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ABSTRACT The revolution of IoT and its capabilities to serve various fields led to generating a large
amount of data for processing. Tasks that require an instant response, especially with sensitive delay tasks
send to the fog node due to the close distance, and the complex tasks transfer to the cloud data center
for its huge computation and storage. However, sending tasks to the fog decreases the transmission delay.
Still, it increases the energy consumption of the end users, while transferring tasks to the cloud reduces
users’ energy consumption but increases the transmission delay due to the long distance; besides, assigning
tasks to appropriate resources compatible with task requirements. These are the main challenges in cloud-
fog computing that need to improve. Thus, this study proposed a Multi-Objectives Grey Wolf Optimizer
(MGWO) algorithm to reduce the QoS objectives delay and energy consumption and held in the fog broker,
which plays an essential role in distributing tasks. The simulation result verifies the effectiveness of the
MGWO algorithm compared to the state-of-the-art algorithms in reducing delay and Energy consumption.

INDEX TERMS Cloud-fog computing, delay, energy consumption, grey wolf optimizer, Internet of Things,
meta-heuristic, task scheduling.

I. INTRODUCTION
In today’s world, the growth of telecommunication networks
significantly impacts the Internet of Things (IoT) revolution,
which is gaining popularity. Terminal devices have the essen-
tial role of detecting the environment sensing then generating
data. Nevertheless, the limited capabilities of these devices
lead to sending data to the cloud for storing, processing,
analysing, and making a decision due to its high computa-
tion and storage. Besides the ability of cloud computing to
provide ubiquitous access to its resources, it cannot satisfy
the latency-sensitive IoT application [1]. Then it appears the
role of fog computing is to complement the cloud, not to
substitute. The cooperation of cloud-fog is tomeet the various
task lengths and computations. With the vast penetration of
edge-cloud computing, the users’ requests have increased
that vary between cloud and fog nodes according to various
characteristics such as input task length, the sensitivity of
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tasks, performance metrics like delay, makespan, cost, energy
consumption, and so on. All these requests should process
to meet the users’ requirements [2]. However, the various
features of the fog and cloud with the random users’ requests
and the limitation of resources make optimizing schedul-
ing tasks more complicated and need to discuss and cannot
be ignored. Task scheduling is an impact factor in improv-
ing the system performance, efficiently balancing the load
to overcome the network overhead, maximize the resource
utilization, and keeping the energy consumption [3]. The
primary role of task scheduling is mapping tasks to the
appropriate resources to guarantee to finish the execution
of the task with meeting the quality of service (QoS) [4].
Even with the significant benefits of cloud-fog computing,
task scheduling still faces challenges due to its dynamic
nature, task configuration, and the required resources. All
these factors impact the (QoS) optimization that leads to
adjusting the parameters and determining the appropriate
cloud and fog resources [5]. The main aim of optimiza-
tion is to reduce or increase the function of the objective
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during scheduling tasks. There are various optimization met-
rics such as delay, energy consumption, makespan, cost, etc
[4]. Designing task scheduling is classified as static (offline)
and dynamic (online) according to the features of the environ-
ment. Executing offline scheduling, the scheduler should con-
sider the tasks’ parameters, such as resources, optimization
objectives, and QoS constraints. While the online scheduling,
the task parameters, and resources auto-change in the envi-
ronment [6]. Scheduling considers NP-complete. So, it used
meta-heuristic algorithms to find approximate optimization
solutions to the near-optimal solution [7] that is based on
searching randomly. Many popular metaheuristics are used
for task scheduling, such as Particle swarm (PSO), Genetic
algorithm (GA), simulated annealing (SA), Ant Colony Opti-
mization (ACO), etc [8]. Nevertheless, meta-heuristics algo-
rithms have various search processes, randomness problems,
minimum global search capabilities, and low convergence
in the late iteration that make it fall in the local optimum
search solution [9]. Furthermore, unbalance between global
and local search [10]. From this point, the researchers go
towards Grey wolf optimizer (GWO) due to its significance
which leads to overcoming most meta-heuristic algorithms.
The mechanism of GWO requires only the position of one
vector, which means minimum memory compared to the
PSO algorithm. Furthermore, GWO relies on the three best
solutions to avoid falling into the local optimum solution,
unlike the PSO algorithm that chooses one best solution by
all particles [11]. Even more, GWO algorithm has a few
parameters compared to GA algorithms which means less
complexity and decreased computation time and energy con-
sumption [11]. GWO algorithm is more dynamic than Ant
Colony optimization, which does not consider the dynamic
nature of computing resources [12]. GWO algorithm pro-
posed by [13] which is a meta-heuristic approach to solv-
ing optimization problems. It considers a swarm intelligence
algorithm. The GWO technique is based on the nature of grey
wolves swarming in leasers and hunting. Also, it follows the
social hierarchy. Recently, it has gained tremendous popular-
ity compared to other meta-heuristics algorithms due to its
significant benefits of convergence during execution, fewer
parameters that lead to minimum complexity time and energy
consumption, and its simplicity in the implementation [14].
GWO has been adopted in various fields to solve numerous
problems such as optimization, classification, economic and
power dispatch, capacitated vehicle routing, etc [15].

