

UNIVERSITI PUTRA MALAYSIA

ELECTROCHEMICAL ACTIVATION PROCESS FOR TREATING HIGH STRENGTH WASTE

YAP SIEW YEIN

FK 2001 33

ELECTROCHEMICAL ACTIVATION PROCESS FOR TREATING HIGH STRENGTH WASTE

By

YAP SIEW YEIN

Thesis Submitted in Fulfilment of the Requirement for the Degree of Master of Science in the Faculty of Engineering Universiti Putra Malaysia

May 2001

Dedicated to daddy,

For your love and all you have done for the family

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

ELECTROCHEMICAL ACTIVATION PROCESS FOR TREATING HIGH STRENGTH WASTE

By

YAP SIEW YEIN

May 2001

Chairman: Associate Professor Dr. Azni Idris

Faculty: Engineering

Electrochemical Activation Process (ECA) is a method whereby electrical current is introduced to induce a chemical reaction in water containing natural salts. As a result, this process will produce a substantial electrical potential difference, leading to the generation of anolyte and catholyte. The anolyte generated by the STEL®-ECA unit system were found to contain Cl_2 , Cl^- , HClO, HCl, ClO_2 , O_2 , O_3 , and H_2O_2 . As for catholyte, analyses using the ICP and IR spectroscopy showed that it contains the hydroxides of sodium, potassium, magnesium and calcium. Besides, kinetic studies on the decomposition of the components in anolyte were also studied.

Both activated solutions, anolyte and catholyte were used to treat passivation waste and landfill leachate. The studies include using anolyte and catholyte in COD reduction, the effect of contact time (of anolyte and the waste) on COD reduction, kinetics of the reaction between anolyte and the waste, using of catholyte in coagulation and flocculation, biodegradability of the waste after treatment and others. Finally, a case study was carried out to investigate the possibility of using anolyte in combination with other treatment methods, for example, aerobic, anaerobic, sedimentation and absorption to treat chemical waste. The physical-chemical-biological treatment reactor designed for the treatment of chemical waste was closely monitored for 143 days on its COD, BOD and biodegradability.

For passivation waste, COD removal was 70% using anolyte for at least 24 hours of contact time. High efficiency on the formation and settling of floc were observed when catholyte is used together with alum and anionic polymer. In addition, the non-readily biodegradable waste was transformed to a more readily biodegradable waste after at least a 24 hours reaction with the activated solutions. As for leachate, anolyte showed good reduction in COD and ammoniacal nitrogen, whereas catholyte showed good reduction in ferum and zinc. Finally, data obtained from the case study showed that anolyte is able to convert a non-readily biodegradable waste to a more readily biodegradable waste.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PROSES ELEKTROKIMIA AKTIF UNTUK MERAWAT SISA KUAT

Oleh

YAP SIEW YEIN

Mei 2001

Pengerusi: Profesor Madya Dr. Azni Idris

Fakulti: Kejuruteraan

Proses Elektrokimia Aktif adalah suatu proses dimana arus elektrik dibekalkan untuk merangsangkan suatu tindakbalas kimia di dalam suatu larutan bergaram. Proses ini menyebabkan suatu perubahan keupayaan elektrik lalu menghasilkan larutan 'anolyte' dan 'catholyte'. 'Anolyte' yang dijanakan oleh sistem unit STEL®-ECA didapati mengandungi Cl₂, Cl⁻, HClO, HCl, ClO₂, O₂, O₃, dan H₂O₂. Untuk 'catholyte' pula, analisis menggunakan spektroskopi ICP dan IR menunjukkan bahawa ia mengandungi hidroksida natrium, kalium, magnesium dan kalsium. Selain itu, kinetik perlesapan komponen dalam 'anolyte' turut dikaji.

Kedua-dua larutan aktif, 'anolyte' dan 'catholyte' telah digunakan untuk merawat sisa pasif dan air sisa dari tempat pembuangan sampah. Kajian ini termasuk penentuan dos terbaik 'anolyte' dan 'catholyte' dalam penurunan COD, kesan masa sentuhan antara 'anolyte' dengan sisa terhadap penurunan COD, kinetik tindakbalas antara 'anolyte'

dengan sisa, penggunaan 'catholyte' dalam proses penggumpalan, biodegradasi sisa selepas rawatan dan sebagainya. Akhirnya, suatu kajian kes dijalanhan untuk mengkaji pergabungan 'anolyte' dengan kaedah rawatan lain seperti aerobik, anaerobik, pemendapan dan penyerapan untuk merawat sisa kimia. Reaktor rawatan fizikal-kimiabiologi rekaan itu telah dijalankan selama 143 hari dan parameter COD, BOD dan kebolehan sisa dibiodegradasikan telahpun dikaji.

