

UNIVERSITI PUTRA MALAYSIA

THERMAL ANALYSIS OF TWO AND THREE-GATE SAND CASTING MOULD

ALEX LIM KHENG BOOI

FK 2001 20

THERMAL ANALYSIS OF TWO AND THREE-GATE SAND CASTING MOULD

$\mathbf{B}\mathbf{y}$

ALEX LIM KHENG HOOI

Thesis Submitted in Fulfilment of the Requirement for the Degree of Master of Science in the Faculty of Engineering Universiti Putra Malaysia

October 2001

Abstract of thesis presented to the Senate of University Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

THERMAL ANALYSIS OF TWO AND THREE-GATE SAND CASTING MOULD

By

ALEX LIM KHENG HOOI

October 2001

Chairman: Associate Professor Shamsuddin bin Sulaiman, Ph.D.

Faculty: Engineering

A study of thermal characteristics of the molten metal in sand casting process had been carried out. This comprises of experimental work and modeling of casting process. Two sand molds are fabricated using the carbon dioxide-silicate method. One of them has 2 gates and the other one has 3 gates. Data of temperature distribution can be obtained by detecting the temperature changes at thermocouples from various predetermined location of the sand mold. Presence of molten metal can be known by observing the drastic changes of temperature at a particular point and therefore the flow characteristics was studied. The data is presented in a graphical format and is compared with the calculated result produced from modeling program called Thermnet. The Thermnet program is a simulation program for thermal analysis. This simulation program is Network technique based. Comparison of modeling and experimental results are also presented. Finally, base on these data, weak point of the sand mold design is being pointed out and proposal for a better design is made.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGAJIAN TERMA PROSES PENUANGAN PASIR UNTUK ACUAN-ACUAN 2-GATE AND 3-GATE

Oleh

ALEX LIM KHENG HOOI

Oktober 2001

Pengerusi: Profesor Madya Shamsuddin Sulaiman, Ph.D.

Fakulti: Kejuruteraan

Satu kajian mengenai taburan terma leburan logam dalam proses penuangan pasir telah dijalankan. Ia terdiri daripada kerja-kerja experimen dan pemodelan proses penuangan tersebut. Dua acuan pasir telah dibuat dengan menggunakan cara karbon-silika. Salah satunya mempunyai 2 gate dan satu lagi mempunyai 3 gate. Data bagi taburan suhu boleh didapati dengan mengesan perubahan suhu pada termo-gandingan yang diletakkan pada bahagian-bahagian acuan yang berlainan. Ketibaan leburan logam boleh diketahui dan dikaji melalui pemerhatian perubahan suhu yang mendadak. Data-data ini akan diwakili oleh carta-carta grafik dan ianya dibandingkan dengan data yang diperolehi melalui kiraan, melalui perisian komputer ThermNet, yang digunakan untuk mengkaji suhu tuangan leburan logam. Perisian tersebut adalah berdasarkan telenik rangkaian. Akhirnya, berdasarkan data yang diperolehi, kelemahan-kelemahan acuan pasir tersebut dapat ditunjukkan dan reka-bentuk acuan yang lebih baik telah dicadangkan.

ACKNOWLEDGEMENTS

This master thesis, represents a total of 4 semesters effort. It could not have been written without the help of many people. I am very grateful to the chairman of the supervisory committee, Associate Professor Dr. Shamsuddin Sulaiman for his supervision and guidance throughout the project. Many thanks to Dr. Megat Mohamad Hamdan as the committee member of this project and Ir. Mohd Rasid Osman who was once a committee member for sharing their knowledge and for their constructive criticisms and suggestions.

A special thanks to the Research Officers from SIRIM particularly the Foundry Unit and non-destructive testing unit who helped in carrying out the experiment. I gratefully acknowledge the Intensification of Research in Priority Area (IRPA) under the Ministry of Science, Technology and Environment Malaysia, who financially supported this project.

1 would also like to acknowledge the help of my project member Mr. Lai Tze Siung and Mr. Tan Cheng Loon for their assistance.

Finally, many thanks to my parents, Mr. Lim Gim Pak and Madam Tang Bee Gaik, for their continuous support and care, and also Joyce, for her encouragement.

This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Master of Science.