Lately, many researchers have been attracted to discussing
MOP, which means more than one in the task scheduling,
especially in cloud-fog computing, due to various character-
istics of the nodes and the distance. The two main objectives
that have critical impacts are delay and energy consumption.
Whereas, executing tasks at the fog node reduces the delay
time due to the short distance but increases the user’s energy
consumption of devices. On the other side, transferring tasks
to the cloud decrease the user’s energy consumption but
increase the delay time [16]. However, sending tasks to the
cloud can save energy of fog nodes from the users’ sides

but increase delay. In contrast, transferring tasks to the cloud
saving the energy consumption of the users but increasing
the transmission delay. Therefore, it is important to propose
a tradeoff strategy between delay and energy. This paper
concentrates on task scheduling problems in Cloud–Fog envi-
ronment, a highly distributed computing platform, for pro-
cessing IoT applications. The main contribution of this study
is summarized as follow:

• A mathematical framework with queue theory was
developed to reduce power consumption and delay via
efficient workload allocation.

• Proposed a MOP approach called MGWO algorithm
to solve this problem for task scheduling. The main
objective of the MGWO algorithm is to reduce the delay
and energy consumption tasks in cloud-fog computing.

• The simulation results demonstrate that the MGWO
algorithm outperforms other related algorithms in reduc-
ing delay and energy consumption.

The rest of the article is organized as follows. In Section II,
the related works are presented. Section III specifies the
mathematical model for the task scheduling problem in the
Cloud–Fog computing environment. Section IV presents our
proposed algorithm in detail. Simulation and Experimental
results are given in Section V. Finally, Section VI concludes
the article, and future works are discussed.

II. RELATED WORK
The comprehensive review of the recent task scheduling stud-
ies. First, the main algorithms and techniques adopted in the
task scheduling in the cloud-fog. Second, the significant stud-
ies about applying Grey Wolf Optimizer (GWO) algorithm.

A. TASK SCHEDULING APPROACH
This part throw light on the review of state of art algorithms
and techniques in terms of scheduling tasks in the cloud-
fog computing. Reference [17] discuss the balancing between
makespan and cost monetary with meeting the deadline con-
straints during tasks scheduling by proposing a heuristic algo-
rithm, namely Cost-Makespan aware scheduling (CMaS).
Reference [18] reported the problem of dispatching and tasks
and how to reduce the total response time for all tasks. The
study proposed a model to generate arbitrary sort tasks and
transfer tasks to the servers with both upload and download
delays. They estimate the weight of how far the tasks are sen-
sitive. Furthermore, an online tasks dispatch and scheduling,
namely, OnDisc, is extendable in the speed-raising model.
Reference [1] addressing the problem of large-scale task
scheduling by proposing a real-time randomized algorithm
that utilized the Power of Two Choices (Po2C) method to
raise the QoS while reducing the cost. Reference [19] The
study considers the problem of user preferences related to
the fog nodes’ constraints during focusing on reducing the
delay and energy consumption. Thus, the study proposed
a ranking-based task scheduling that collaborates with user
preferences and fog nodes based on a linguistic and fuzzy
quantified proposition for ranking the fog node. The study
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adopts two parameters called least satisfactory proportion
(lsp) and greatest satisfactory proportion (gsp) to determine
the similarities. Reference [20] presenting two schedulers
relies on integer linear programming to decide which fog
or cloud resources the tasks should schedule. The technique
uses the class of service to choose the processing elements on
where the tasks must execute. Reference [21] proposing the
CuckooOptimizationAlgorithm (COA) based load balancing
technique for ideal resources management. The algorithm
detects the idle machine or less utilizing to switch them
off, which saves power consumption. The primary role of
COA is to map the proper tasks to Virtual Machines (VMs).
Reference [22] presenting the two stages of the scheduling
algorithm that depends on deep learning techniques. First
stage is determining where the tasks would be executed
using the clustering strategy. Second stage is scheduling the
tasks according to their locations. The clustering strategy has
three concepts based on the Self-Organizing Map (SOM)
clustering method. Hence, the first and second concepts are
the SOM and hierarchical SOM that is utilized for cluster-
ing the receiving of tasks features from IoT applications.
The third concept is the extraction feature that reduces its
dimensions using the Autoencoder, one of the deep learn-
ing methods. Reference [23] considering the dynamic dis-
tribution of tasks from healthcare applications among the
fog and cloud devices via the mobility-aware heuristic-based
scheduling and allocation method (MobMBAR). The main
objective is reducing scheduling time via using the features
of tasks such as the level of critical and the maximum
response time of the task while the phases of ranking and
reallocation. The approach facilitates the patient’s mobility
by an adaptive Received Signal Strength (RSS) based hand-
off mechanism [24] design a fog-based region architecture
to offer close computing resources—proposed task schedul-
ing for region-based cloud (FBRC) algorithm to meet the
requirements of resources and sensitive latency formulated
as an Integer program and solved by a heuristic algorithm.
The main objective is to reduce task completion time. Ref-
erence [25] discussed the scheduling and dispatching tasks
to reduce the response time by proposing a model that gen-
erates arbitrary times to minimize the weighted response
time of all tasks. The proposed algorithm is called OnDisc.
Reference [26] considering the task scheduling for offload-
ing the applications of large-scale by proposing a heuristic
approach for trad-off makespan and cost. Reference [27]
reporting the ideal distribution of workload effectively over
the processor by proposing a Heterogeneous Earliest Finish
Time (HEFT) to minimize the makespan of execution tasks.
Reference [6] solving the problem of accomplishing the max-
imum number of users’ requests by meeting the deadline
constraint. This problem has been solved by proposing the
mixed integer programmingmodel to reduce deadlinemisses.
The model’s mechanism considered the delay of requests
when it takes a round trip. Delay contains three elements
networking delay, task execution delay, transmission delay,