Untuk sisa pasif, penurunan COD yang dicapai adalah sebanyak 70% apabila 'anolyte' digunakan dengan masa tindakbalas sekurang-kurangnya 24 jam. Penggunaan 'catholyte' bersama-sama dengan alum dan polimer anionik telah menunjukkan keberkesanan yang tinggi dalam pembentukan 'floc' dan pemendapan 'floc'. Selain itu, sisa yang pada mulanya tidak terbiodegradasi, telah menjadi terbiodegradasi selapas rawatan dengan larutan-larutan aktif itu. Untuk 'leachate' pula, 'anolyte' menunjukkan keputusan yang baik dalam penurunan COD dan nitrogen ammonia manakala 'catholyte' pula menunjukkan keputusan yang baik dalam penurunan ferum dan zink. Akhirnya, data yang diperolehi dari kajian kes menunjukkan bahawa 'anolyte' berkebolehan menukarkan sisa tidak terbiodegradasi kepada sisa terbiodegradasi.

ACKNOWLEDGEMENTS

Firstly, the reward goes to the Lord; Who unfailingly blessed me throughout my Masters program in UPM. I would like to express my sincere gratitude and appreciation to the Lord for each and every word written in this book for it reflects His wisdom.

Secondly, word of gratitude goes to my project supervisor, Dr. Azni Idris for his guidance, inspiration and encouragement. Besides, his patience throughout my studies, which ensures the saying, 'If there is a will, there is a way', should also be appreciated. His contribution to the masterpiece is highly regarded.

My appreciation also goes to Genpro Water Tech. Sdn. Bhd. for providing the STEL® ECA unit and assistance in maintaining the machine during times of failure. Thanks to Encik Hisham for special advice in handling the machine.

Besides, I also like to thank my special friend, Chiau Siang for being the source of strength to hold on in times of needs and the place of sharing in times of joy.

In addition, special gratitude also goes to my colleagues; Bee Yen, Maheran and Calvin whom have continuously playing important roles throughout my Masters program in encouraging, advising and lending helping hands.

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL SHEETS	viii
DECLARATION FORM	X
LIST OF TABLES	xiv
LIST OF FIGURES	xvi
LIST OF ABBREVIATIONS	xix

Page

CHAPTER

1	INTRO	DUCTION	1				
	1.1	General	1				
	1.2	Electrochemical Activation (ECA)	2				
	1.3	Flow-Through Electrochemical Modular (FEM)	3				
	1.4	The STEL® ECA System	5				
		1.4.1 Space Age Technology	5				
		1.4.2 Characteristics of the STEL® ECA System	5				
		1.4.3 Basic Principal of the STEL® unit	7				
	1.5	Anolyte	11				
	1.6	Catholyte	14				
	1.7	Study using ECA Solutions (Anolyte and Catholyte) for					
		Treating High Strength Waste	15				
	1.8	Objectives	16				
	1.9	Research Outline	17				
2	LITE	LITERATURE REVIEW 18					
	2.1	The Evolution of ECA System	19				
	2.2	ECA in Medicine and Biology	24				
		2.2.1 ECA Solutions As Antiseptic Agents and Biological Active					
		Solutions for Treating Diseases	25				
		2.2.2 ECA Solutions As Washing, Disinfectant and					
		Sterilant Solution	28				
	2.3	ECA in Agriculture	33				
	2.4	ECA in Industry	36				
	2.5	Other Research and Studies (Outside Russia) Using					
		Electrochemical Method for Treating Wastewater	41				

