UNIVERSITI PUTRA MALAYSIA

PREPARATION AND CHARACTERIZATION OF BARIUM AND STRONTIUM HEXAFERRITE EMPLOYING RECYCLED MILLScale

RABA’AH SYAHIDAH AZIS

FSAS 2005 53
PREPARATION AND CHARACTERIZATION OF BARIUM AND STRONTIUM HEXAFERRITE EMPLOYING RECYCLED MILLScale

By

RABA’AH SYAHIDAH AZIS

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, In Fulfilment of the Partial Requirement for the Degree of Master of Science

May 2003
Dedication

Special Dedication to:

My Beloved Husband & Family,
Mohd Noh Abdul Jalil & My baby...

Abah and Emak
Hj. Azis Hj Mahmud & Hjh Rukiah Hj. Jalil,

My Beloved Family,
Ratna Sita, Rahmat Sabri, Ratna Saerah, Ridha Shukri, Hasanul Mukhlis, Siti Raudha, Luqmanul Hakim, Husni Mubarak & Mohd Khairul Ariffin

Thank you very much for the support, I LOVE YOU ALL
SO MUCH.....

Kejayaan ini milik kita bersama.....
In this project work, permanent magnet barium/ strontium hexaferrite materials was prepared from millscale, using hematite derived from millscale by the Curie Temperature Separation Technique (CTST). The excellent CTST isolation and purification of wustite, FeO contained in the millscale and converted to hematite, Fe₂O₃, was confirmed by X-Ray Diffraction (XRD) pattern analysis and element analysis by Electron Dispersive X-Ray (EDAX). The sample was prepared by recycling the waste product from Malaysian steel-making factories. Using a Curie temperature separation technique, the wustite, FeO contained in the millscale was separated by this new technique using deionized water at 90°C/100°C in the presence of 1T external magnetic field. The wustite was then oxidized in air at
400°C/500°C/600°C for 10 hours. An XRD phase analysis showed that a very high percentage of Fe$_2$O$_3$ was present in the final powder preparation. A conventional ceramic powder processing method was then carried out to prepare hexagonal BaFe$_{12}$O$_{19}$ and SrFe$_{12}$O$_{19}$ pallet shaped samples. Analysis of samples was done on density, resistivity, X-Ray Diffraction (XRD), Particle Size Analysis (PSD), Electron Dispersive X-Ray (EDAX), Scanning Electron Microscopy (SEM), grain size, saturation magnetization, coercive force and remanence. The effect of prolonged milling time shows a positive tendency for the formation of needle shape microstructure (0.3μm-1μm) of barium hexaferrite. The magnetic properties were measured using an Approximation Method (APM) theory. The 3.33 kG high remanence, 0.74 kG saturation magnetisation and 2.857 kOe coercive force of the sample derived from millscale shows that recycling a waste steel-making product has a high potential to produce a low cost ferrite in the future.
Abstrak tesis yang kemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

PENYEDIAAN DAN PENCIRIAN BARIUM DAN STRONTIUM HEXAFERIT DARI KITAR SEMULA SISIK BESI

Oleh:
RABA’AH SYAHIDAH AZIS

Mei 2003

Pengerusi : Profesor Madya Mansor Hashim, Ph.D.
Fakulti : Sains dan Pengajian Alam Sekitar

