

UNIVERSITI PUTRA MALAYSIA

DESIGN OF MOTORCYCLE SAFETY HELMET FOR CHILDREN IN MALAYSIA

ONG WEI YANG

FK 2001 21

DESIGN OF MOTORCYCLE SAFETY HELMET FOR CHILDREN IN MALAYSIA

By

ONG WEI YANG

Thesis Submitted in Fulfilment of the Requirement for the Degree of Master of Science in the Faculty of Engineering Universiti Putra Malaysia

July 2001

ii

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of

the requirement for the degree of Master of Science

DESIGN OF MOTORCYCLE SAFETY HELMET FOR CHILDREN IN

MALAYSIA

By

ONG WEI YANG

July 2001

Chairman: Radin Umar Radin Sohadi, Ph.D.

Faculty:

Engineering

The first part of the study is undertaken to investigate the need for a motorcycle safety

helmet for children. From the field observations and interviews conducted, it was found

that the current situation warrants the need for a motorcycle safety helmet for children

to be developed. Motorcycle safety helmet, as an injury control device is used to curb

the high fatality rate associated with head injuries among motorcycle users.

In addition, a field study was conducted to investigate the design parameters of the

helmet. A head size of 570mm in circumference was selected based on the size that fits

the maximum number of users and the availability of the test head form sizes. It was

found that a lighter helmet is generally preferred from the comfort viewpoint.

The second part of the study involves the design of the motorcycle safety helmet for

children. A finite element model of the children motorcycle safety helmet for impact

test was developed using Hypermesh, a pre-processor. LS-DYNA, a finite element code was used to simulate the impact response of the helmet. The model was validated using an indirect inference approach. The results clearly indicate that the model correlated well with the experimental results from literatures. A simple parametric study was carried out to investigate the effect of varying thicknesses of the Acrynonitrile Butadiene Styrene (ABS) shell and the Expanded Polystyrene (EPS) foam. It was found that the typical thicknesses of the shell and foam provide the best compromise between the shock absorbing performance and the design constraints. None of the eight impacts simulated in accordance to the MS 1 1996 type test resulted in an acceleration exceeding the permissible level of 300 g. From the simulations, the helmet impact deformation mechanisms were discussed. It is recommended that future research to be carried out to further improve the design of the motorcycle safety helmet and to study the possible ventilation systems. In addition, it is suggested that a more stringent form of verification to be undertaken to validate the FE model of the helmet.

iv

Abstrak thesis yang dikemukakan kepada Senat Universiti Putra Malaysia

sebagai memenuhi keperluan untuk ijazah Master Sains

REKABENTUK TOPI KELEDAR KANAK-KANAK DI MALAYSIA

Oleh

ONG WEI YANG

Julai 2001

Pengerusi: Radin Umar Radin Sohadi, Ph.D.

Fakulti:

Kejuruteraan

Bahagian pertama kajian ini adalah untuk menilai keperluan bagi rekabentuk topi

keledar motosikal khas untuk kanak-kanak Hasil daripada pemerhatian serta temubual

yang dijalankan, didapati keperluan tersebut adalah mendesak kerana tiada topi keledar

yang sesuai direka khas untuk kanak-kanak. Topi keledar motosikal digunakan untuk

mengurangkan kadar kematian yang tinggi akibat kecederaan pada bahagian kepala di

kalangan pengguna motosikal khususnya kanak-kanak

Di samping itu, kajian ini juga bertujuan untuk menyiasat pembolehubah-pembolehubah

rekabentuk topi keledar motosikal kanak-kanak. Ukur lilit saiz kepala bersamaan

dengan 570 mm dipilih berdasarkan saiz yang dapat dimanfaatkan oleh majoriti kanak-

kanak tempatan dan kesesuaian dengan saiz 'dummy' ujian Selain daripada itu, kajian

juga mendapati bahawa topi keledar yang lebih ringan adalah lebih digemari dari segi

