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ABSTRACT

This study employed soft computing techniques, namely, support vector machine (SVM) and Gaussian process regression (GPR) techniques,

to predict the properties of a scour hole [depth (ds) and length (Ls)] in a diversion channel flow system. The study considered different geo-

metries of diversion channels (angles and bed widths) and different hydraulic conditions. Four kernel function models for each technique

(polynomial kernel function, normalized polynomial kernel function, radial basis kernel, and the Pearson VII function kernel) were evaluated

in this investigation. Root mean square error (RMSE) values are 8.3949 for training datasets and 11.6922 for testing datasets, confirming that

the normalized polynomial kernel function-based GP outperformed other models in predicting Ls. Regarding predicting ds, the polynomial

kernel function-based SVM outperforms other models, recording RMSE of 0.5175 for training datasets and 0.6019 for testing datasets.

The sensitivity investigation of input parameters shows that the diversion angle had a major influence in predicting Ls and ds.
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HIGHLIGHTS

• Soft computing implementation for prediction of the properties of scour hole.

• Benchmarking of SVM and GP-based data-intelligent models.

• The diversion angle had a major influence in predicting the properties of scour hole.

1. INTRODUCTION

The use of unlined diversion channels for irrigation, domestic, or hydropower projects has introduced concern over the scour-
ing of the beds of such channels. The scouring reduces the cover of related hydraulic structures’ foundations due to sediment

transport; thereby influencing their stability (Hoffmans & Pilarczyk 1995; Khwairakpam & Mazumdar 2009). Diversion
channels may occur naturally as well in rivers, known as river bifurcations; however, they are commonly unstable, evolve
in time splits, and merge due to the annual dynamics of river geomorphology (Kleinhans et al. 2013; Herrero et al. 2015;
Redolfi et al. 2016).

Owing to the importance of flow behavior in diversion channels for water and sedimentation management, numerous
studies (Ramamurthy & Satish 1988; Ramamurthy et al. 1990; Hsu et al. 2002; Mignot et al. 2013, 2014; Seyedian et al.
2014; Xu et al. 2016; Momplot et al. 2017) have been conducted to investigate different phenomena that accompany diver-

sion flow. Despite the presence of bed morphology as a very important factor in designing diversion channels (Xu et al. 2016),
the majority of these researches are about diversion channels with rigid boundary conditions, while the effects of bed mor-
phology in unlined diversion channels were ignored.

Flow in diversion channels with sand bed conditions was studied by Barkdoll et al. (1999), Dehghani et al. (2009), Herrero
et al. (2015), Alomari et al. (2018), Abdalhafedh & Alomari (2021), and different diversion angles were considered by
Keshavarzi & Habibi (2005) and Alomari et al. (2020). Although Barkdoll et al. (1999) and Herrero et al. (2015) investigated
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flow in unlined diversion channels with a diversion angle of 90°, Alomari et al. (2020) found that the diversion channel

received maximum water discharge and minimum sediment discharge when its diversion angle was 30° or 45° among 90°,
75°, 60°, 45°, and 30° diversion angles. Moreover, the optimum diversion angle based on intake separation zone size was
found to be at an angle of 55°, as reported by Keshavarzi & Habibi (2005).

Several studies (Nakato 1984; Kerssens & van Urk 1986; Nakato et al. 1990; Nakato & Ogden 1998; Michell et al. 2006)
were conducted to investigate the effect of sediment transport in diversion channels, and hence, several physical hydraulic
models were provided. Furthermore, the minimum foundation depth that is safe from the effects of scour in rivers and unlined
bed channels has been studied for many hydraulic structure types, such as rock structures (Pagliara et al. 2016), pile groups

(Amini et al. 2012), complex piers (Amini et al. 2011; Solaimani et al. 2017), submerged obstacles (Euler & Herget 2012), and
spur dykes (Duan et al. 2009). Moreover, a scour hole was observed by Barkdoll et al. (1999), Herrero et al. (2015), Alomari
et al. (2018, 2020) at the bed of the main channel down diversion channel conjunction due to the secondary vortex.

