UNIVERSITI PUTRA MALAYSIA

LEARNING PRIMARY SCIENCE IN A WEB-BASED LEARNING ENVIRONMENT

ROHAIDA MOHD. SAAT

FPP 2003 10
LEARNING PRIMARY SCIENCE IN
A WEB-BASED LEARNING ENVIRONMENT

By

ROHAIDA MOHD. SAAT

Thesis Submitted in Fulfillment of the Requirement for the Degree of
Doctor of Philosophy in the School of Graduate Studies
Universiti Putra Malaysia

May 2003
DEDICATION

To my loving husband, Abdullah, who has understandingly endured the countless days that this study has taken from our relationship.

I further dedicate this thesis to my three children, Nurul Nadhirah, Nurul Afiqah, and Muhammad Akmal who have inspired me to keep going and hope this effort has also inspired them to keep striving for excellence.
Learning primary science includes the acquisition of science process skills. Studies have shown that integrated science process skills should be taught through some form of specific training. This study adopts the use of Web-based learning environment in learning science process skills. The purpose of this study was to unravel the learning processes that occurred in the learning of science, particularly the skill of controlling variables, in a Web-based learning environment.

The study employed an exploratory qualitative case study which involved nineteen Grade Five children. The participants were selected using the purposive sampling technique. During the study, children explored the specially designed Web-based instructional material known as ‘Science Process Skills in Scientific Exploration’, in short SPicE.
The primary data collection techniques used in this study were interviews, children’s conversations, observations, children’s diary entries and entries from the on-line discussions. Data from interviews, conversations and observations were transcribed while relevant entries from children’s diaries and on-line discussions were extracted. Data were analyzed using the constant comparative method of analysis.

The findings of the study suggest that there were three dimensions of learning, the cognitive, interpersonal and intrapersonal dimensions. These learning dimensions were intertwined among each other and were influenced by the design features of SPicE. Besides the acquisition of the intended skills, the findings also indicate that the children acquired other science process skills, manipulative skills as well as computer skills. There were four main factors that influence the acquisition of these skills; the programme, physical setting, the teacher and children’s readiness.

Three major conclusions were drawn from this study. First, Web-based learning facilitates science learning. Second, besides the intended learning outcome, learners acquired other related skills such as manipulative skills and computer skills, in the Web-based learning environment. Lastly, skill acquisition in the Web-based learning environment is influenced by various external and internal factors.

Kajian kes ini menggunakan kaedah kualitatif yang bersifat tinjauan. Kajian ini melibatkan sembilan belas murid sekolah rendah dan mereka dipilih berdasarkan teknik persampelan bertujuan (purposive). Semasa kajian dijalankan, murid berinteraksi dengan satu bahan pembelajaran sains yang berasaskan Jaringan berjudul ‘Kemahiran Proses Sains dalam Penerokaan Saintifik’ atau dalam singkatan SPicE. Program ini direka khas untuk penguasaan kemahiran proses sains mengawal pembolehubah.
Data dikutip melalui temubual, perbualan murid, pemerhatian, diari murid dan perbincangan murid secara “Atas Talian” (on-line). Data dari temubual, perbualan dan pemerhatian ditranskripsikan manakala hanya data yang relevan diekstraksikan dari diari murid dan perbualan secara “Atas Talian”. Analisis dilakukan dengan sentiasa membuat perbandingan antara data.

Dapatan mencadangkan bahawa proses pembelajaran sains dalam persekitaran pembelajaran berasaskan Jaringan melibatkan tiga dimensi, iaitu dimensi kognitif, interpersonal dan intrapersonal. Ketiga-tiga dimensi pembelajaran ini berkait rapat antara satu sama lain dan dipengaruhi ciri reka bentuk SPicE. Selain daripada penguasaan kemahiran yang dirancangkan, dapatan juga menunjukkan bahawa murid menguasai kemahiran proses sains yang lain seperti kemahiran manipulatif dan juga kemahiran komputer. Dapatan juga mencadangkan bahawa terdapat empat faktor yang mempengaruhi penguasaan kemahiran; iaitu program SPicE, susun atur fizikal, guru dan kesediaan murid.

ACKNOWLEDGEMENTS

In the name of Allah, the Beneficent, the Merciful.