AINI IDERIS, Ph.D Professor Dean of Graduate School Universiti Putra Malaysia Date:

TABLE OF CONTENTS

AB	STRACT	ii
ABSTRAK		
ACKNOWLEDGEMENTS		
	PROVAL	V
	CLARATION	vii
	T OF TABLES.	xi
	T OF FIGURES.	xii
	ST OF ABBREVIATIONS AND NOTATIONS	xvii
CH	IAPTER	
1.		
	1.1. Background of Casting	1
	1.2. Sand Casting	2
	1.3. Statement of Problem	3
	1.4. Objective of Project	4
	1.5. Scope and Limitation.	5
	1.6. Expected Outcome	6
	I.o. Experied Substitute III.	Ū
2.	LITERATURE REVIEW	
	2.1. Introduction	7
	2.2. Types of Sand Mould	
	2.3. Sodium Silicate/CO ₂ Process	
	2.4. Alloyed Aluminium	
	2.5. LM6 Aluminium Casting Alloy	
	2.6. Product Pattern	
	2.7. Gating System Design Criteria	
	2.7.1 Bernoulli's Theorem	
	2.7.2. Continuity	
	2.7.3. Flow Characteristics	
	2.7.4. Fluidity of Molten Metal	
	2.7.5. Casting Parameters That Influence Fluidity, Fluid Flow and	. 20
	Thermal Characteristics of Casting System	29
	2.7.6. Heat Transfer	
	2.8 Shrinkage of Cast Metal During Solidification	
	2.9 Defects in Sand Casting	33
	2.9.1 Porosity	34
	2.10 Numerical Methods in Thermal Transient Casting Process	36
	2.10.1. The Finite Difference (FD) Approach	37
	2.10.2. The Finite Element (FE) Approach	38
	2.10.3. The Boundary Element (BE) Approach	40
	2.10.4. Criteria of Casting Process Simulation	41
	2.10.5. Homogeneous Links	41
	2.10.6. Interface Links	42
	2.10.7 Mathematical Model	43

3.	METHODOLOGY	
	3.1 Introduction	48
	3.2 Overview of Project	48
	3.3 Designing of Sand Mould	49
	3.4 Modelling / Simulation	50
	3.4.1 Determining Material Specification	53
	3.4.2 Pre-Processor	54
	3.4.3 Simulating Casting Process	58
	3.4.4 Post Processor	60
4	DESIGN CONSIDERATION	
	4.1 Introduction to Design Principles in Castings	61
	4.1.1 Corners, Angles, and Section Thickness	61
	4.1.2 Flat Areas	62
	4.1.3 Shrinkage	62
	4.1.4 Parting Line	62
	4.1.5 Taper	63
	4.1.6 Tolerances	63
	4.1.7 Machining Allowance	63
	4.1.8 Residual Stress	63
	4.2 Experiment and Modelling of Sand Casting	64
	4.2.1 The Design of Sprue and Basin	68
	4.2.2 The Design of Well Base	72
	4.2.3 The Design of Risers	73
	4.2.4 Calculation of Volume Shrinkage of Molten Metal '	
	During Solidification Process	73
	4.2.5 Preparation of Product Pattern	78
	4.2.5 (i) Procedure To Make Product Pattern For the 1:1:1	
	Gating Ratio System	78
	4.2.5(ii) Preparation of Basin, Sprue, Well Base, Runners, Ingates	
	and Risers	79
	4.2.5(iii) Mould Wall	79
	4.2.6 Calibration of Thermocouple	83
	4.2.7 Preparation of Sand Mould and Embedding the Thermocouples	84
	4.2.8 Preparation of the Cope	84
	4.2.9 Preparat	85
	4.3 Melting and Casting	91
	4.4 Temperature Measurement using Datalogger	97
	4.4.1 Instruction Program for DTWin	97
	4.4.1(i) Compatible Model of Datalogger	99
	4.4.1(ii) Sending Windows	100
	4.4.1(iii)Receiving Windows	100
	4.4.1(iv) Fettling Process	102
_	DECLU TO AND DISCUSSION	
5.	RESULTS AND DISCUSSION	105
	5.1 Introduction	
	5.2 Results of 3-Ingate-Mould	107
	5.2.1. Temperature History	
	5.2.2. Non-Direct Contact Points Without Molten Metals	. 113

5.2.3.	Direct	114
5.3. Com	parison	116
5.3.1	3-Ingate Mould	116
5.3.2	2-Ingate Mould	124
5.3.3	Comparison Between 2-Ingate and 3-Ingate Moulds	131
	5.3.3.1 Sand Points	131
	5.3.3.2 Cast Points	132
6. CONCL	USION AND RECOMMENDATION	136
REFERENCI	ES	138
	S	141
BIODATA O	F THE AUTHOR	159

LIST OF TABLES

Table		Page
2.1	Most commonly used aluminium alloys and their designations	16
2.2	Grades of Aluminium Alloys	17
2.3	Properties of LM6 Aluminium casting alloy	18
2.4	Characteristics of Pattern Materials	22
2.5	Solidification Contraction for Various Cast Metal	31
3.1	Properties of sand	53
3.2	Experimental results of density for sand	54
4.1	Normal Shrinkage Allowance For Some Metals Cast in Sand Mould	62
5.1	List of node numbers that correspond to point	106