Since the presence of soft computing techniques to deal with different time-consuming and difficult engineering problems,
(Taylor &Meldrum 1994; Duch 2007; Aggarwal et al. 2013; Liu et al. 2017; Dibs et al. 2018), different soft computing models,
such as support vector machines (SVM), random forest (RF), and Gaussian process regression (GPR) have been employed to

solve various water resources engineering problems (Ehteram et al. 2021; Sihag et al. 2021; Yaseen et al. 2021) and they are
recommended to be applied for analyzing scour depth and length problems (Moradi et al. 2019).

The main objective of this study is to evaluate the performance of two soft computing techniques, namely, SVM and GPR,

in predicting the properties of scour holes [scour depth (ds) and scour length (Ls)] due to diversion channels with considering
different geometries of diversion channels (angles and bed widths). Moreover, the effects of water flow, depth, and velocity in
the main channel on (ds) and (Ls) were considered in this study.

2. METHODOLOGY

2.1. Experimental set-up

Data used for modeling scour holes due to the diversion flow system were based on experimental work that was conducted

using a rectangular diversion channel with a 2.75-m length, 0.6-m depth, and adjustable bed widths of 0.15, 0.12, and 0.09 m.
This channel was diverted from the left side wall of the main channel, about at the middle of the working section, which is
filled with sand. The dimensions of the main channel are 12.5-m length, 0.313-m width, and 0.6-m depth (Figure 1). The diver-

sion channel was built to be flexible and angle adjustable with the main channel.
The sand was used for the bed of the diversion and main channels with a medium particle diameter of 0.4 mm (σg¼ 1.46

and ρs¼ 2,530). The sand layer was 0.18 m thick and prior to starting each experiment, the bed was checked, filled, and flat-
tened. Flow in the diversion channel system was re-circulated by collecting water and sediment at the system’s ends and

pushing it back into the system. A flow meter was fitted at the pumping pipe to measure the overall discharge and a control
valve was used to regulate the overall discharge.

Figure 1 | Main and diversion channel layout.
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To alleviate flow turbulence, a mesh was added at the main channel entry. Moreover, the surface of the soil at the inlet and

outlets of the working section was covered by paces of Perspex to protect against the local scour. Controlling the discharge of
the diversion channel flow was accomplished by inserting teeth-shaped pieces with 30% flow opening and 70% contraction at
the ends of both channels. Using the teeth-shaped components helps to control the ratio of diversion to total discharge and

lets the sand move through the channels without getting stuck at the channel’s outlets. At selected points, the depth of the
water and the scour were measured with precision up to parts of a millimeter using a vertical point gauge. Scour depth
was measured in 30-min time intervals at the first 2 h, then once each hour.

2.2. Experimental tests

A total of 75 experiments were accomplished experimentally as detailed in Table 1. Throughout each experiment, the dis-

charge in the diversion channel was measured using the volumetric approach and the discharge in the downstream main
channel (Qd) was determined using the continuity equation. Before each experiment, the sand bed was smoothed. Then,
an experiment was started by closing the channel’s outlets and gently supplying the water to an appropriate depth into the

channels and then opening the outlets by setting the desired discharge. Each experiment lasted 12 h to complete. The temp-
erature in the laboratory was kept at around (27 °C+ 1.5 °C) throughout the study.

2.3. Soft computing analysis

The effectiveness of two soft computing techniques, namely, SVM and GPR, in predicting the length and depth of the scour in
the diversion channel flow system was evaluated. The details of the two soft computing techniques are presented below.

2.3.1. Support vector machines

As per Cortes & Vapnik (1995), the SVM can be described as classification and regression methods, which are derivatives of
the theory of statistical learning. The concept of optimum class separation serves as a major base for the SVM classification
methods. If the classes are separable, it has been suggested that this technique chooses, among an unlimited quantity of linear

classifiers, the one that records the minimum error, resulting from structural risk minimization. Hence, the carefully chosen
hyperplane would leave the greatest error between the two classes (Cortes & Vapnik 1995).