keselesaan

Bahagian kedua kajian melibatkan rekabentuk topi keledar motosikal kanak-kanak. Hypermesh v3.0.1 digunakan sebagai pra-prosesor untuk membina model unsur terhingga bagi ujian impak topi keledar motosikal kanak-kanak. Simulasi impak topi keledar pula dijalankan dengan menggunakan LS-DYNA v940 sebagai prosesor. Keputusan simulasi yang diperolehi menunjukkan korelasi yang baik dengan keputusan eksperimen daripada literatur. Selain daripada itu, satu kajian parametrik ringkas juga telah dijalankan untuk mengkaji kesan perubahan ketebalan pelindung ABS dan lapisan penyerap hentakan EPS. Hasil daripada kajian menunjukkan bahawa kompromi terbaik antara pretasi serapan hentakan dan had-had rekabentuk dapat dicapai melalui ketebalan-ketebalan tipikal EPS dan ABS. Di samping itu, dapat ditunjukkan bahawa kelapan-lapan simulasi impak berasaskan ujian jenis MS 1: 1996 menghasilkan pecutan tidak melebihi paras 300 g seperti yang dibenarkan dalam piawai kebangsaan. Mekanisma deformasi juga turut dibincangkan dalam kajian ini berdasarkan simulasi komputer yang diperolehi. Adalah dicadangkan bahawa kajian pada masa akan datang dijalankan untuk menyelidik rekabentuk topi keledar motosikal yang lebih baik dan mengkaji jenis sistem-sistem ventilasi yang dapat digunakan. Selain daripada itu, adalah dicadangkan bahawa satu kaedah yang lebih mantap dijalankan untuk membanding dan menentusahkan keputusan simulasi dengan keputusan ujian.

ACKNOWLEGMENTS

First and foremost, I would like to express my deepest gratitude to the Chairperson of the Supervisory Committee, Prof. Ir. Dr. Radin Umar Radin Sohadi, Dean of Faculty of Engineering, Universiti Putra Malaysia, and members of the supervisory committee, Dr. Abdel Magid Salem Hamouda and Dr. Megat Mohamad Hamdan Megat Ahmad, for their tremendous support throughout the entire course of this research. They have been particularly helpful and provided generous dosage of sound advice tirelessly from time to time.

I would like to thank the Ministry of Transport, Malaysia for the Motorcycle Safety Programme research fund without which the successful completion of this study may not be possible. In addition, I would also like to thank University Putra Malaysia for their generous financial assistance under the PASCA scheme throughout the course of this study.

I would also like to express my sincerest gratitude to Mr. Lee Hong Chye of Solidgolid Helmets (M) Sdn. Bhd and Mr. Leong Ka Ban of SIRIM for their valuable guidance throughout the course of this study. In addition, I would also like to thank Solidgold Helmets (M) Sdn. Bhd. for providing me the information on the material used as well as for their generous material contribution.

I owe a special thank to all the staff of Road Safety Research Centre of Faculty of Engineering, Universiti Putra Malaysia, for being understanding and supportive all this while. Last but not least, I would like to thank all those who are involved directly and indirectly with this study.

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science.

AINI IDERIS, Ph.D.

Professor, Dean of Graduate School, Universiti Putra Malaysia

Date

TABLE OF CONTENTS

		Page
ABSTRACT		ii
ABSTRAK		iv
ACKNOWL	EDGEMENTS	vi
APPROVAL		viii
DECLARAT	ION	X
LIST OF FIG	GURES	xiv
LIST OF TA	BLES	xvii
LIST OF PL	ATES	xix
LIST OF AB	BREVIATIONS	XX
CHAPTER		
I	INTRODUCTION	
	Background of Study	1
	Numerical Crashworthiness Analysis	7
	Problem Statement	9
	Objective	12
	Importance of Study	12
	Scope of Study	13
	Assumptions	14
	Limitations	15
	Definitions of Terms	16
	Organisation of the Thesis	18
П	LITERATURE REVIEW	
	Injury Risk of Motorcycle Users in Malaysia	20
	Injury Mechanisms in Motorcyclist Casualties	22
	Head Injuries	23
	The Motorcycle Safety Helmet	26
	Head Injuries Mechanisms in Motorcycle Casualties	29
	Specification For Protective Helmets for Vehicle Users	33
	(MS1:1996)	
	Collision Characteristics of Motorcycle Impacts	36
	Background of LS-DYNA	39
	Computational Aspects	40
	The Finite Element Method (FEM)	41
	Finite Element Formulation	41
	Equations of Motion	43
	Discrete Form of the Equation of Motion	45
	Numerical Integration	47