Many people helped me through the years that this study has been in process. First and foremost, I would like to thank my supervisor Professor Dr. Kamariah Abu Bakar who has guided and inspired me through this work. Her insight, encouragement and understanding have helped me pull through this study. My thanks also go to my other supervisory committee members, Dr. Shamsuddin Ahmad and Dr. Rohani Ahmad Tarmizi. My special thanks too to Professor Dr. Sharan Merriam of University of Georgia, who had followed through my study and gave constructive comments along the away.

Thank you to Universiti Malaya for giving me the opportunity to pursue this study and also to my faculty members who have helped me in so many ways, especially Associate Professor Dr. Sharifah Norul Akmar, Associate Professor Dr. Esther Daniel and Associate Professor Dr. Fatimah Hashim.

To Madam Shamsinar Hayati and Madam Rusmazura Che Halid from Sekolah Kebangsaan Kg. Tunku, and Madam Faridah Darus from Kota Bharu Teachers’ Training College, thank you for willingly validated the content of SPicE. And my special thanks also go to Miss Chelvi of Curriculum Development Centre, Ministry of Education who validated my English translated version of the verbal excerpts.
My special thanks also go to the Headmaster and staff of Sekolah Kebangsaan Abu Bakar Baginda, Kajang, who have allowed me to conduct my study there and who have assisted me in making this study possible. I would also like to extend my appreciation to Educational Planning and Research Department, Ministry of Education and the Selangor Education State Department for allowing me to conduct this study without much hassle.

To Mazalan, Hadina and Ng Soo Boon, thank you for the constructive comments in the process of writing this thesis, and who have shared the sweat and tears for being a doctorate student. To Rosma, Hajar, Rodiah, Saadah and others, thank you for the support and company.

I would want to save my warmest thanks for my husband who not only stood by my side in times of hardship, but also assisted me in troubleshooting the technical hitches particularly during my field study. My special thanks also go to my children for accepting the sacrifices a family inevitably experiences when ‘Mama’ is writing her work. To my mother, with her unfailing faith and prayer for the success of this study – Thank you Mak!
I certify that an Examination Committee met on 27th May 2003 to conduct the final examination of Rohaida Mohd Saat on her Doctor of Philosophy thesis entitled “Learning Primary Science in a Web-Based Learning Environment” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Habibah Elias, Ph.D.
Professor
Faculty of Educational Studies
Universiti Putra Malaysia
(Chairperson)

Kamariah Abu Bakar, Ph.D.
Professor
Faculty of Educational Studies
Universiti Putra Malaysia
(Member)

Rohani Ahmad Tarmizi, Ph.D.
Faculty of Educational Studies
Universiti Putra Malaysia
(Member)

Shamsuddin Ahmad, Ph.D.
Faculty of Educational Studies
Universiti Putra Malaysia
(Member)

Richard Gunstone, Ph.D.
Professor
Faculty of Education
Monash University
Australia
(Independent Examiner)

SHAMSHER MOHAMAD RAMADILI, Ph.D.
Professor / Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 31 JUL 2003
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Kamariah Abu Bakar, Ph.D.
Professor
Faculty of Educational Studies
Universiti Putra Malaysia
(Chairperson)

Rohani Ahmad Tarmizi, Ph.D.
Faculty of Educational Studies
Universiti Putra Malaysia
(Member)

Shamsuddin Ahmad, Ph.D.
Faculty of Educational Studies
Universiti Putra Malaysia
(Member)

AINI IDERIS, Ph.D.
Professor / Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 5 AUG 2003
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ROHaida Mohd. Saat
Date: 27 July 2003
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK v
ACKNOWLEDGEMENTS vii
APPROVAL ix
DECLARATION xi
LIST OF TABLES xvi
LIST OF FIGURES xvii

CHAPTER

I. INTRODUCTION
Background to the Study 1
The Process Approach 3
Primary Science Education in Malaysia 9
Integration of Technology in Science Education 17
Statement of the Problem 20
Purpose and Research Questions 23
Significance of the Study 24
Limitation of the Study 26
Definition of Terms 27