Di dalam kajian ini, kami telah menyediakan barium/ strontium hexaferit dari bahan buangan sisik besi telah disediakan, dengan menggunakan hematite yang dihasilkan dari sisik besi melalui teknik pengasingan suhu Curie (CTST). Keberkesanan proses pengasingan dan penulinan wustit,FeO di dalam bahan sisik besi di tukar kepada hematite, Fe₂O₃ telah berjaya dikenalpasti dari pembelauan sinar-x (XRD) patten dan analisis serakan electron sinar-x (EDAX). Sampel ini disediakan dari proses kitar semula bahan buangan sisik besi dari industri-industri besi di Malaysia. Dengan menggunakan teknik pengasingan suhu Curie, wustit,FeO dapat diasiking dengan teknik baru ini dengan menggunakan air pengnyahion pada suhu 90⁰/100⁰C dan 1T magnet luar yang dibekalkan. Wustit tersebut kemudiannya dioksida pada suhu 400⁰/500⁰/600⁰C selama 10 jam. Fasa XRD telah menunjukkan peratusan yang tinggi Fe₂O₃ yang terhasil. Kaedah biasa pemprosesan penyediaan serbuk seramik
dijalankan untuk menyediakan heksagon BaFe$_{12}$O$_{19}$ dan SrFe$_{12}$O$_{19}$. Analisis sample yang dijalankan adalah ketumpatan, kerintangan, Pembelauan Sinar-X (XRD), Serakan Saiz Zarah (PSD), Serakan Elektron Sinar-X (EDAX), Mikroskop Pengimbas Elektron (SEM), saiz butir, pemagnetan tepu, daya paksa dan pemagnetan baki. Kesaran pemanjangan penghancuran serbuk penyediaan menunjukkan kecenderungan positif pembentukan struktur jejarum (0.3μm-1μm). Ciri pemagnetan telah diukur dengan menggunakan kaedah penghampiran (APM). Nilai pemagnetan baki yang tinggi 3.33 kG, pemagnatan tepu yang tinggi 0.74 kG dan daya paksa sampel yang tinggi 2.857 kOe, dari bahan buagan sisik besi menunjukkan potensi yang tinggi untuk penghasilan bahan ferit berkos rendah di masa hadapan.
ACKNOWLEDGEMENTS

I would like to express my deep sense of gratitude and sincere appreciate to my beloved advisor Associate Professor Dr. Mansor Hashim, chairman of my committee, for his scholarly guidance and encouragement throughout my graduate study. I am also equally grateful to members of my supervisory committee, Assoc. Prof. Dr. Azmi Zakaria and Dr. Jumiah Hassan, Faculty of Science and Environmental Studies, University Putra Malaysia (UPM) for their invaluable SUGGESTIONS AND COMMENTS. The dedication, patience and forbearance over the last few years for supervising this research work are invaluable.

I am much grateful to Mr. Ho, Faculty of Veterinary, UPM for the helps and guide of Scanning Electron Microscopy (SEM). I would also like to thank and convey my appreciation to Abang Noh, Dr. Noorhana Yahya, Laily, En. Nazli, En Azis and En Mat Rasa for the help, guide, advise, a friendly relationship and assist me in transcribing this work and as corrector in the translation process.

Back home, especially to my beloved father and mother, my sweet and beautiful sister and brothers. A million thank to all of you for your constant encouragement and support. Last but not least, this appreciation also goes to my lover, Abang Noh for your patience and understanding throughout my study period at UPM. I love you so much.
For all, I would like to say “Thank you very much” to whom who have “empowered” me to complete this thesis.

Truly,

Raba’ah Syahidah Azis

University Putra Malaysia

I certify that an Examination Committee met on to conduct the final examination of Raba’ah Syahidah Azis on her Master of Science thesis entitled “Preparation and Characterization of Barium and Strontium Hexaferrite Employing Recycled Millscale” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate to awarded the relevant degree. Members of the Examination Committee are as follows:

W. MAHMOOD MAT YUNUS, Ph.D.
Professor
Faculty Science and Environmental Studies,
Universiti Putra Malaysia.
(Chairman)

MANSOR HASHIM, Ph.D.
Associate Professor
Faculty Science and Environmental Studies
Universiti Putra Malaysia
(Member)

AZMI ZAKARIA, Ph.D.
Associate Professor
Faculty Science and Environmental Studies
Universiti Putra Malaysia
(Member)

JUMIAH HASSAN, Ph.D.
Faculty Science and Environmental Studies
Universiti Putra Malaysia
(Member)

GULAM RUSUL RAHMAT, Ph.D.
Professor/ Deputy Dean,
School of Graduate Studies,
Universiti Putra Malaysia.

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirement for the degree of Master of Science.