If both classes are inseparable, SVM will attempt to locate the hyperplane that simultaneously maximizes the margin and
minimizes a quantity proportional to the number of misclassification errors. A positive constant must be chosen beforehand;

it determines the tradeoff between margin error and misclassification error. There can be a further extension of this particular
technique of designing an SVM for the countenance of the nonlinear decision surfaces. Cortes & Vapnik (1995) have
suggested that this can be consummated by the projection of the variables (original set) into a higher dimensional feature

space and by the formulation of a linear grouping problem in the feature space.
Cortes & Vapnik (1995) suggested the 1 support vector regression (SVR) through the introduction of an alternative 1 insen-

sitive loss function. The resolution of the SVR, as suggested by Smola (1996), is to develop a function that has the smallest

possible divergence from the actual target vectors for all training data and that is as flat as feasible. The conception of the
nonlinear support vector kernel function for regression is additionally presented by Cortes & Vapnik (1995). Readers can
refer to Cortes & Vapnik (1995) and Smola (1996) for more details about the SVR. Fewer user-defined parameters are the

prerequisites for SVR. SVR needs the configuration of kernel-specific factors, as well as, the selection of a kernel. In addition,
it is necessary to calculate the appropriate regularization parameter C and error size in the sensitive zone ε. The selection of
parameters governs the intricacy of extrapolation.

Table 1 | Details of experimental tests

Diversion angle (θ°) Bb/Bm¼Br (%)a Total discharge, Qu (L/s)

30

45

60 29, 38, and 48 7.25, 8.5, 9.75, 11, and 12.25

75

90

aBb/Bm is the bed width ratio of the main channel to the diversion channel.
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2.3.2. Gaussian process regression

According to Neal (2000), Gaussian processes (GP) may be termed as a generality of the Gaussian distribution and here
vector is the mean and the matrix serves as the covariance. GP regression is an expedient approach to nonparametric

regression owing to its theoretical simplicity as well as its worthy generalization capability and it provides an output that
is probabilistic (Williams & Rasmussen 2006).

In GP regression, for each X�, which is defined as the vector of the test data, the predicted distribution of the output is
Y �=(X , Y ), X� � N(m, S) and it is presented as:

m ¼ K (X�, X) (K (X , X)þ s2I )�1Y (1)

S ¼ K (X�, X�)� s2I �K (X�, X) (K (X , X)þ s2I)�1K (X , X�) (2)

where s2 is the degree of noise, I is the identity matrix, and y would be established as y � f(x)þ j, where j � N (0, s2), the
character∼ stands for sampling.

For every input x in GP regression, an accidental variable f(x) represents the amount of the stochastic function f at that
point is attached. Another assumption, which is the error j in the observations, it is typically self-determining and identically
distributed, with a mean of zero (m(x) ¼ 0), a variance of s2 and f(x) drawn from the Gaussian process is determined x by the
parameter k.

Y ¼ (y1, . . . . . . . . . :yn) � N (0, K þ s2I ) (3)

where Kij ¼ K (xi, xj) and I is the identity matrix.
The data were divided into two sets, training and testing dataset, as n and n�, respectively. Then, the covariance matrix-

(n� n�) to evaluate all two sets, which is characterized as K (X , X�) and in a comparable fashion, this applies to the

other amounts of K (X , X), K (X�, X), and K (X�, X�); here X and Y are the vectors of both of the training data and labels
yi (Yetilmezsoy et al. 2021).

For the generation of a positive quasi covariance matrix K, here Kij ¼ K (xi, xj), a quantified covariance function is necess-
ary. The terms kernel function and covariance function, which are both utilized in SVM and GP regression, are

interchangeable. By identifying both degrees of noise (s2) and kernel function, it would be enough to have Equations (1)
and (2) for inference purposes. Throughout the GP regression model training process, the user has to pick out an opposite
covariance function, the parameters of it as well as the degree of noise. In the situation of GP regression with Gaussian

noise having a constant value, a GP model may be constructed using Bayesian inference. After minimizing the negative
log-posterior, the equation will be:

p (s2, k) ¼ 1
2
YT (K þ s2I)�1Y þ 1

2
logjK þ s2Ij � log p (s2)� log p (k) (4)

For determining the hyperparameters, Equation (4) follows a partial derivative regarding s2 , k, and minimization can be
with the assistance of gradient descent. Kuss (2006) has published a comprehensive descriptive account of the GP regression
in addition to different covariance functions.

2.3.3. Details of kernel function

The kernel function idea is used in the creation of the SVM and GP-based regression approaches (Mehdipour et al. 2018;
Sihag et al. 2018, 2019). The four most frequently used kernel functions: a polynomial kernel function (K (x, x’)¼ ((x .

x’) þ 1)d*), normalized polynomial kernel function Kcosine(x, x0) ¼ K (x, x0)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K(x, x):K(x0, x0)

p� �
, radial basis kernel

(K (x , x0) ¼ e�gjx�x0 j2 ), and the Pearson VII function kernel 1= 1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
�� ��q 2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2(1=v) � 1
p

=s

� �2
" #v !

