradient Methods with 

Dynamic Constraints. Advances in Machine Learning and Cognitive Computing for 

Industry Applications, 8, 110929-110942 

Serafino, D., Ruggiero, V., Toraldo, G., and Zanni, L. (2018). On the steplength selection in 

gradient methods for unconstrained optimization. Applied Mathematics and Computation, 

318, 176-195. 

Sopyla, K., and Drozda, P. (2015). Stochastic Gradient Descent with Barzilai–Borwein update 

step for SVM. Information Sciences, 316, 218-233. 

Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural 

Networks, 12, 145-151. 

Xiao, Y., Song, H., and Wang, Z. (2012). A modified conjugate gradient algorithm with cyclic 

Barzilai–Borwein steplength for unconstrained optimization. Journal of Computational and 

Applied Mathematics, 236, 3101-3110. 

Yang, Z., Cheng, W., Zhang, Z., & Li, J. (2018). Random Barzilai–Borwein step size for mini-

batch algorithms. Engineering Applications of Artificial Intelligence, 124-135. 

Yang, Z., Wang, C., Zhang, Z., & Li, J. (2019). Accelerated stochastic gradient descent with step 

size selection rules. Signal Processing, 159, 171-186. 

Yang, Z. (2021). Fast automatic step size selection for zeroth-order nonconvex stochastic 

optimization. Expert Systems with Applications, 174, 114749. 

Yuan, G., Wei, Z., & Lu, X. (2017). Global convergence of BFGS and PRP methods under a 

modified weak Wolfe-Powell line search. Applied Mathematical Modelling, 811-825. 