		ING ECA	A ACTIVATED SOLUTIONS FOR TREATING	
3.1				46
5.1	3.1.1		maracteristics of the Activated Solutions Generated	40
	5.1.1		ental Methods Experimental Set-Up	47
			Maintenance	48
			Functions of the STEL® and its Generated	-10
		5.1.1.5	Activated Solutions	49
	212	Doculto	and Discussion	49 52
	3.1.2		Functions of the STEL®	52
				56
	212	3.1.2.2	, , , , , , , , , , , , , , , , , , ,	66
2	3.1.3			67
3.2			tions In Treating Passivation Waste	67
	3.2.1	-	iental Methods	
		3.2.1.1		67
			Anolyte and Catholyte Effect on COD Reduction	68 70
			Effect of Reaction Time on COD Reduction	7 0
			Using Catholyte as a Coagulant Aid	70
			Use of Anolyte and Catholyte in Jar Test	72
		3.2.1.6	• •	
			Treatment with Anolyte and Catholyte Using	-
			GC-MS and IR Spectroscopy	73
	3.2.2		and Discussion	76
			Characteristics of the Passivation Waste	76
			Anolyte and Catholyte Effect on COD Reduction	76
			Effect of Reaction Time on COD Reduction	83
			Using Catholyte as a Coagulant Aid	85
			Use of Anolyte and Catholyte in Jar Test	89
		3.2.2.6	Biodegradability of Passivation Waste after	
			Treatment with Anolyte and Catholyte Using	
			GC-MS and IR Spectroscopy	90
	3.2.3	Summa	гу	118
3.3	Activ	ated Solu	tions in Treating Landfill Leachate	119
	3.3.1	Experin	nental Studies	119
		3.3.1.1	Characteristics of Leachate	119
		3.3.1.2	Activated Solutions for Treating Leachate	120
		3.3.1.3	Biodegradability of Passivation Waste after	
			Treatment with Anolyte and Catholyte Using	
			GC-MS and IR Spectroscopy	121
	3.3.2	Results	and Discussion	124
		3.3.2.1	Characteristics of Leachate	124
		3.3.2.2	Activated Solutions for Treating Leachate	124
			Biodegradability of Passivation Waste after	
			Treatment with Anolyte and Catholyte Using	
			GC-MS and IR Spectroscopy	126
	3.3.3	Summ		132

4	CASE	STUD	Y	133	
	4.1	Materi	als and Methods	134	
	4.2	Result	s and Discussion	138	
		4.2.1	Physical Treatment (with Rubberizer®)	138	
		4.2.2	Chemical Treatment (with ECA solution)	139	
			Biological Treatment (with anaerobic process)	143	
			Biological Treatment (with aerobic process)	144	
			Physical Treatment (with sedimentation)	145	
	4.3	Summ	ary	145	
5	CONC	CLUSIC	IN AND RECOMMENDATION	146	
	5.1	Conclu	usion	146	
		5.1.1	Study on the Characteristics of the Activated		
			Solutions Generated	146	
		5.1.2	Activated Solutions In Treating Passivation Waste	146	
		5.1.3	Activated Solutions in Treating Landfill Leachate	147	
		5.1.4	Case Study	148	
	5.2	Recon	nmendation for Further Studies	148	
	REFE	REFERENCES			
	APPE	APPENDICES			
	VITA			195	

LIST OF TABLES

Table	Page
1.1 : Characteristics of the STEL®-ECA unit system	6
1.2 : Some chemical reactions possible under electrochemical treatment	9
1.3 : Reactive ions and free radicals formed in the anolyte and catholyte solutions by ECA	10
1.4 : Specifications of anolyte and catholyte solutions	11
2.1 : The evolution of technical ECA system	21
2.2 : Duration of temporary disability period on the ways of treatment	31
2.3 : Percentage reduction of microflora after using ECA solution	32
2.4 : Filonenko's experiments findings for sanitary treatment of equipments in the poultry meat processing shops	35
3.1: Change of pH in anolyte and catholyte at different saline pump speed	54
3.2 : IR spectral data for anolyte	60
3.3: IR spectral data for catholyte	60
3.4 : The metal ions present in catholyte	61
3.5 : Rate constants for the decomposition of Cl_2 , ClO_2 , Cl^- , O_2 and O_3	66
3.6 : Methods to characterize passivation waste	67
3.7 : Dosage I for passivation waste	68
3.8 : Dosage II and III for passivation waste	69
3.9 : Dosage for testing catholyte as a coagulant aid using different catholyte concentration	70
3.10 : Dosage for testing catholyte as a coagulant aid using different alum, catholyte and polymer concentration.	71
3.11 : The methods used for GC-MS analyses for passivation waste	75