, where d�, g, s,

and v are kernel-specific parameters.
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2.4. Dataset

To develop the soft computing models, data preparation is the first step. The collected dataset is split into training and testing
groups, which were randomly assigned. The training dataset is utilized for model development, whereas the testing dataset is

utilized for model validation. Table 2 provides the range of datasets assigned for training and testing. A total of 75 datasets
were collected, 53 datasets for training, and 22 datasets are utilized for testing the developed models. Total discharge (Qu),
diversion channel bed width (Bb), the critical velocity of the beginning of motion of bed materials (Vc), the ratio of the main
channel bed width to the diversion channel bed width (Br ¼ Bb/Bm), diversion to main channel water discharge (Qr), water

depth in the main channel at upstream (yu), main channel velocity of the flow at upstream (Vu), and sine of diversion channel
angle (Sin θ) were considered as input parameters whereas scour length (Ls) and scour depth (ds) at was considered as a
target.

2.5. Model performance indices parameters

The performance of models was evaluated using five widely used statistical performance indicators, namely, the correlation
coefficient (CC), root mean square error (RMSE), mean absolute error (MAE), Nash Sutcliffe model efficiency (NS), and scat-
tering index (SI) as presented by Equations (5)–(9). The performance evaluation includes both training and testing datasets.

CC ¼
PN
i¼1

(Pi � �P)(Oi � �O)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

(Pi � �P)2
PN
i¼1

(Oi � �O)
2

s (5)

MAE ¼ 1
N

XN
i¼1

jPi �Oij (6)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

(Pi �Oi)
2

vuut (7)

NS ¼ 1�

PN
i¼1

(Pi �Oi)
2

PN
i¼1

(Oi � �O)
2

0
BBB@

1
CCCA (8)

SI ¼ RMSE
�O

(9)

Table 2 | Range of assigned dataset

Parameters

Training dataset Testing dataset

Min. Max. Mean StD CL (95%) Min. Max. Mean StD CL (95%)

Qu (L/s) 7.250 12.250 9.7736 1.7246 0.4754 7.250 12.250 9.693 1.947 0.8633

Bb (cm) 9.000 15.000 12.000 2.4962 0.6880 9.000 15.000 12.000 2.4495 1.086

Vc (m/s) 0.212 0.233 0.2236 0.0055 0.0015 0.213 0.233 0.2233 0.0064 0.0028

Br (%) 28.571 47.619 38.095 7.9243 2.1842 28.571 47.619 38.095 7.776 3.4478

Qr (%) 18.480 31.180 24.959 4.0168 1.1072 18.210 31.180 24.820 4.2436 1.8815

yu (cm) 8.200 12.850 10.535 1.2631 0.3481 8.350 12.900 10.493 1.4828 0.6574

Vu (m/s) 0.224 0.584 0.3716 0.0997 0.0275 0.223 0.5739 0.3752 0.1036 0.0459

Sin θ 0.500 1.000 0.8054 0.1867 0.0515 0.500 1.000 0.8135 0.1876 0.0832

Ls (cm) 33.25 118.05 68.759 21.5925 5.9516 31.650 113.30 71.079 23.214 10.2925

ds (cm) 7.10 17.50 12.005 2.3036 0.6350 6.500 15.900 12.084 2.2146 0.9819
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where Oi and Pi are, respectively, the observed and the predicted parameter, �O is the average observed parameter and n is

the number of the observed data.
Furthermore, two graphical performance assessment methods, the Taylor diagram and the box plot are also plotted for the

comparison of applied models. Taylor diagrams depict the similarity between two patterns and the degree to which a model

pattern corresponds to the actual pattern (Taylor 2001). Box plots have been also selected for assessment. It uses five descrip-
tive statistics, such as lower, median, and upper quartile, beside the minimum and maximum in a graphical presentation.