II. REVIEW OF RELATED LITERATURE
Introduction 29
Children’s Learning of Science 30
Acquisition of Scientific Knowledge 31
Acquisition of Scientific Skills 42
Other Learning Dimensions in Science Learning 51
Instructional Design Theory 56
Theoretical Framework for the Development of Web-Based Instructional Materials 62
Science Process Skills 66
Research Related to Science Process Skills 70
Research Related to Integrated Science Process Skills: Controlling Variables 73
Definition of Controlling Variables 73
Approaches to Learning of Controlling Variables 75
Computer in Education 80
Research Related to the Use of Computer Technology in Science Teaching 84
Research Related to the Use of Web-based Instruction in Science Teaching 88
Factors that Facilitate the Acquisition of Science Process Skills among Children 93
Summary of the Literature 96

III. DESIGN AND DEVELOPMENT OF A WEB-BASED INSTRUCTION: SCIENCE PROCESS SKILLS IN SCIENTIFIC EXPLORATION (SPicE)
Introduction 99
History of the Web 100
Why Web-Based Instruction? 102
Application of the Instructional Design Theory 107
The Instructional Design Model of SPicE 109
The SPicE Team 120
The SPicE Site 121
Features of SPicE 130
 Learner Controlled 130
 Hierarchical Sequenced 133
 Simulation 134
 Hands-On Activities 135
 Interactivity 136
 Feedback 137
Beta Testing of SPicE 141
Chapter Summary 146

IV. METHODOLOGY
Introduction 147
Design of the Study 148
 Case Study 150
Selection of Site and Subjects 153
Duration of the Study 156
Research Procedure 157
Data Collection 161
 Interviews 162
 Conversations 164
 Observations 165
 Children's Diaries 166
 Electronic Discussion 167
Context of the Study 169
Data Analysis 171
Validity and Reliability 185
Researcher Biases and Assumption 188
Summary 189

V. FINDINGS
Introduction 190
Learning Process in the Web-Based Learning Environment 191
 Cognitive Dimension 192
 Interpersonal or Social Dimension 212
 Intrapersonal Dimension 224
 Interrelatedness of the Learning Process 228
 The Connections between the Learning Process and Instructional Design of SPiE 231
Types of Skill that Children Acquired in the Web-based Learning Environment 234
 Science Process Skills 235
 Manipulative Skills 247
 Computer Skills 248
Factors that Influence Skill Acquisition 251
 Facilitating Factors 251
 Inhibiting Factors 265
Chapter Summary 272

VI. SUMMARY, CONCLUSIONS, IMPLICATIONS AND RECOMMENDATIONS
Introduction 276
Summary 277
Conclusions and Discussion 283
 Web-Based Learning Environment Facilitates Science Learning 283
 Web-Based Learning Environment Facilitates Acquisition of Other Related Skills 300
 Factors Affecting Skill Acquisition 310
Implications for Theory and Practice 317
Methodological Reflections 322
Recommendations for Future Research 324
Chapter Summary 326