LIST OF FIGURES

Figure		Page
2.1	Outline of production steps in a typical sand-casting	7
2.2	Components of typical sand mould. (Side View)	9
2.3	Components of typical sand mould. (Drag Top View)	9
2.4	Composition of LM6	19
2.5	Temperature distribution at the interface of the mould	30
2.6	Schematic illustration of three shrinkage regimes: in the liquid; during freezing; and in the solid.	32
2.7	Converging (conforming) element	39
2.8	Non-converging (conforming) element	40
2.9	Partially Converging Element	40
2.10	Network structure	43
2.11	Single homogeneous link	45
2.12	Different materials joined at an interface	45
2.13	Heat loss to cooling surface	45
3.1	Process Flow of Project	48
3.2	Sand Mould with 3 Ingates	49
3.3	Detail Drawing of mould with 3 ingates	50
3.4	Pattern of product with draft angle 5°	51
3.5	Mesh model of mould with 3 ingates	52
3.6	Input Format for the Pre-processor	55
3.7	Input for the Second Part of Pre-processor	56
3.8	Input for the Third Part of Pre-processor	57
3.9	Format for the Last Part of Pre-processor	58

4.1	Runner's cross section with its dimension	65
4.2	Cross section of runners and ingates	65
4.3	Conventional Runner	66
4.4	Dimensions of ingates used	66
4.5	Illustrate the conventional runners assembled together with ingates and product pattern	67
4.6	Step Runners with Well Base	67
4.7	Typical Runners	67
4.8	One of the 3 ingates used	68
4.9(i)	Cross-section view of the sand mould	68
4.9(ii)	The flow geometry of molten metal in the basin and sprue	69
4.10	Orthographic View of Basin	71
4.11	Top and Front View of Sprue	71
4.12	The Design and Dimension of well base	72
4.13	A Sprue	74
4.14	Well Base	75
4.15	Runners	75
4.16	Final Dimension of Riser	76
4.17	The Final Dimension of Riser (Top and Front View)	77
4.18	The Plan View of Product Pattern when place on the Plate	79
4.19	Plan View of Mould Wall	79
4.20	Pattern for (a) Riser (b) Sprue and (c) basin.	80
4.21	Pattern for runners of gating ratio 1:1:1	80
4.22	Product Pattern and the stopper wall placed on the pattern plate.	81
4.23	The Mould Wall	81

4.24	The basin, riser, runner and pattern of 1:2:1 gating system for (a)2 ingate and (b)3 ingate.	82
4.25	Components of Testing Equipments during Testing Process of Thermocouple	83
4.26	The Arrangement of Thermocouple Wire on the Product Pattern in the Sand Mould.	86
4.27	The Arrangement of Thermocouple Wire on the Product Pattern	87
4.28	Sodium silicate used as sand binder	87
4.29	Sand used for mould fabrication	88
4.30	The sand mixer used	88
4.31	The sand mixture is being compressed into the pattern to form the cope	89
4.32	The sand mixture is being compressed into the pattern to form the drag.	89
4.33	Tiny air holes are made for carbon dioxide process	90
4.34	CO ₂ Gas Cylinder	90
4.35	Ingot of Aluminium Alloy (LM6)	92
4.36	The ingot is cut into smaller pieces and put in a Crucible to melt	92
4.37	Molten alloy	93
4.38	The elevated Crucible, ready for pouring	93
4.39	The drag section of the mould with 2 runners without thermocouple wires	94
4.40	Cope and drag enclosed as a whole sand mould	94
4.41	Iron weight are used to ensure the mould to be able to withstand the hydrostatic pressure during pouring	95
4.42	Molten metal is being poured into the mould	95
4.43	A drag with thermocouples at various location	96
4.44	Molten metal is being poured into the wired mould	96