3. RESULTS AND DISCUSSION

3.1. Assessment of SVM-based model for the prediction of Ls

Table 3 presents the performance indices parameters, which are used to measure the prediction accuracy of the different pre-
diction models. From Table 3, for all SVM-based models, the performance evaluation parameters values in predicting Ls

using training and testing stages suggest that the polynomial kernel function-based SVM model outperforms other kernels,
function-based SVM models, in predicting Ls with RMSE values as 8.5265 and 12.0189, MAE values as 6.3916 and
9.1556, CC values as 0.9173 and 0.8672, NS values as 0.8411 and 0.7192, and SI values as 0.1240 and 0.1691 for both datasets

(training and testing), respectively. Figure 2 presents the plot of the agreement and error. Furthermore, it presents the models
performance. These plots suggest that the polynomial kernel function-based SVM model predicted values are nearby the per-
fect agreement line and follow the same pathway as actual values with the least amount of divergence compared with other
kernel function-based SVM models.

Various kernel function-based SVM models were compared using the Taylor diagram as shown in Figure 3, which is based
on RMSE, CC, and standard deviation, where the outperforming model is the one nearby to the actual point. The outcomes of
Taylor diagrams show that the SVM_Poly model is the highest in accuracy compared with other models, which were applied

to predict Ls. To evaluate the inconsistency of most Ls predictions besides the actual values, the 25, 50, and 75% quartile
values of the actual and predicted Ls are assessed using Table 4. Table 4 indicates that the SVM_Poly model has closer quar-
tiles to the actual values compared with other kernel function-based SVMmodels. The interquartile range (IQR) of SVM_Poly

is also nearer to the IQR of actual data.

Table 3 | Performance indices parameters for SVM and GP-based models for the prediction of Ls

Approaches CC RMSE MAE NS SI

Training dataset

SVM_Poly 0.9173 8.5265 6.3916 0.8411 0.1240

SVM_NPoly 0.8950 9.7084 6.6587 0.7940 0.1412

SVM_PUK 1.0000 0.0907 0.0800 1.0000 0.0013

SVM_RBF 0.9516 6.5801 3.7695 0.9053 0.0957

GP_Poly 0.9167 11.9806 6.8399 0.8402 0.1742

GP_NPoly 0.9201 8.3949 5.9964 0.8459 0.1221

GP_PUK 1.0000 0.2385 0.1941 0.9999 0.0035

GP_RBF 0.9782 4.4620 3.3245 0.9565 0.0649

Testing dataset

SVM_Poly 0.8672 12.0189 9.1556 0.7192 0.1691

SVM_NPoly 0.8090 13.6417 10.4960 0.6382 0.1919

SVM_PUK 0.8643 12.9722 11.1883 0.6729 0.1825

SVM_RBF 0.8601 12.7411 9.5466 0.6844 0.1793

GP_Poly 0.8614 16.5979 9.6998 0.7200 0.2335

GP_NPoly 0.8744 11.6922 9.0375 0.7342 0.1645

GP_PUK 0.8643 12.9855 11.2002 0.6722 0.1827

GP_RBF 0.8621 13.3579 10.9985 0.6531 0.1879
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3.2. Assessment of GP-based model for the prediction of Ls

Table 3 presents five performance indices parameters that were performed for the evaluation of the predictive accuracy of all
GP-based models for Ls prediction. Four kernel functions were used for the GP-based models’ development. Results of
Table 3 suggest that the normalized polynomial kernel function-based GP model outperforms other kernel function-based

GP models for Ls prediction with RMSE values of 8.3949 and 11.6922, MAE values as 5.9964 and 9.0375, CC values as
0.9201 and 0.8744, NS values as 0.8459 and 0.7342, and SI values as 0.1221 for training stage and 0.1645 for testing
stage. Figure 4 presents the plot of the agreement and error. Furthermore, it presents the models performance. These plots

suggest that the normalized polynomial kernel function-based GP model predicted values are nearby the perfect agreement
line. Moreover, it follows the same pathway as actual values with the least amount of divergence compared with other kernel
function-based GP models.

Figure 2 | SVM-based model performance for predicting the Ls.