3.12 : Characteristics of the passivation waste	76
3.13 : Coagulation and flocculation with catholyte using different catholyte concentration	85
3.14 : Coagulation and flocculation with catholyte using different alum, catholyte and polymer concentration	86
3.15 : Jar test results	89
3.16 : Percentage reduction in COD and ferum after Stage I and II	89
3.17 : Compounds Identification for Sample I, II, III of passivation waste	95
3.18 : Percentage reduction of compounds in Sample II and III	97
3.19 : Transformation Data for Sample II and III	98
3.20 : IR Spectral results for Sample I	114
3.21 : IR Spectral results for Sample I	115
3.22 : IR Spectral results for Sample III	116
3.23 : Methods used to analyze the characteristics of leachate	119
3.24 : Dosage of anolyte and catholyte for treating leachate	120
3.25: The methods used for GC-MS analyses of landfill leachate	123
3.26 : The characteristics of leachate	124
3.27 : pH, COD, ammoniacal nitrogen, turbidity and metal reduction after treatment with anolyte and catholyte	124
3.28 : Compounds identification for Sample I, Sample II and Sample III of leachate.	130
4.1 : Characteristics of the chemical wastewater	133
4.2 : Description of the 6 points monitored of the treatment system	135
4.3: Data collection on day 8, 28, 34, 84, 87,112, 119 and 135 for case study	140

Figure	Page
1.1 : Flow-through Electrochemical Modular, FEM	3
1.2 : Generation of anolyte and catholyte in a diaphragm-type-flow -through electrochemical modular	8
2.1 : The efficiency of bacteria number reduction in the septic dressing-room air depending on the ways of treatment.	29
2.2 : The effectiveness of the electrolysis system in reducing BOD and COD	42
2.3 : Dose response of Legionella pneumophila on different types of oxidants	43
3.1 : Set-up of the STEL® system	47
3.2 : Graph of concentration of chlorine versus saline pump flow	52
3.3 : Graph of pH of anolyte versus saline pump flow	53
3.4 : Graph of pH of catholyte versus saline pump flow	53
3.5 : Graph of flow rate of anolyte versus saline pump flow	55
3.6 : Bar graph of ratio of anolyte/catholyte versus saline pump flow	55
3.7 : IR spectrum of anolyte	58
3.8 : IR spectrum of catholyte	59
3.9 : Graph of concentration of chlorine versus time	62
3.10 : Graph of ln concentration of chlorine versus time	62
3.11 : Graph of concentration of chloride versus time	63
3.12: Graph of concentration of oxygen versus time	63
3.13 : Graph of concentration of chlorine dioxide versus time	64
3.14 : Graph of concentration of ozone versus time	64

LIST OF FIGURES

3.15 : Graph of COD versus anolyte added	77
3.16 : Graph of turbidity versus anolyte added	77
3.17 : Graph of pH versus anolyte added	78
3.18 : Graph of COD versus catholyte added	78
3.19 : Graph of turbidity versus catholyte added	79
3.20 : Graph of pH versus catholyte added	7 9
3.21 : Graph of COD versus anolyte and catholyte added	80
3.22 : Graph of turbidity versus anolyte and catholyte added	80
3.23 : Graph of pH versus anolyte and catholyte added	81
3.24 : Graph of COD (passivation waste) versus anolyte contact time	83
3.25 : GC-MS spectrum for Sample I (original passivation waste)	92
3.26 : GC-MS spectrum for Sample II (original passivation waste after treatment with anolyte)	93
3.27 : GC-MS spectrum for Sample III (original passivation waste after treatment with catholyte)	94
3.28 : Transformation of 3-methyl-p-anisaldehyde to hexane using catholyte	100
3.29 : Transformation of methylphenidate acetate to 1-(2-methyl-1-propenyl)-piperidine using catholyte	101
3.30 : Transformation of 2,4,6-trimethyl-pyridine hexane using catholyte	102
3.31 : Transformation of 2,4,6-trimethyl-pyridine to propane using catholyte	103
3.32 : Transformation of 3-ethyl-2-hydroxy-2-cyclopenten-1-one to 2- acetylcyclopentanone and 3-methyl-1,2, using catholyte	104
3.33 : Transformation of 1,3-benzenedicarboxylic acid to hexyl vanillate using catholyte	105