		xii
	Time-step Size and Stability Material Models	51 52
	Contact	55
Ш	MATERIALS AND METHODS	
	Overview of the Study	57
	The Need for a Children Motorcycle Safety Helmet	57
	The Design of the Motorcycle Safety Helmet for Children	57
	The Need for a Children Motorcycle Safety Helmet	61
	Estimation of the Population of Children Pillion Riders	61
	Determination of the Design Parameters	63
	Design of Motorcycle Safety Helmet for Children	67
	Description of the Computer Software and Hardware	67
	Finite Element Formulation	67
	Development of the 3D Finite Element (FE) Model of the Helmet	<i>4</i> 0
	Model Validation	68 69
	Material Selection and Testing	71
	Description of the Finite Element (FE) Helmet Model	77
	Material Model	80
	Types of Contact Interfaces	84
	Design Procedure	85
IV	RESULTS & DISCUSSION	
	The Need for A Motorcycle Safety Helmet for Children	88
	Determination of the Design Parameters	93
	FE Model Validation	97
	Comparison of the Acceleration Curve Profile	97
	Gaussian Approximation and Statistical Analysis	99
	Determination of Material Properties and Thickness	102
	Games Helmet, Children and Adult Motorcycle Safety Helmet- A Comparison	113
	Impact Deformation Analysis	114
V	CONCLUSIONS AND RECOMMENDATIONS	
	Conclusions	124
	Further Studies	125

		xiii
REFERI	ENCES	127
APPENI A	DIX DATA SHEET	133
В	Additional Figures	136
VITA		146

LIST OF FIGURES

Figure		Page
1.	Fatality Model Projection for Year 2000	3
2.	The Components of a Typical Motorcycle Safety Helmet	5
3.	Road Casualties Injuries Among Children by Hours of the Day Between 1992 and 1998	6
4.	HIC and Change of Velocity Relationships	25
5.	Test Sequence for MS 1: 1996	35
6.	Damage Locations by Percentage for Fatal and Hospitalised Crashes	37
7.	The Yield Surface in Principal Space in Pressure Independent	54
8.	With Kinematic Hardening, the Yield Surface May Shift as a Function of the Plastic Strain	54
9.	Side Elevation of the FE Model of a Children Motorcycle Safety Helmet for a Frontal Impact on a Flat Anvil	59
10.	Isometric Elevation of the FE Model of a Children Motorcycle Safety Helmet for a Right Impact on a Flat Anvil	59
11.	Side Elevation of the FE Model of a Children Motorcycle Safety Helmet for a Rear Impact on a Hemispherical Anvil	60
12.	Front Elevation of the FE Model of a Children Motorcycle Safety Helmet for a Left Impact on a Hemispherical Anvil	60
13.	Geometrical Properties of the Headform (MS1: 1996)	65
14.	Experimental data of the Headform C.G. Acceleration versus Time	70
15.	Compressive Properties of the EPS Foam	83
16.	Helmet Compliance Among Children Pillion Riders	89
17.	Types of Helmets Commonly Worn by Children Pillion Riders	90

18	Children Pillion Riders Head Size Distribution	93
19	The Selection of the Design Head Size as a Function of the Cumulative Percent Plot of the Head Size Distribution, the Test Headform Sizes and the Design Limitations	95
20	Comparison of Headform C G Acceleration versus Time from Numerical Simulation and Experimental Data Drop Height 160 cm, Flat Anvil	98
21	Gaussian Approximation of the Numerical Acceleration Curve	99
22	Gaussian Approximation of the Experimental Acceleration Curve	100
23	Time History Plot of EPS Deformation	107
24	Performance of Different Combination of ABS and EPS Thicknesses	109
25	Design Limitations and Effects of Varying ABS and EPS Thicknesses	111
26	The Deformed Shape of the Helmet at Various Times Rear Impact, Flat Anvil, ABS Thickness 5mm, EPS Thickness 25mm	112
27	The Deformed Shape of the Helmet at 20 ms and 40 ms for a Frontal Impact with a Flat Anvil	115
28	EPS Time Deformation Plot (0-40 ms)	116
29	The Deformed Shape of the Helmet at Various Time Stage I EPS Absorbed Energy Stage	117
30	The Deformed Shape of the Helmet at Various Time Stage II ABS Bending Stage	118
31	Headform C G Acceleration versus Time from Numerical Analysis	119
32	The Deformed Shape of the Helmet at Various Time Stage III Rebound Stage	119
33	The Deformed Shape of the Helmet Frontal Impact, Flat Anvil	120