Figure 3 | Taylor diagram for various kernel function-based SVM models used for prediction of Ls using both datasets (training and testing).
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Table 4 | Descriptive statistics of actual and predicted values using GP and SVM-based models for the prediction of Ls

Statistic Minimum Maximum First Quartile Mean Third Quartile IQR

Training dataset

Actual 33.2500 118.0500 53.0000 68.7594 82.9000 29.9000

SVM_Poly 28.7480 105.7670 55.3790 68.7991 82.8650 27.4860

SVM_NPoly 33.0850 98.6050 56.9040 69.1282 82.4800 25.5760

SVM_PUK 33.3770 117.9000 53.0740 68.7586 82.9820 29.9080

SVM_RBF 33.4130 106.6770 55.2540 68.5379 84.4980 29.2440

GP_Poly 32.5540 109.8290 53.4510 68.9407 83.8120 30.3610

GP_NPoly 29.3760 103.1920 55.1060 68.7377 86.5710 31.4650

GP_PUK 33.5230 117.3450 53.0840 68.7599 83.2230 30.1390

GP_RBF 33.2520 114.4150 55.4980 68.7554 81.8270 26.3290

Testing dataset

Actual 31.6500 113.3000 55.5500 71.0795 86.2250 30.6750

SVM_Poly 28.9200 103.5730 55.6640 67.7903 81.4423 25.7783

SVM_NPoly 28.1200 98.0590 55.2615 68.2825 82.6013 27.3398

SVM_PUK 42.7130 95.3540 55.3488 67.5545 76.0533 20.7045

SVM_RBF 33.8080 107.3110 50.0443 65.9115 79.3268 29.2825

GP_Poly 35.3810 107.5230 52.6613 67.7335 81.0240 28.3628

GP_NPoly 28.7720 102.8350 54.5743 67.2309 81.6085 27.0343

GP_PUK 42.8760 95.2580 55.4145 67.5934 76.0918 20.6773

GP_RBF 33.0290 116.3420 43.7145 64.5294 75.4365 31.7220

Figure 4 | GP-based model performance for predicting the Ls.
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The outcomes of the illustration in Figure 5 of the Taylor diagram recommend that the GP_NPoly model (solid blue circle)

outperformance other models in prediction Ls. To evaluate the inconsistency of most Ls predictions besides the actual values,
the 25, 50, and 75% quartile values of the actual and predicted Ls are assessed using Table 4. Table 4 displays that the
GP_NPoly model has closer quartiles to the actual values compared with other kernel function-based SVM models. The

IQR of GP_NPoly is also closer to the IQR of actual data.

3.3. Assessment of SVM-based model for ds prediction

Table 5 presents the performance indices parameters, which are usually used to measure the prediction accuracy of the differ-
ent models. The same four kernel functions were used for SVM-based model development for ds as selected for Ls prediction
model development. Table 5 shows the performance indices parameters (CC, RMSE, MAE, NE, and SI) values for all SVM-
based models for ds prediction for the training stage and testing stage. Table 5 shows that the polynomial kernel function-

based SVM model outperforms other kernel function-based SVM models in ds prediction with RMSE values of 0.5175
and 0.6019, MAE values of 0.3563 and 0.4531, CC values of 0.9746 and 0.9710, NS values of 0.9486 and 0.9226, and SI
values of 0.0431 and 0.0498 for the training and testing stages, respectively. Figure 6 presents the plot of the agreement

and error. Furthermore, it presents the models’ performance. These plots suggest that the SVM-Poly model predicted
values are close to the perfect agreement line and follow the same pathway as actual values with the least amount of diver-
gence compared with the other kernel function-based SVM models.

Various kernel function-based SVM models were compared using the Taylor diagram as shown in Figure 7. From the dia-
gram, the SVM_Poly model (solid red circle) has the highest precision of other kernel function-based SVM models for the
prediction of ds. To evaluate the inconsistency of the most ds predictions besides the actual values, the 25, 50, and 75% quan-

tile values of the actual and predicted ds are assessed using Table 6. Table 6 indicates that the SVM_Poly model has closer
quartiles to the actual values compared with other kernel function-based SVMmodels. The IQR of SVM_Poly is also closer to
the IQR of actual data.

3.4. Assessment of GP-based model for the prediction of ds

GP-based model development for ds prediction was done using the same four kernel functions, as selected for Ls prediction
model development (Table 5). From Table 5, the polynomial kernel function-based GP model records better performance

than other kernel function-based GP models for ds prediction with RMSE values of 0.6772 and 0.6033, MAE values of
0.3527 and 0.5182, CC values of 0.9775 and 0.9663, NS values of 0.9551 and 0.9222, and SI values of 0.0564 and 0.0499
for training and testing stages, respectively. Figure 8 presents the plot of the agreement and error. Furthermore, it presents

the models’ performance. These plots suggest that the GP_Poly model predicted values are nearby of the perfect agreement

Figure 5 | Taylor diagram for various kernel function-based GP models used for prediction of Ls using both datasets (training and testing).
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line. It follows the same pathway as actual values with the least amount of divergence as a compression with the other kernel
function-based GP models. Taylor diagram is also plotted to compare various kernel function-based GP models (Figure 9).