W.MAHMOOD MAT YUNUS, Ph.D.
Professor
Faculty Science and Environmental Studies,
Universiti Putra Malaysia.
(Chairman)

MANSOR HASHIM, Ph.D.
Associate Professor
Faculty Science and Environmental Studies
Universiti Putra Malaysia
(Member)

AZMI ZAKARIA, Ph.D.
Associate Professor
Faculty Science and Environmental Studies
Universiti Putra Malaysia
(Member)

JUMIAH HASSAN, Ph.D.
Faculty Science and Environmental Studies
Universiti Putra Malaysia

AINI IDERIS, Ph.D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

RABA’AH SYAHIDAH AZIS

Date:
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION FORM</td>
<td>xi</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION AND GLOSSARY OF TERMS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION

General | 1
Hard Ferrite and Soft Ferrite | 2
Permanent Magnet | 4
Steel-Making Product : Millscale | 11

II LITERATURE REVIEW

Work Background | 14
Abnormal Grain Growth | 20
Research on Employing Recyled Millscale at UPM | 20

III THEORY

Introduction | 22
Antiferromagnetism and Ferrimagnetism | 23
Hexagonal Ferrites | 26
Structure of Hematite | 34
Intrinsic and Extrinsic Properties | 35
Crystal Structure | 36
 Microstructure in General | 37
 Definition of Grain Size | 37
 Grain Growth Phenomenon | 38
Magnetic Hysterisis | 39
Imperfection | 41
Saturation Magnetization and Curie Temperature | 41
Domain | 42
Wall Energy and Width | 45
Single Domain Particle | 45
III METHODOLOGY
Introduction 47
Sample Preparation 47
 Millscale Selection 51
 Weighing of Millscale 51
 Crushing of Millscale 51
 Impurities Separation (IMS) 52
 Curie Temperature Separation Technique (CTST) 53
 Oxidation 55
 Weighing of Constituent Powders 57
 Mixing 57
 Presintering 58
 Crushing and Sieving 59
 PVA and Zn Stearat Addition 59
 Pressing or Compact Forming 59
 Sintering 60
Characteristic Measurement 60
 Density Measurement 68
 Resistivity Measurement 69
 Hysteresis Loop Measurement 71
 Electron Dispersive Analysis (EDAX) 73
 Scanning Electron Microscopy (SEM) Observation 75
 X-Ray Diffractometer 76
 Microstructure Measurement 80
 Cutting and Polishing 81
 Thermal Etching 81
 Microstructure Analysis 82
Errors of Measurement 83

IV RESULTS AND DISCUSSION
Introduction 84
Physicals properties of sample (pallet) 84
XRD (X-Ray Diffraction Analysis) 85
EDAX 97
Density, (g/cm³) 92
Particles Size Analyses , Magnetic properties and Microstructure 96
Effect milling time on magnetic properties 101
Effect of sintering temperature on magnetic properties 102
Microstructure of sample 113

V. CONCLUSION 130
Summary 130
Suggestion For Further Work 131
LIST OF TABLE

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Magnetic Propertise of the M-Hexagonal Ferrites [18,19,20]</td>
<td>29</td>
</tr>
<tr>
<td>2. The Classification of Wustite,FeO, Magnetite, Fe₃O₄ and Hematite, Fe₂O₃ [26]</td>
<td>36</td>
</tr>
<tr>
<td>3. Intrinsic and Extrinsic Properties of Ferrite</td>
<td>37</td>
</tr>
<tr>
<td>4. Estimated errors of measurement</td>
<td>83</td>
</tr>
<tr>
<td>5. Parameter size of samples</td>
<td>86</td>
</tr>
<tr>
<td>6. Density for BFM (CTST)</td>
<td>96</td>
</tr>
<tr>
<td>7. Density for BFHPP sample</td>
<td>96</td>
</tr>
<tr>
<td>8. Density for SFM (CTST)</td>
<td>97</td>
</tr>
<tr>
<td>9. Density for SFHPP sample</td>
<td>97</td>
</tr>
<tr>
<td>10. PSD result for the powder ground milling at 16h, 20h and 22h From Malvern Particle Size Analyser</td>
<td>101</td>
</tr>
<tr>
<td>11. Magnetic properties of samples with various sintering temperature</td>
<td>105</td>
</tr>
<tr>
<td>12. The density value, an average grain size and Curie temperature for SFM sample.</td>
<td>115</td>
</tr>
<tr>
<td>13. Resistivity value for BFM for different sintering temperature</td>
<td>125</td>
</tr>
<tr>
<td>14. Resistivity value for SFM for different sintering temperature</td>
<td>126</td>
</tr>
<tr>
<td>15. The comparison experiment value from the reference</td>
<td>129</td>
</tr>
</tbody>
</table>
LIST OF FIGURE