50. Force Deflection Curve for Polystyrene Foam in Compression: 145 Strain Rate 10 mm min⁻¹, Foam Density 36.4 kg m⁻³

LIST OF TABLES

Table		Page
1.	Total Number of Casualties Injuries by Type of Vehicle in 1997	21
2.	Shell Energies for 135J Impacts on the Front of the Helmet	28
3.	A Classification of Head Injuries	31
4.	The Corresponding Mass of the Drop Assembly and Impact Velocity for Each Head Size	34
5.	Casualties Injuries for Fatal and Hospitalised Motorcycle Rider by Their Body Region from 1992 to 1997	38
6.	Odds Ratio by Type of Objects Struck in Motorcycle Crashes	38
7.	Names of Schools Involved in the Field Studies	62
8.	Sample Size Used Per Standard	63
9.	Experimental and Numerical Helmet Drop Tests	71
10.	Mechanical Properties of Terluran ® HI-10 (ABS)	74
11.	Mechanical Properties of Expanded Polystyene Foam (EPS)	75
12.	Mechanical Properties of AISI 1015 Steel	76
13.	Mechanical Properties of Magnesium Alloy	77
14.	A Summary of the Number of Nodes, the Number of Elements and the Types of Elements Used in the FE Model of the Helmet	78

15	Companson with the Number of Elements Used by Liu et al to Model Each Component	79
16	LS-DYNA Material Parameters for Modelling the EPS Foam	82
17	The Various Thicknesses Combinations of the EPS Shock Absorbing Foam Liner and ABS Shell Used in the Parametric Study	86
18	Casualties Injuries Between Helmeted and Non-Helmeted Children Pillion Riders	91
19	Casualties Injuries Between Helmeted and Non- Helmeted Adult Motorcycle Users	91
20	Relative Risk Index of Helmeted and Non-Helmeted Adult Motorcycle Users	91
21	Correlation Between Level of Comfort and Weight Associated with Different Types of Helmets	96
22	Numerical and Experimental Gaussian Function Constants	101
23	Headform Accelerations for Various Thicknesses Combination of the ABS Shell and EPS Shock Absorbing Liner	103
24	Percentage g Reduction and Weight Increase with Corresponding Increase in EPS Foam Thickness	103
25	Percentage g Reduction and Weight Increase with Corresponding Increase in ABS Shell Thickness	104
26	Percentage g Reduction and Weight Reduction with Varying ABS and EPS Thickness	106
27	Weighted Index for the Various Combinations of ABS and EPS Thicknesses	108
28	Characteristics of the Helmets	113
2 9	Headform C G Acceleration from Numerical Analysis	114

LIST OF ABBREVIATIONS

ABS Acrynonitrile Butadiene Styrene

C.G. Centre of Gravity

CI Confidence Interval

CL Confidence Level

EPS Expanded Polystyrene

FE Finite Element

FEA Finite Element Analysis

FEMB Finite Element Model Builder

FEM Finite Element Model

GRP Glass Reinforced Plastics

HIC Head Injury Criterion

MAAP Microcomputer Accident Analysis Package

MRI Magnetic Resonance Imaging

MS Malaysian Standard

ms millisecond

PC Personal Computer

PDRM Polis DiRaja Malaysia

RAM Random Access Memory

UPM Universiti Putra Malaysia

CHAPTER I

INTRODUCTION

Background of the Study

A strong population and economic growth experienced during the past two decades has seen a parallel growth in traffic in Malaysia. Between 1975 and 1997, the population increased 108% from 10,438,137 to 21,665,600 (PDRM, 1997). This is accompanied by a growth in traffic demand. Between 1975 and 1997, the total road length has grown from 12,043 to 63,382 km, a five –fold increase. Within the same period, the number of registered vehicles increased six –fold from 1,267,119 to 8,550,469. Consequently, vehicle ownerships increase from 8.23 people per vehicle to 2.53 people per vehicle.

As a result of rapid traffic growth, the total number of road crash has increased 447% from 48,233 to 215,632 between 1975 and 1997. In 1996, injury was a third leading cause of death and hospitalization. A study on the epidemiology of injury in Malaysia showed that road crash related injury accounted for 42% of the total reported injury during the study period (MOH, 1997). In 1997, adolescents (16 -20 year-old) and young adults (21-25 year-old) formed 43.1% of the total injury casualty on the road (PDRM, 1997). It is a main cause of loss of potential years of life in adolescents and young adults.