3.34	: Transformation of 3-methyl-p-anisaldehyde to carbon dioxide and water using anolyte	106
3.35	Transformation of 1,3,4-trimethyl-6-cyclohexylbenzene to hexane using catholyte	107
3.36	: Transformation of 4-(methylthio)-benzoic acid to hexyl vanillate using catholyte	108
3.37	: Transformation of 2,4,6-trimethyl-pyridine to carbon dioxide and water using anolyte	109
3.38	: Pathway showing how 1-pentadecene is produced using catholyte	110
3.39	: Transformation of 1,3-benzenedicarboxylic acid to carbon dioxide and water using anolyte	111
3.40	: Transformation of 1,3,4-trimethyl-6-cyclohexylbenzene to hexane, carbon dioxide and water using anolyte	112
3.41	: IR spectrum for Sample I (original passivation waste)	117
3.42	: IR spectrum for Sample II (original passivation waste with anolyte)	117
3.43	: IR spectrum for Sample III (original passivation waste with catholyte)	118
3.44	: GC-MS spectrum for Sample I (leachate)	127
3.45	: GC-MS spectrum for Sample I (leachate)	128
3.46	: GC-MS spectrum for Sample I (leachate)	129
	Schematic diagram of the system configuration of the reactor (case study)	136
4.2 :	Monitoring the six points of the system (case study)	137
4.3 :	Percentage removal of COD using Rubberizer®	139
4.4 :	Percentage removal of COD using anolyte	142
4.5 :	Percentage removal of COD using anaerobic treatment	143
4.6 :	Percentage removal of COD using aerobic treatment	144
4.7 :	Percentage removal of COD with sedimentation	145

•

LIST OF ABBREVIATIONS

- ECA Electrochemical Activation Process
- FEM Flow-through Electrochemical Modular
- THM Trihalomethanes
- CIS Commonwealth of Independent States
- VAC Voltage Alternating Current
- PTFE Polytetrafluoroethylene
- COD Chemical Oxygen Demand
- BOD Biochemical Oxygen Demand
- UV Ultraviolet
- EAW Electroactivated Water
- GC-MS Gas-Chromatography-Mass Spectroscopy
- ICP-AES Inductively Coupled Plasma-Atomic Emission Spectroscopy
- FTIR Fourier Transform Infrared
- TLC Thin Layer Chromatography
- min. minutes

CHAPTER 1

INTRODUCTION

1.1 General

Coping with the improving world today i.e. industrial development, obtaining clean and hygienic water has gradually become a major concern to the entire human race. To overcome this problem, many scientists from all over the world have carried out studies and research on water and wastewater treatment. However, these serious problems did not stop. In fact, more 'water' problems were encountered. As manleind begin to develop the awareness of the importance of water, their assessments towards the value of water will be increased. One of the earliest attempt of mankind being involved in water treatment was in the nineteenth century¹. Their efforts of using chlorine as a disinfectant to fight waterborne human diseases such as cholera and typhoid were a successful one². Since then, water disinfection has created interests in mankind.

For several decades, chlorine, in different forms, has always played the role as a dominant disinfectant³. However, as mankind's concern on the protection of public health grows stronger, more and more questions on whether chlorination could bring a long-term, side effect to human health are often raised. This is because chlorine forms halogenated by-products, which are believed to have mutagenic and carcinogenic properties⁴. A good disinfectant must be toxic to microorganisms at concentrations well

below the toxic thresholds to humans and higher animals⁵. This is true, but in order to produce an alternative disinfectant which is effective and able to fulfill the above requirements is not an easy task. Alternative disinfectants such as ozone and UV radiation have been used but due to their high operation costs and non-residual effect (do not provide long-term protection), the ideal disinfectant is yet to be found.