REFERENCES 328
APPENDIX

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Storyboard</td>
<td>348</td>
</tr>
<tr>
<td>A2</td>
<td>Sample of Storyboard</td>
<td>349</td>
</tr>
<tr>
<td>B</td>
<td>Pilot Study Handout I</td>
<td>350</td>
</tr>
<tr>
<td>C</td>
<td>Pilot Study Handout II</td>
<td>355</td>
</tr>
<tr>
<td>D</td>
<td>Excerpts from ‘Diari Saya’</td>
<td>356</td>
</tr>
<tr>
<td>E</td>
<td>Fieldwork Schedule</td>
<td>357</td>
</tr>
<tr>
<td>F</td>
<td>Letter of Consent</td>
<td>358</td>
</tr>
<tr>
<td>G</td>
<td>Students’ Lesson Plan</td>
<td>359</td>
</tr>
<tr>
<td>H</td>
<td>Teacher-Student Conversation / Interview Guide</td>
<td>363</td>
</tr>
<tr>
<td>I</td>
<td>Audit Trail</td>
<td>369</td>
</tr>
<tr>
<td>J1</td>
<td>Sample of Verbal Data</td>
<td>372</td>
</tr>
<tr>
<td>J2</td>
<td>Sample of the Verbal Matrix</td>
<td>376</td>
</tr>
<tr>
<td>J3</td>
<td>Sample of the Second Matrix of the Verbal Data</td>
<td>378</td>
</tr>
<tr>
<td>J4</td>
<td>Sample of Video Data</td>
<td>380</td>
</tr>
<tr>
<td>J5</td>
<td>Sample of the Video Matrix</td>
<td>384</td>
</tr>
<tr>
<td>J6</td>
<td>Children’s Diaries</td>
<td>387</td>
</tr>
<tr>
<td>J7</td>
<td>Sample of Matrix of Diary Entries</td>
<td>391</td>
</tr>
<tr>
<td>J8</td>
<td>Entries from SPicE Forum</td>
<td>395</td>
</tr>
<tr>
<td>J9</td>
<td>Analysis of Forum</td>
<td>399</td>
</tr>
<tr>
<td>J10</td>
<td>Sample of the Field Notes</td>
<td>403</td>
</tr>
<tr>
<td>J11</td>
<td>Sample of the Main Matrix</td>
<td>406</td>
</tr>
<tr>
<td>K</td>
<td>Translation of Excerpts</td>
<td>410</td>
</tr>
<tr>
<td>L</td>
<td>Credentials</td>
<td>423</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VITA</td>
<td>424</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Piaget’s Stages of Cognitive Development</td>
<td>33</td>
</tr>
<tr>
<td>2</td>
<td>A Conceptual Model for Affective Development</td>
<td>55</td>
</tr>
<tr>
<td>3</td>
<td>Summary of the Learning Theories: Cognitive Skill Acquisition</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>The Science Process Skills</td>
<td>69</td>
</tr>
<tr>
<td>5</td>
<td>Levels of Controlling Variables</td>
<td>75</td>
</tr>
<tr>
<td>6</td>
<td>Summary of the Design Features of SPicE</td>
<td>140</td>
</tr>
<tr>
<td>7</td>
<td>Group and Group Members</td>
<td>159</td>
</tr>
<tr>
<td>8</td>
<td>Summary of Types of Data</td>
<td>169</td>
</tr>
<tr>
<td>9</td>
<td>Matrix of Sections of SPicE and the Learning Dimensions</td>
<td>182</td>
</tr>
<tr>
<td>10</td>
<td>Cognitive Dimension</td>
<td>195</td>
</tr>
<tr>
<td>11</td>
<td>Interpersonal Dimension</td>
<td>214</td>
</tr>
<tr>
<td>12</td>
<td>Intrapersonal Dimension</td>
<td>224</td>
</tr>
<tr>
<td>13</td>
<td>Analysis of the Forum Participation</td>
<td>253</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Superordinate Learning</td>
<td>39</td>
</tr>
<tr>
<td>2</td>
<td>Model of Cognitive Skills Acquisition as Perceived by the Researcher</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>The Flow of Information as Generally Conceptualized in Information-Processing Theory</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>Case Model of Memory Capacity</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>Instructional Systematic Design</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td>Model for Designing CLEs</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>Schematic Diagram of the Theoretical Framework for the Development of SPicE</td>
<td>65</td>
</tr>
<tr>
<td>8</td>
<td>Task Analysis of Controlling Variables</td>
<td>115</td>
</tr>
<tr>
<td>9</td>
<td>Overview of SPicE</td>
<td>122</td>
</tr>
<tr>
<td>10</td>
<td>SPicE Homepage</td>
<td>123</td>
</tr>
<tr>
<td>11</td>
<td>SPicE Main Menu</td>
<td>123</td>
</tr>
<tr>
<td>12</td>
<td>SPicE Introduction Page</td>
<td>124</td>
</tr>
<tr>
<td>13</td>
<td>Simulated Activities</td>
<td>126</td>
</tr>
<tr>
<td>14</td>
<td>Persaingan Activity</td>
<td>126</td>
</tr>
<tr>
<td>15</td>
<td>Level 3 of Persaingan Activity</td>
<td>127</td>
</tr>
<tr>
<td>16</td>
<td>Level 3 of Panas! Panas! Activity</td>
<td>128</td>
</tr>
<tr>
<td>17</td>
<td>Linkages in Controlling Variables Frame</td>
<td>132</td>
</tr>
<tr>
<td>18</td>
<td>Link to Students’ Worksheet</td>
<td>132</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>19</td>
<td>Levels of Difficulties in Tanjakan Activities</td>
<td>133</td>
</tr>
<tr>
<td>20</td>
<td>Immediate Feedback</td>
<td>139</td>
</tr>
<tr>
<td>21</td>
<td>Research Procedure</td>
<td>161</td>
</tr>
<tr>
<td>22</td>
<td>Framework for Data Analysis</td>
<td>184</td>
</tr>
<tr>
<td>23</td>
<td>Learning Process in Web-based Learning Environment</td>
<td>192</td>
</tr>
<tr>
<td>24</td>
<td>Display Showing Different Coloured and Shaped Sails</td>
<td>197</td>
</tr>
<tr>
<td>25</td>
<td>Display Showing Different Shapes of the Anterior Part of the Car Model</td>
<td>198</td>
</tr>
<tr>
<td>26</td>
<td>Procedures of the Hands-On Activity</td>
<td>200</td>
</tr>
<tr>
<td>27</td>
<td>SPicE-Generated Graph</td>
<td>210</td>
</tr>
<tr>
<td>28</td>
<td>The SPicE Quiz</td>
<td>221</td>
</tr>
<tr>
<td>29</td>
<td>Interrelated Between Learning Dimensions</td>
<td>230</td>
</tr>
<tr>
<td>30</td>
<td>Measurement Reading Process</td>
<td>239</td>
</tr>
<tr>
<td>31</td>
<td>Group Working Together</td>
<td>264</td>
</tr>
<tr>
<td>32</td>
<td>Group Working Individually</td>
<td>264</td>
</tr>
<tr>
<td>33</td>
<td>Lay-Out of the Computer Laboratory</td>
<td>266</td>
</tr>
<tr>
<td>34</td>
<td>The Computer Laboratory Setting</td>
<td>266</td>
</tr>
<tr>
<td>35</td>
<td>Model of Science Learning in a Web-based Environment</td>
<td>274</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