The results of Taylor diagrams confirm that the GP_Poly model (solid red circle) has the highest precision of other kernel
function-based GP models in ds prediction.

Table 5 | Evaluation of the parameter’s performance for SVM and GP-based models for ds prediction

Approaches CC RMSE MAE NE SI

Training dataset

SVM_Poly 0.9746 0.5175 0.3563 0.9486 0.0431

SVM_NPoly 0.9647 0.6284 0.4166 0.9241 0.0523

SVM_PUK 1.0000 0.0106 0.0096 1.0000 0.0009

SVM_RBF 0.9875 0.3711 0.2192 0.9736 0.0309

GP_Poly 0.9775 0.6772 0.3527 0.9551 0.0564

GP_NPoly 0.9834 0.4158 0.3193 0.9668 0.0346

GP_PUK 1.0000 0.0228 0.0171 0.9999 0.0019

GP_RBF 0.9956 0.2156 0.1652 0.9911 0.0180

Testing dataset

SVM_Poly 0.9710 0.6019 0.4531 0.9226 0.0498

SVM_NPoly 0.9258 0.8772 0.7410 0.8356 0.0726

SVM_PUK 0.9412 1.0725 0.7749 0.7543 0.0888

SVM_RBF 0.9610 0.6570 0.5412 0.9078 0.0544

GP_Poly 0.9663 0.6033 0.5182 0.9222 0.0499

GP_NPoly 0.9481 0.7562 0.6475 0.8779 0.0626

GP_PUK 0.9404 1.0796 0.7794 0.7510 0.0893

GP_RBF 0.9540 0.6943 0.5589 0.8970 0.0575

Figure 6 | SVM-based model performance for predicting the ds.
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To evaluate the discrepancy of the most ds prediction besides the actual values, the 25, 50, and 75% quartile values of the

actual and predicted ds are assessed using Table 6. Table 6 shows that the GP_Poly model has closer quartiles to the actual
values compared with other kernel function-based SVMmodels. The (IQR of GP_Poly is also closer to the IQR of actual data.

3.5. Intercomparing of developed models

Prediction of the target values using a soft computing-based model is easy, reasonable, and more time-saving than performing
experimentation. Soft computing-based models mainly depend on past data, which is used for model preparation. During this

Figure 7 | Taylor diagram for various kernel function-based SVM models used for prediction of ds using both datasets (training and testing).

Table 6 | Descriptive statistics of actual and predicted values using GP and SVM-based models for ds prediction

Statistic Minimum Maximum First Quartile Mean Third Quartile IQR

Training dataset

Actual 7.1000 17.5000 10.6000 12.0047 13.4000 2.8000

SVM_Poly 7.1010 17.0800 10.5800 11.9252 13.3910 2.8110

SVM_NPoly 7.4160 15.3300 10.6200 12.0099 13.2320 2.6120

SVM_PUK 7.1050 17.4900 10.6110 12.0056 13.3900 2.7790

SVM_RBF 7.2010 16.4540 10.6000 11.9480 13.4390 2.8390

GP_Poly 7.3370 17.1210 10.4600 12.0312 13.3840 2.9240

GP_NPoly 7.5080 16.3010 10.6540 12.0063 13.4500 2.7960

GP_PUK 7.1560 17.4390 10.6120 12.0050 13.3920 2.7800

GP_RBF 7.1570 17.0590 10.6180 12.0060 13.4540 2.8360

Testing dataset

Actual 6.5000 15.9000 10.9875 12.0841 13.0625 2.0750

SVM_Poly 5.7780 15.3610 10.6213 11.7792 12.7130 2.0918

SVM_NPoly 7.9930 14.7810 10.5963 11.8257 13.2755 2.6793

SVM_PUK 9.7290 14.2950 11.1855 11.9570 12.5828 1.3973

SVM_RBF 7.2620 15.7910 10.1173 11.8129 13.1218 3.0045

GP_Poly 5.9750 15.6080 10.5605 11.8541 12.9935 2.4330

GP_NPoly 7.1240 15.3840 10.3128 11.7725 13.3313 3.0185

GP_PUK 9.7720 14.2910 11.1998 11.9669 12.5768 1.3770

GP_RBF 7.2440 15.8720 10.2078 11.8367 13.2750 3.0673
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investigation, predicting the scour length (Ls), and scour depth (ds) was done using SVM and GP-based models, which are
developed at the junction region of the diversion channel. The performances of the SVM and GP-based best models are
recorded and highlighted in Tables 3 and 5 for Ls and ds, respectively, using both training and testing datasets. Agreement