1.2 Electrochemical Activation (ECA)

ECA is a well-known Russian technology introduced by a Russian scientist, V.M. Bakhir in 1972. Essentially, ECA concept involves the passage of a high frequency, high voltage current through a saline solution, with a membrane interposed between the anode and cathode and resulting in a substantial electrical potential difference which leads to the formation of two types of water, namely the 'anolyte' and 'catholyte' ^{6.7}. The anolyte, often known as 'activated water' or 'oxidized water', is a mixture of reactive species, which contributes to special oxidizing, sterilizing and disinfecting properties of the anolyte. Despite its powerful properties, anolyte is non-toxic and harmless, both to human and the environment for it is biodegradable after some 48 hours⁸. This is because the small concentrations of free chlorine in anolyte and its low redox potential do not favor the formation of toxic trihalomethanes (THM) or other halogenated by-products⁹. STEL®, a device system designed for generation of aqueous ECA solutions specially for washing, disinfectant and sterilizing was launched in 1990 under the supervision of V.M. Bakhir, Ph.D. and Yu.G. Zadorozhny¹⁰. Today, thousands of the STEL® devices meant for producing electrochemically activated solutions operate in different cities of Russia

and CIS countries¹¹. These devices are widely used in clinical and medical preventive facilities, municipal economy institutions, health spas and swimming pools¹². ECA research is strongly supported by the government of the Russian Federation.

1.3 Flow-through Electrochemical Modular (FEM)

The key difference between new ECA technology and traditional electrochemical processes is the incorporation of a special flow-through diaphragm-type electrochemical reactor, called FEM. The new flow-through electrolytic modular elements has no analogues in the world¹¹ (Figure 1.1).

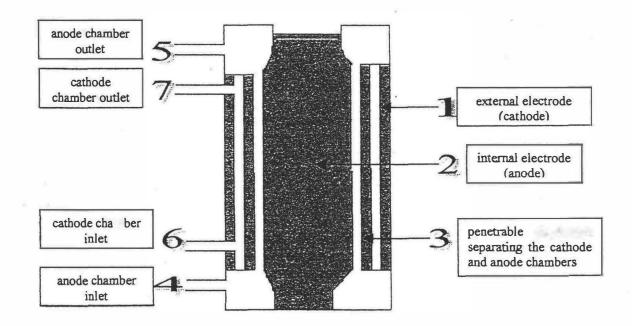


Figure 1.1: Flow-through Electrochemical Modular, FEM¹³

The electrochemical module makes use of two insulated rhodium plated, titanium electrodes where the two electrodes are separated by a patented zirconium oxide diaphragm¹⁴. The advantage of using FEM elements fitted in the electrochemical system is the generation of electrochemically activated, metastable solutions from lowmineralized initial solutions or natural water. This includes the anolyte, produced from the STEL® ECA system, which contains a mixture of hydrogen peroxide, chlorine dioxide, ozone, sodium hypochlorite, oxygen and other highly reactive species. The concept and theoretical aspects of this new technology in the field of applied electrochemistry was not fully and clearly discussed in any of the references obtained on this subject. The ECA technology is a sole Russian invention where all experts and specialists in this field are citizens of the former Soviet Union¹¹. According to Bakhir⁹, the design of FEM-3 elements (the third generation of the FEM invention) ensures the contact of all microvolumes of water flowing through the anode or cathode electrode chamber with an electrode surface, in the vicinity of which (in so-called Double Electric Layer, DEL) the electric intensity reaches few millions volts per centimeter (the effect of purification of rainwater and its saturation with vital power during spring thunderstorms). In this case, the processes of natural oxidation-reduction destruction and neutralization of toxic substances are accelerated both due to direct electrochemical reactions and as a result, highly active components electrochemically synthesized out of the water under treatment, such as ozone, atomic oxygen, peroxide compounds, active chlorine compounds, including chlorine dioxide, and short-lived free radicals.

1.4 The STEL® ECA System

1.4.1 Space Age Technology

The STEL® ECA technology was developed and patented as part of a Space Age StarWars Program over a period of 20 years at a cost of about US\$20 million for the treatment and recycling of water¹⁵. This is because in the space program, the astronauts have a limited amount of water which they can take with them and in turn has to be continuously purified and recycled for long missions and long term orbital stays. Therefore, the ECA based water purification systems was invented and successfully supplied water to keep the astronauts in space for even up to a year.

1.4.2 Characteristics of the STEL® ECA System

The STEL® ECA system is a device system designed to generate anolyte and catholyte using the ECA process. The characteristics of the STEL® ECA system are shown in Table 1.1.