Background to the Study

Science education has been a vital part in the school setting in many countries across the world. This is because science and technology is regarded as the prime mover of the economic development of a nation (Ministry of Science, Technology and Environment, 2000). Developed countries such as the United States of America, Germany, United Kingdom, Japan and Australia have introduced science as early as kindergarten or at primary level. The United Nations Educational, Scientific, and Cultural Organization (in short UNESCO), recommends that science be taught in primary schools, as the teaching and learning of science has direct influence on how children think logically about the everyday phenomena and how they solve daily problems (as cited in Ministry of Education Malaysia, 1993a). Such intellectual skills nurtured at an early age, will be a valuable asset to the children, as the learning of science fosters creative and innovative minds.

Tilgrenes (1990) pointed out several benefits of learning science at an early age. The learning of science helps students to acquire the habit of questioning, the ability to evaluate premises and variables, the desire to search for patterns and meanings of a collection of data, and to approach logically the solution of
problems. In short, students are able to acquire a systematic method of studying the things around them.

Another reason for introducing science at an early age is that children are known to possess universal qualities regardless of their individual genetic or cultural differences. They are curious, persistent, interpretive, energetic and adventurous (Kellough, Carin, Seefeldt, Barbour, and Souviney, 1996) which are analogous to the nature of science. In view of this, science is deemed suitable to be taught at an early age as the characteristics of children complement the nature of science.

In fact the teaching of science at an early age is widely practised in most countries in the world. Science education including science at elementary or primary level worldwide has undergone several changes and innovations, aimed at improving the quality of science education. In the mid 1950’s rigorous science curriculum reform took place in the United States of America, especially when the Soviet Union launched its earth orbiting satellite Sputnik in October 1957 (Bybee and DeBoer, 1994). The American government then became enthusiastically involved in improving the teaching of science. Among the innovations that have gained much attention is the inquiry approach in teaching science. As DeBoer (1991) stated, "If a single word had to be chosen to describe the goals of science educators during the 30-year period that began in the late 1950's, it would have to be INQUIRY" (p.206).
Inquiry was popularized by John Dewey back in the early 1900's, though it was commonly known as problem solving (Barr, 1994). Inquiry is synonymous to science since the nature of which Schwab (1962) argues is itself an inquiry process, where one finds the source and the cause of phenomena. Through this process, students are actively solving problems and discovering scientific knowledge. This marks the beginning of the process approach adopted in science education. The process approach focuses on many skills that human use to construct knowledge, to represent ideas, and to communicate information. The acquisition of these skills will enable students to solve problems better.