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The comparison between soft ferrite and hard magnetic ferrite [30]</td>
<td>3</td>
</tr>
<tr>
<td>2. Development of coercivity in the 2nd century</td>
<td>8</td>
</tr>
<tr>
<td>3. Global market for magnetic materials. The total in 1999 was About 30 b$</td>
<td>9</td>
</tr>
<tr>
<td>4. The figure shows that hard ferrite permanent magnet product [27,29]</td>
<td>10</td>
</tr>
<tr>
<td>5. Millscale from steel making plant</td>
<td>13</td>
</tr>
<tr>
<td>6. Magnetism figure for paramagnetism, ferromagnetism, Antiferromagnetism and ferrimagnetism</td>
<td>24</td>
</tr>
<tr>
<td>7. Kinds of Magnetism</td>
<td>25</td>
</tr>
<tr>
<td>8. Primitive structure of hexagonal crystal</td>
<td>30</td>
</tr>
<tr>
<td>9. The crystal structure of BaFe\textsubscript{12}O\textsubscript{19} and SrFe\textsubscript{12}O\textsubscript{19}</td>
<td>31</td>
</tr>
<tr>
<td>10. The M-ferrite crystal structure showing the S and R subunits</td>
<td>32</td>
</tr>
<tr>
<td>11. The M-ferrite a) crystal structure showing the S and R subunits where O is O2-; O,Ba2+; and \Large$\begin{array}{c} \otimes \end{array}$, o, ● and ◘ are all Fe3+ at 12k, 4f2, 4f1, 2a, and 2b positions, respectively; b) magnetic structure where the arrows represent size and spin direction of unpaired electrons at the various crystallographic positions [18].</td>
<td>33</td>
</tr>
<tr>
<td>12. Structure of Hematite</td>
<td>34</td>
</tr>
<tr>
<td>13. 3-D Model of Hematite</td>
<td>35</td>
</tr>
<tr>
<td>14. Structure of grain boundary</td>
<td>39</td>
</tr>
<tr>
<td>15. (a) Hysterisis loop for Barium hexaferrite [16] (b) Hysterisis loop for soft ferrite</td>
<td>41</td>
</tr>
<tr>
<td>16. The figure (a) and (b) shows the gradual change in direction Of moment inside a domain wall (Bloch wall)</td>
<td>44</td>
</tr>
<tr>
<td>17. Structure of 180\textdegree wall</td>
<td>44</td>
</tr>
<tr>
<td>18. Alternative domain configuration for a needle and cube with</td>
<td></td>
</tr>
</tbody>
</table>
(a) and (c) single domain, (b) and (d) possible domain structure [17]

19. Flow chart for preparation of Fe$_2$O$_3$ millscale-derived

20. The preparation of millscale derived BaFe$_{12}$O$_{19}$ and SrFe$_{12}$O$_{19}$

21. The figure shows the separation of millscale and impurities with
dry ground milling using steel pot for 24h

22. Impurities Separation Model (IST) to separate the magnetic and
non-magnetic particles

23. The Curie temperature separation technique (CTST) to separate
magnetic particles wustite, FeO and magnetite, Fe$_3$O$_4$