4.45	The Datalogger connected to the computer	101
4.46	Thermocouple wiring between the sand mould and the Datalogger	101
4.47	Product is removed by breaking off the sand mould	102
4.48	Cast Product after shot blasting process	103
4.49	Cast Product without shot blasting process	103
4.50	Shot blasting machine	104
5.1	Positions of thermocouple	107
5.2	Temperature at Thermocouple 1	108
5.3	Temperature at Thermocouple 2	108
5.4	Temperature at Thermocouple 3	109
5.5	Temperature at Thermocouple 4	109
5.6	Temperature at Thermocouple 5	110
5.7	Temperature at Thermocouple 6	110
5.8	Temperature at Thermocouple 7	111
5.9	Temperature at Thermocouple 8	111
5.10	Temperature at Thermocouple 9	112
5.11	Temperature at Thermocouple 10	112
5.12	The unbalanced flow of molten metal due to unbalanced	
	Gating system	115
5.13	Thermal transient for node 148 (3 ingates)	119
5.14	Thermal transient for node 118 (3 ingates)	119
5.15	Thermal transient for node 144 (3 ingates)	120
5.16	Thermal transient for node 109 (3 ingates)	120
5.17	Thermal transient for node 73 (3 ingates)	121
5 18	Thermal transient for node 6 (3 ingates)	121

5.19	Thermal transient for node 7 (3 ingates)	122
5.20	Thermal transient for node 8 (3 ingates)	122
5.21	Thermal transient for node 9 (3 ingates)	123
5.22	Thermal transient for node 10 (3 ingates)	123
5.23	Thermal transient for node 148 (2 ingates)	125
5.24	Thermal transient for node 118 (2 ingates)	125
5.25	Thermal transient for node 144 (2 ingates)	126
5.26	Thermal transient for node 138 (2 ingates)	126
5.27	Thermal transient for node 73 (2 ingates)	127
5.28	Thermal transient for node 69 (2 ingates)	127
5.29	Thermal transient for node 23 (2 ingates)	128
5.30	Thermal transient for node 67 (2 ingates)	128
5.31	Thermal transient for node 66 (2 ingates)	129
5.32	Thermal transient for node 63 (2 ingates)	129
5.33	Comparison of temperature history at node 73	132
5.34	Comparison of temperature history at node 23	133
5.35	Comparison of temperature history at node 67	133
5.36	Comparison of temperature history at node 66	134
5.37	Comparison of temperature history at node 63	134

LIST OF ABBREVIATIONS AND NOTATIONS

Si - Silicon

Al - Aluminium

Mn - Manganese

C - Carbon

Cu - Copper

P - Phosphorus

S - Sulfur

Zn - Zink

h - elevation above a certain reference plane (m)

p - pressure (N/m^2)

L - length (m)

m - mass (kg)

q - heat flow (W)

 α - heat transfer coefficient (W/m²°C)

 ρ - density of fluid (kg/m³)

g - acceleration of free fall (m/s^2)

v - velocity (m/s)

f - frictional loss (W)

Q - flow rate (m^3/s)

A - cross section area (m²)

V - velocity (m/s)

Re - Reynolds number

D - diameter of a channel (m)

η - viscosity (kg/ms)

DT - temperature difference (°C)

T_S - temperature when solidification is complete (°C)

T_L - temperature when melting is complete (°C)

k - loss coefficient

K - thermal conductivity (W/m°C)

FD - finite difference

FE - finite element

FEM - finite element method

BE - boundary element

CAD - computer aided design

CAA - computer aided analysis

CHAPTER 1

INTRODUCTION

1.1 Background of Casting

Casting is defined as the process whereby molten material is poured or forced into a mould and allowed to harden. When the metal solidifies, the result is a casting - a metal object conforming to that shape. A great variety of metal objects are also moulded at some point during their manufacture [1].

The most common type of mould is made of sand and clay; ceramics, sand with cement, metals, and other materials are also used for moulds. These materials are packed over the face of the pattern (usually made of wood, metal, or resin) that forms the cavity into which the molten metal is to be poured. The pattern is removed from the mould when its shape is able to be retained by the mould material. Moulds are usually constructed in two halves, and the two halves are joined together once the pattern has been removed from them. Pins and bushings permit precise joining of the two halves, which are enclosed in a mould box. The metal is then poured into the mould through special gates and is distributed by runners to different areas of the casting. The mould must be strong enough to resist the pressure of the molten metal and sufficiently permeable to permit the escape of air and other gases from the mould cavity; otherwise, they would remain as holes in the casting. The mould material must also resist fusion with the molten metal, and the sand at the mould surface must be closely packed to give a smooth casting surface [2].

The making of patterns for foundries requires care and skill. Patterns are uniformly larger than the desired casting in order to compensate for shrinkage during drops of temperature and the liquid-to-solid phase change. Polystyrene foam patterns remain in the mould and evaporate upon contact with the poured metal; wax patterns are melted out of the mould prior to the pouring of the molten metal. Metal moulds are used in that type of foundry known as die-casting. Often a hollow space is desired within the casting; in this case a core of fine sand is placed in one of the mould halves. Core boxes made of wood, metal, or resin are also used in this regard [3].