Motorcycles form a large portion (50.6%) of the total traffic composition in Malaysia (PDRM, 1997). Motorcycle being a convenient and cheap mode of transportation, is used as a major mode of personal transport mainly by the lower income community. The number of motorcycle ownerships has increased 194% over a decade from 2,236,167 to 4,328,997 between 1984 and 1997.

As the result, the number of road crashes involving motorcycle increased 262% from 30,611 to 80,100 within the same period. Due to the increase in motorcycle crashes, the number of fatalities involving motorcycle has also increased from 209 in 1974 to 3,760 (motorcyclists and pillion riders) in 1997. Fatalities involving motorcyclists and pillion riders form a major portion of the total road fatalities each year. In addition, there has been a steady increase in percentage (on the average 2.3% annually) of total fatalities involving motorcyclists and pillion riders from 41.7% to 59.9% between 1988 and 1997 with the exception in 1997 where it decreased by 0.2%. The number of cases of motorcycle crash related injuries has also increased from 3,460 to 37,843, a 1094% increase between 1974 and 1997.

In view of the increasing number of road fatalities, a Cabinet Committee on Road Safety was set up in 1990 with the objective of reducing traffic fatalities by 30% by the year 2000. An extensive National Road Safety Plan was formulated the following year covering areas such as behavioural modification of road users, safety research, road engineering, vehicle safety, and medical treatment and safety administration.

In view of the National Safety Plan, the Ministry of Transportation has appointed the Road Safety Research Centre, Faculty of Engineering of UPM as a consultant to carry out research on motorcycle safety in Malaysia Based on the projection of the fatality model (Radin et al., 1998), 9,127 road users would be killed by the year 2000 (Figure 11)

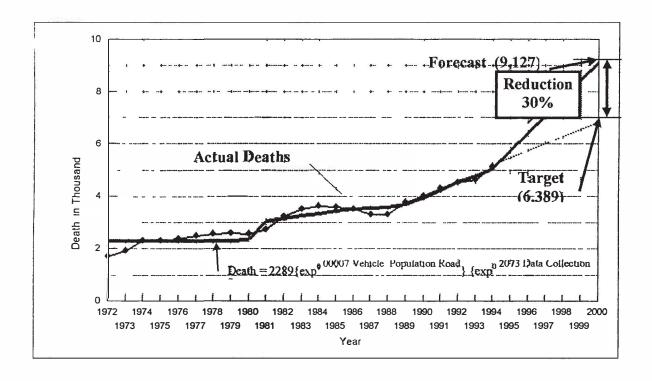


Figure 1 1 Fatality Model Projection for Year 2000 (Radin et al., 1998)

Due to the absence of passive safety features in a motorcycle, the motorcyclist and the pillion rider risked higher injury severity in the event of collision. It is estimated that the risk of injury of the motorcyclist and the pillion passenger are ten to thirty times greater than car passengers.

In 1997, head injuries accounted for 22.3% of the 24,908 reported cases of casualties injuries due to road crashes (PDRM, 1997). In the same year, there were 3,158 fatalities due to head injuries, representing 52.7% of the total fatalities. Head injury is the leading cause of death among motorcyclists and their pillion riders with 1,639 and 252 deaths respectively.

As the motorcycle does not provide adequate safety passive features such as an impactabsorbing zone, the only possible protection are limited to a safety helmet and
appropriate protective clothing. An approved motorcycle safety helmet is able to protect
its wearer from head injuries due to impacts of different severities on various objects.

The outer shell of the helmet is usually made of polycarbonate, fibre glass, glass
reinforced plastics (GRP) or Acrynonitrile Butadiene Styrene (ABS). ABS is used as it
has a high resistance to penetration. In the event of collision, the ABS shell absorbed
30-40% of the total impact energy (Mills et al., 1991). Expanded polystyrene foam is
used as a shock-absorbing component in a motorcycle safety helmet. It absorbs almost
95% of the total impact energy (Mills et al., 1991). A comfort liner is used between the
inside of the polystyrene foam and the head. The components of a typical motorcycle
safety helmet are shown in Figure 1.2.

Although helmet law has been introduced in the 70s and saw approximately 30% reduction in fatalities (Supramaniam et al., 1984), young children often ride with unqualified helmets or without any protective head gear.