24. Heating and cooling rate during presintering

25. Millscale from steel factories

26. Magnetizer

27. Electronic digital balance

28. Steel pot and steel ball milling

29. Milling machine

30. Morta and sive 45 µm

31. Cylinder Moulder

32. Planetary micromill

33. Hydraulic machine

34. Electric furnace

35. Flow chart for characteristic measurement

36. Measuring sample’s density using Archemedes Method

37. The figure shows the resistivity measurement of the sample.
Pallet with the area A, coated with silver conductive paints

38. The Approximation Method Technique used to measure a
hysteresis loop of the sample

39. Scanning electron microscopy (SEM) samples preparation

40. PHILIPS X-Ray Diffractometer beam path

41. Flow chart for microstructure measurement

42. Diamond saw

43. Microscope Olympus BX50
44. XRD phase for Fe$_2$O$_3$ derived from millscale and pure Fe$_2$O$_3$ powder.

45. XRD patterns of BaFe$_{12}$O$_{19}$ based on millscale by 24h dry ground milling

46. XRD pattern of BaFe$_{12}$O$_{19}$ based pure Fe$_2$O$_3$ (99.99%) 24h dry ground milling

47. XRD patterns of SrFe$_{12}$O$_{19}$ derive from millscale by 24h dry ground milling.

48. XRD patterns of BaFe$_{12}$O$_{19}$ based pure iron (99.99%) by dry ground milling

49. EDAX results for millscale-derrived BaFe$_{12}$O$_{19}$

50. EDAX analysis of millscale-derrived SrFe$_{12}$O$_{19}$

51. Graph above indicates the density BFM and SFM at different sintering temperature

52. The effect varied milling on particle size of powders.

53. PSD analysis for Southern Steel milscale powder after milling Hours. The average of particle is around 7.06μm size of particle.

54. Hysterisis loop for samples (a)BFM1150, (b)BFM1200, (c)BFM1250, (d)SFM1200, (e) SFM1250

55. Effect of sintering temperature on the magnetic properties of Samples at varied temperature

56. The effect of sintering temperature on Curie temperature of Samples, (a)BFM, (b) SFM

57. The effect of sintering temperature on grain size for samples BFM, SFM, and BFP, SFP (high purity Fe$_2$O$_3$) as reference

58. Graph indicates Curie temperature at SrFe$_{12}$O$_{19}$ based on Millscale dry ground milling for 24h

59. Graph indicated the Curie temperature of BaFe$_{12}$O$_{19}$ derive from millscale at 24h dry ground milling

60. SEM micrograph for sample BFM sintered at different sintering temperature
61. Scanning electron microscopy on sample sintered at different sintering temperature, (a) SFM1200, (b) SFM1250, (c) SFM1300, (d) SFM1350, (e) SFP1200 (high purity Fe$_2$O$_3$)

62. Resistivity value for BFM samples sintered at different sintering temperature

63. Resistivity value for SFM samples sintered at different sintering temperature
LIST OF ABBREVIATION/ GLOSSARY OF TERMS

CTST Curie temperature separation technique
IMS Impurity separation technique
APM Approximation technique
SFM strontium ferrite (millscale derived sample)
BFM barium ferrite (millscale derived sample)
SFP strontium ferrite (high purity iron oxide)
BFM barium ferrite (high purity iron oxide)
SEM scanning electron microscopy
XRD x-ray diffraction
EDAX electron dispersive x-ray
PSD particle size analysis
T_c Curie temperature
H applied field
ρ density
f frequency
B induction
μ_B Bohr magneton
A cross section
L induction
l length
PVA polyvinyl alcohol
B_r remanence induction
R resistance
ρ resistivity
H_c coercive force
B_s saturation induction
$(BH)_{\text{max}}$ energy product
CHAPTER 1

INTRODUCTION

General

Ferrites are magnetic materials, which have been studied for several decades due to their wide range of applications in the field of telecommunications, microwave telecommunication system, transformers, inductors, audio and video electronics, power transformer, EMI suppression, antennas and many others involving electric signals with frequencies normally not exceeding a few hundreds Megahertz. A very important use of ferrites have occurred in electric mortar and loudspeakers. Ferrite is a member of a class of mixed oxides MO.\(\text{Fe}_2\text{O}_3\), where M is metal such as Ba, Sr, Mn, Co, etc. Ferrite materials have been produced with strong magnetic properties, high electrical resistivity, and low hysteresis loss [31]. These materials are ceramic materials and are ferromagnetic, but not electrical conductors. For this reason, ferrites are used in high-frequency circuits as magnetic cores [26].