Modern foundries capable of large-scale production are characterized by a high degree of mechanization, automation, and robotics, and microprocessors allow for the accurate control of automated systems. Advances in chemical binders have resulted in stronger moulds and cores and more accurate castings. Accuracy and purity are increased in vacuum conditions, and further advances are expected from zero-gravity casting in space [4].

1.2 Sand Casting

Sand-casting is widely used for making cast-iron and steel parts of medium to large size in which surface smoothness and dimensional precision are not of primary importance. The first step in any casting operation is to form a mould that has the shape of the part to be made. In many processes, a pattern of the part is made of some material such as wood, metal, wax, or polystyrene, and refractory moulding material is formed around this. For example, in green sand-casting, sand combined with a binder such as water and clay is packed around a

pattern to form the mould. The pattern is removed, and on top of the cavity is placed a similar sand mould containing a passage (called a gate) through which the metal flows into the mould. The mould is designed so that solidification of the casting begins far from the gate and advances toward it, so that molten metal in the gate can flow in to compensate for the shrinkage that accompanies solidification. Sometimes additional spaces, called risers, are added to the casting to provide reservoirs to feed this shrinkage. After solidification is complete, the sand is removed from the casting, and the gate is cut off. If cavities are intent to be left in the casting—for example, to form a hollow part—sand shapes called cores are made and suspended in the casting cavity before the metal is poured [5].

Patterns are also formed for sand-casting out of polymers that are evaporated by the molten metal. Such patterns may be injection moulded and can possess a very complex shape. The process is called full-mould or evaporative pattern casting. However, the resin sets, binding the sand particles together and forming half of a strong mould. Two halves and any desired cores are then assembled to form the mould, and this mould is backed up with moist sand for casting. Greater dimensional accuracy and a smoother surface are obtained in this process than in green (mixture of sand, clay and water) sand-casting [5].

1.3 Statement of Problem

The conventional method of casting process has little or no information of what really happen during the process. A number of test castings and re-melting is inevitable every time a new mould design is changed [2]. This method is costly and results in a lot of waste in terms of time and cost of re-melting and labour.

One way to avoid these unnecessary waste is to predict the casting process through computer simulation. Nowadays the use of solidification simulation is widely practiced in American foundries of all sizes. A recent study indicated that approximately 30% of U.S. foundries use solidification software, and all of the automotive foundries use it (Jensen, Beckermann, and Fisher 1996) [3]. Perhaps half of the castings poured in the United States today are poured in foundries that make use of solidification simulation programs. There are over a dozen commercially available simulation programs in the United States today. While in Europe, Solidification simulation is highly developed. Models have been developed in England, France, Switzerland, Germany, and the Scandinavian countries; one German model (MagmasoftTM) is commercially available worldwide and is highly regarded by many foundries. A second European model "SIMULOR," developed by Pechiney, is also in use in Europe, and some copies have been sold in the United States. SIMULOR is noted for its ease of use. Both Magmasoft and SIMULOR predict mould filling and solidification patterns for castings.

1.4 Expected Outcome

[6]

The data of the temperature history will be used to determine the appropriate time to remove the casting from the mould. More importantly, the result of this project will be used to detect mould design weaknesses that will lead to poor casting quality. This is based on the principle, which states that an alteration of mould design at the early stages will cost less compared to alteration at the later stages.

1.5 Objective of Project

- 1) To study the heat distribution from molten aluminium alloy in two and three-gate sand mould through experiments. The experiment including pattern design and sand mould preparation until pouring molten metal and casting removal from mould. Thermocouples are placed at various critical points in the sand mould and at the mould cavity for flow detection and heat changes analysis.
- 2) To simulate solidification of casting process and to compare the thermal transient between the analysis model using ThermNet and the experiment data.

1.6 Scope and Limitation

In this project, two mould patterns are designed; one with two ingates and the other one with three ingates, where the differences of the thermal transient will be studied. Based on the pattern, the mould for the pattern will be prepared, as well as breaking the mould into imaginary elements which will be used to calculate the thermal characteristics in the simulation program called Thermnet. The simulation programs employ network analysis [4], which is a derivative of the finite element method. The programs have ability to model accurately the phase change process. Network approach is economical on computer effort and may be used for a first iteration in mould and die design [4].

The cast metal used for the experiment is limited to only Aluminium Alloy LM6 as thermal behavior of different cast metal is out of the coverage in this project. However, the main reason LM6 was selected is because of it high silicon content (11-13%) which greatly improves fluidity and thus castability. The important properties of the sand and aluminium alloy such as density, specific heat capacity and thermal conductivity are to be determined. These properties and some other dimensions for each element of the mould will be used by the program for simulation purpose.