plots are plotted in Figures 10 and 11 for a fair comparison among the best models of SVM and GP for Ls prediction and
ds during the testing stages, correspondingly. For Ls prediction, Figure 10 and Table 3 confirm that the GP_NPoly models
are outperforming SVM-based models. While, for ds prediction, Table 5 and Figure 11 confirm that SVM_Poly is outperform-

ing GP-based models. As presented in Table 7, single-factor ANOVA outcomes display that the F-values were fewer than
F-critical and P-values were more than 0.05 suggesting that the difference in predictive values using numerous models and
actual values is insignificant. Taylor diagrams are plotted in Figures 12 and 13 for the comparison among the best models

Figure 8 | SVM-based model performance for predicting the ds.

Figure 9 | Taylor diagram for various kernel function-based GP models used for prediction of ds using both datasets (training and testing).
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for Ls prediction and ds. These figures confirm that GP_NPoly is outperforming other models for Ls prediction and

SVM_Poly is outperforming other models for ds prediction.

3.6. Sensitivity investigation

To find the influence of each parameter, which is used for the estimation of the target, sensitivity investigations were per-

formed. Several factors that affect the Ls and ds were included, namely, friction angle (w), slope angle (b), and stability
numbers (m). Best-performing models were employed for this investigation. Performance of the GP_NPoly model with differ-
ent input combinations was compared performed as presented in Table 8, which suggests that the Sin θ had a significant

Figure 11 | Agreement plot of outperforming models for ds prediction using the testing stage.

Figure 10 | Agreement plot of outperforming models for Ls prediction using the testing stage.

Table 7 | Results of single-factor ANOVA for best-performing models for the prediction of Ls and ds

No. Source of variation F P-value F crit Variation among groups

Ls

1 Between actual value and SVM_Poly 0.244356 0.623653 4.072654 Insignificant

2 Between actual and GP_NPoly 0.329399 0.569074 4.072654 Insignificant

ds

3 Between actual and SVM_Poly 0.210644 0.64863 4.072654 Insignificant

4 Between actual and GP_Poly 0.120739 0.72997 4.072654 Insignificant
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impact on Ls prediction. Table 9 compares the performance of the SVM_Poly model with different input combinations. From

Table 9, Sin θ had a significant impact on ds prediction. Overall, Sin θ has a major influence in predicting Ls and ds using this
dataset.

4. CONCLUSIONS

The performance of two soft computing techniques (SVM) and (GPR) in predicting scour length and scour depth due to diver-
sion flow was evaluated in this study. Fifteen geometries of the diversion channel represented by five angles of the diversion

channel between 30° and 90° and three Br between about 30 and 50% were considered in modeling the diversion flow. In
addition, different hydraulic conditions for each model were considered. The investigation used polynomial, normalized poly-
nomial, radial basis, and the Pearson VII kernel function for both SVM and GPR computing techniques. Using different

Figure 13 | Taylor plot of outperforming models for ds prediction using the testing stage.

Figure 12 | Taylor plot of outperforming models for Ls prediction using the testing stage.
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model performance assessing parameters (CC, MAE, RMSE, NS, and SI) to evaluate the performance of different kernel func-

tions of SVM and GPR computing techniques, the GP_NPoly model was recorded outperforming other models in prediction
of Ls and the SVM_Poly model was recorded outperforming the other models in prediction of ds. Sensitivity analysis was
undertaken for the input parameters to evaluate the importance of each one for the estimation of the scour length and

depth. It suggested that the diversion angle of the diversion channel (θ) has a significant impact on Ls and ds prediction
using this dataset. For future work, it is worth conducting further investigation and performing soft computing techniques
to predict diversion water and sediment amount.
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