Ferrites are hard, brittle, ceramic-like materials with magnetic properties that make them useful in many electrical devices [18]. They are polycrystalline and are
generally gray or black in color. They can be formed into permanent magnets uses in motors, speakers and other electrical-mechanical energy conversion devices as well as devices requiring the simple use at attraction or repulsion by a dc magnetic field. Normally, they have a very high electrical resistance and can be operated at high frequencies (MHz) without excessive losses.

Hard Ferrite and Soft Ferrite

Ferrites can be classified according to crystal structure, ie, cubic versus hexagonal, or magnetic behavior, soft versus hard ferrites [20]. A soft ferrite is easy to magnetize and easy to demagnetize. Soft magnetic ferrites have a high electrical resistivity and they permit eddy current losses in a-c applications and have largely replaced the iron-based core materials in the radio frequency range. An example of soft ferrites is MnZn ferrite (frequencies up to about 1 MHz) and NiZn ferrites (frequencies >> 1 MHz).

The main composition for hard ferrites is BaFe$_{12}$O$_{19}$, SrFe$_{12}$O$_{19}$ and PbFe$_{12}$O$_{19}$, and some rare earth elements that is a W,X, and Z type compounds. But mostly W,X and Z type are not interesting economically because of relative difficulty of the processing. A hard ferrite is hard to magnetize and hard to demagnetize. The magnetization of the hard ferrite is strongly bound to its hexagonal axis, which is the reason it exhibits a hard magnet behaviour, that is high permeability in the plane and low permeability in other directions. Hard ferrites have a wide application in the tape
recording market for their highly useful magnetic properties. According to Stuijts (1964), the most straightforward relation between microstructure and properties of permanent magnet materials are based on single domain behavior of their constituent particles [21].

Permanent Magnet

Hard Magnetic Materials

* High coercivity
* High remanent magnetism
* Wide hysterisis loop
* Difficult to demagnetize

Soft Magnetic Materials

* Low coercivity
* High saturation flux density
* Narrow hysterisis loop
* High relative permeability
* Easy to magnetize and demagnetize

Figure 1: The comparison between soft ferrite and hard magnetic ferrite [30].
Permanent magnet

Permanent magnets play an important role and are spread in daily-life applications. Due to their very low cost, large availability of the raw materials and their high chemical stability, hard ferrites are still dominant in the permanent magnet market although their relatively poor magnetic properties are a distinct disadvantage. Today’s high-performance magnets are mostly made from Nd$_2$Fe$_{14}$B. The aim of this research is to combine the large spontaneous magnetization of 3d metals with strong anisotropy fields known from rare-earth transition-metal compounds and at the same time, to maintain a high value of the Curie temperature [1].

Permanent magnet materials have found many application in a wide variety of areas [2]. Ferrite-based magnetic materials, especially BaFe$_{12}$O$_{19}$ and SrFe$_{12}$O$_{19}$, are still the most widely used starting materials as permanent magnets. They have excellent chemical stability and are relatively cheap to produce [3]. Ferrite magnetic materials with high coercivity due to the relatively high magnetocrystalline anisotropy field exhibit important properties for permanent magnet applications. [4]. Advanced magnetic material permanent magnet now underpin the data storage, telecommunications, consumer electronics and appliance industries [5].

Among the different classes of magnetic materials, hexagonal hard ferrites such as barium ferrite have attracted much attention because of their potential applications in permanent magnet, microwave devices and magnetic recording media [6,7,8]. The