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Liquid film flowing down inclined or vertical planes find applications in thin film heat 

and mass transfer, wetted wall columns, liquid drainage in packed columns, surface 

coating operations, and the like. 

The film is modeled as a two-dimensional Newtonian liquid of constant density p 

and viscosity I! flowing down an inclined plane. The liquid film of mean thickness ho is 

bounded above by a passive gas and laterally extends to infinity (two-dimensional 

model). Then such a flow can be represented by a two-dimensional Navier-Stokes 

equation coupled with continuity equation and associated boundary conditions. The 

body force term in the Navier-Stokes equation is modified by the inclusion of excess 

intermolecular interactions between fluid film and the solid surface owing to long-range 

van der Waals force, in addition to gravity force. The modified Navier-Stokes equation 
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with associated boundary conditions is solved under long wave approximation method to 

obtain a nonlinear equation of evolution of the film interface. 

A nonlinear theory based upon the condition of infinitesimal perturbation on the 

film surface is derived to obtain the growth coefficient, dominant wavelength (i.e., 

wavelength corresponding to maximum growth coefficient of the surface instability) and 

the film rupture time. 

The nonlinear equation of evolution is solved numerically in conservative form as 

part of an initial-value problem for spatially periodic boundary condition on the fixed 

domain 0< x< 21t1k, where k is a wavenumber. Centered difference in space and the 

midpoint (Crank-Nicholson) rule in time are employed. The mesh size is taken 

sufficiently small so that space and time errors are negligible. The nonlinear algebraic 

equations obtained as a result of finite difference discretization are solved using 

efficient-numerical technique employing IMSL subroutine DNEQNJ. 

The nonlinear simulation shows that the dominant wavelengths (corresponding to 

minimum time) for film rupture are very close to the prediction of the linear theory for 

all types of films. There seems to be no influence of surface inclination on the instability 

of thin films. Inclination dose influence the growth of instability in thick films. The film 

rupture time increases with increasing film thickness for inclined planes. Increase in the 

amplitude of perturbation results into decreased time of rupture. The deviations between 

the predictions of nonlinear and linear theory results are minimum around dominant 
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wavelength. The linear theory may overestimate or underestimates the time of rupture by 

several orders of magnitude depending upon thin film parameters. Hence linear theory 

is inadequate to describe the stability characteristics of inclined films and therefore, the 

need of a nonlinear approach to the study of inclined film dynamics. 
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Fa kuIti: Kejuruteraan 

Saput cecair yang mengalir ke bawah pada pennukaan yang condongltegak dijumpa 

kegunaannya dalam pemindahan haba dan jisim dalam kolum dinding dibasahi, 

pengaliran cecair di dalam kolum padat dan operasi penyaduran permukaan. 

Saput dimodelkan sebagai satu cecair Newtonian dua-dimensi dengan 

ketumpatan malar, p dan kelikatan,Jl yang mengalir ke bawah satu permukaan condong. 

Saput cecair dengan ketebalan purata ,ho disempadankan atas satu gas passive dan 

sisinya dikembangkan kepada yang keterhadan(model dua-dimensi). Oleh demikian, 

pengaliran ini boleh diwakili oleh satu persamaan Navier-Stokes 2 - dimensi bersamaan 

dengan persamaan berterusan dan keadan sempadan yang bersepadan. Kata-kata daya 

badan dalam persamaan Navier-Stokes adalah diubahsuaikan dengan penglibatan 

kesalingtindakan antara molekul yang berlebihan antara saput dan permukaan pepejal 

yang disebabkan oleh daya Van der Waals yang berjarak-panjang. Persamaan Navier-
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Stokes yang telah berubahsuai bersamaan dengan keadaan sempadan adalah diselesaikan 

bawah kaedah pendekatan gelombang jauh untuk mendapat satu persamaan bukan linear 

bagi pengembangan pada ketidakstabilan saput. 

Satu teori bukan linear berasaskan keadaan penggangguan ketidakterhadan pada 

pennukaan saput telah dihasilkan untuk memperolehi pekali penubuhan, jarak 

gelombang dominant (contohnya : jarak gelombang berkaitandengan pekali penubuhan 

maximum pada pennukaan ketidakstabilan) dan masa perpecahan saput. 

Persamaan bukan linear bagi evolusi adalah diselesaikan secara numerical dalam 

bentuk keabadian sebagai sebahagian daripada satu masalah nilai permula bagi keadaan 

sempadan perodik yang wujud dalam ruang pada domain yang ditetepkan , ( O<x<21t/k) 

.Pembezaan tengah dalam ruangan dan peraturan titik tengah (Crank -Nicholson)dalam 

masa digunakan. Saiz mesh yang dipakai adalah cukup kecil supaya ralat ruangan dan 

masa boleh diabaikan. Persamaan aigebra bukan linear diperolehi sebagai keputusan 

pembezaan finite adalah diselesaikan dengan penggunaan teknik numerical-berkesan , 

IMSL subroutine DNEQNJ. 

Simulasi bukan linear menunjukkan jarak gelembong dominant (berkaitan 

kepada masa minimum) bagi pemecahan raput adalah sangat dekat dengan jangkaan 

oleh teori linear bagi semua jenis raput. Ini menunjukkan tiada pengaruh ioleh 

kecondongan oleh ketidakstabilan bagi raput nip is. Kecondongan akan pengaruh 

penambahan ketidakstabilan dalam raput tebal. Masa pemecahan pemecahan bertambah 
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dengan penambahan ketebalan raput bagi ketebalan eondong. Penambahan dalam 

kebesaran penggangguan menyebabkan kekurangan masa pemeeahan keputusan 

Perbezaan antara jangkaan daripada teori bukan linear dan keputusan teori linear adalah 

minimum disekitar jarak gelembong dominant. Teori l inear mungkin menaksir 

terlampau atau terkurang masa pemeeahan oleh beberapa eara magnitute bergantung 

pada parameter raput nipis. Sebab itu, teori linear adalah kemungkinan besar adalah 

kurang tepat untuk menerangkan kestabilan raput tereendong dan oleh demikian perlulah 

satu pendekatan bukan linear kepada pengajian dinamik raput tereendong. 
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