The Process Approach

Since the mid-1900's, there has been a growing support for the teaching of science processes as a part of school curriculum (Finley, 1983). In this respect, Gagne (1963) views science process skills as the foundation for scientific inquiry and knowledge is developed inductively from sensory experience. According to Gagne (1963), basic science process skills include observation, inference, classification, predicting, collecting and recording data, and measurement. These skills are simpler and provide a foundation for learning the integrated or more complex skills which includes controlling variables, interpreting data, defining operationally, formulating hypotheses, and experimentation.

Schwab's idea on inquiry and Gagne's idea of science process skills have been embraced in projects such as SAPA (Science - A Process Approach) Project,
Warwick Process Science, Science in Process (Woolnough, 1991). The developers of these projects believe that science is best taught as a procedure of inquiry that is a process of finding out, which involves the development of certain attitudes and skills. This enhances the development of specific thinking skills believed to be used by scientists in their work. This claim is supported by a study done by Davis (1979). Davis reported that SAPA students scored higher than students in the control groups on a subtest of Torrance Test of Creativity. In addition, these SAPA students were also found to produce more and a greater variety of ideas or questions. Bredderman (1982) reviewed more than 60 studies reported over a 15-year period which involved classrooms using process-oriented curricula. The results of these studies revealed a consistent pattern where children in the process-oriented classrooms outperformed the students in the control group, in all categories: creativity, attitudes, logic, and science content.

Although there is an increased popularity in the process approach in science curriculum, some science educators (Millar and Driver, 1987) have criticized this approach. Millar and Driver argue that there is no one scientific method as scientists work in a variety of ways. They also question whether science processes are situation specific or transferable, as people do generalize and transfer what they have learned from one situation to another. Some science educators (Ramsey and Howe, 1969; Millar and Driver, 1987) even believe that process skills such as hypothesis formation, are intuitive and cannot be taught, but many (Harlen, 1999; Pappelis and Pohlmann, 1980) signify the importance
of science process skills. These skills are involved in scientific inquiry and discovery, where through these processes scientific knowledge is constructed.

Process skills are sometimes known as the basic problem solving skills, scientific method, scientific thinking, critical thinking, inquiry skills, and intellectual skills (Helgeson, 1994). Almekinders, Thijs and Lubben (1998) also referred to process skills as procedural understanding. According to them, the learning of science not only gives the understanding of the science content and methods of inquiry, but includes the understanding of methods and procedures of practical inquiry. Despite differences in the terms used, there is considerable agreement about what these terms mean. They are general descriptors of logical and rational thinking which are used in many areas of human endeavour. If used in some context in science, they are known as scientific process skills (Harlen, 1999; Millar and Driver, 1987). Therefore, science process skills are considered the vital skills needed in the learning of science since they involve the process of scientific inquiry. As cited by Harlen (1999),

"...Learning with understanding in science involves testing the usefulness of possible explanatory ideas by using them to make predictions or to pose questions, collecting evidence to test the prediction or answer the questions and interpreting the results; in other words, using the science process skills" (p. 131).

Looking back at the importance of introducing science at the primary level and accepting the argument that science process skills are part and parcel of science education, one main question arises. Are the science process skills being taught at primary level the same as at the secondary level? Sometimes these skills seem
to be hierarchical in nature. For example, before students can classify, they need to master the skill of observation. This is in line with SAPA project’s argument, that the basic skills provide the basis for the learning of the more complex skills (Gagne, 1963). If this hierarchy exists, should the basic skills be more appropriately taught at primary level and the more complex skills be taught at secondary level?

Besides, these complex skills or integrated skills such as formulating hypotheses and controlling variables require one to operate at the Formal Operational Stage of Piaget’s Stages of Cognitive Development Model (Inhelder and Piaget, 1958). In fact Brotherton and Preece (1995) found that there is a relationship between science process skills and Piagetian Reasoning Patterns. The integrated skills require a higher cognitive demand. Analysis of test items in the Assessment of Performance Unit (APU) by Adey and Harlen (1986), also found that these items on process skills have the same characteristics as the Level of Demand in Piagetian Term. The so-called complex science process skills require higher cognitive demands on the students.

However, many countries such as the United States, United Kingdom and Malaysia include these integrated skills in the primary science curriculum. Studies by Inhelder and Piaget (1958), Shayer, Kuchermann and Wylam (1976) and Palanisamy (1986) have shown that most primary school students are operating at the concrete operational stage. Some characteristics of students at this stage are that they able to think logically, able to perform mental operations