and queuing delay. Even more, the model considers the
characteristics of requests, such as request priority, dead-
line, and size. The model adopts the Genetic algorithm(GA)
for scheduling the requests of IoT applications. Reference
[28] focused on the problem of running the mobility of
applications and the delay-sensitive with a less monetary
cost by proposing a new Microservice container fog system
(MSCFS) based framework. Furthermore, discuss the prob-
lem of cost-efficient task scheduling on heterogeneous fog
servers. Even more, it presented the Cost Aware Computa-
tional Offloading and task scheduling (CACOTS)framework
that tackles the problem of task scheduling into various
steps such as resource matching, scheduling steps, and task
sequencing. Reference [29] investigated the problem of find-
ing the placement and resources of the optimal service in
the three-tier IoT to accomplish resource efficiency and cost,
higher rate of security and privacy, and higher QoS. Thus,
the study proposed a cost-aware genetic-based (CAG) task
scheduling algorithm to enhance cost efficiency in real-time
applications with maintaining hard deadlines. Reference [30]
presented a Virtual Machine (VM) scheduling method for
load balancing. The techniques of the study started with the
resource and load balancing model, then the heuristic VM
scheduling method based on VM placement and dynamic
VM scheduling leveraging the VM live migration technique.
Reference [31] reported excessive delay during task offload-
ing, which has a negative impact on the user experience.
The study optimized the average response time of multi-task
parallel scheduling and formulated the computation offload-
ing and task scheduling for DNN-based applications. The
proposed algorithms are genetic and greedy for solving this
issue. Reference [32] investigated the traffic fluctuations, the
quantity of unwanted vBBUs, and VPONs that may change
periodically. Thus, the authors proposed a batch scheduling
algorithm based on Integer Linear Programming (ILP) for
the reconfiguration of VPONs and migration of vBBUs over
processing nodes in the function of fluctuation on traffic
demands. Reference [33] Employ the tabu search due to its
high expansion in diverse optimization problems and mem-
ory and high-speed attributes. reported the issue of finding
the optimal allocation for the highest resource usage and
minimizing the response time. Thus, the study proposed a
tabu search for less cost of hardware. Also, it offered a
latency-aware scheduling algorithm based on VM matching
utilizing meta-heuristics. Tabu search enhance based on fruit
fly optimization (FOA) algorithms and approximate nearest
neighbour (ANN) [5] proposed a MOP for task scheduling to
reduce the makespan and cost; this work is based on a model
with Discrete Non-dominated Sorting Genetic Algorithm II
(DNSGA-II) for auto tasks allocated to fog or cloud devices.
The model distributes the workload among cloud and fog
nodes effectively. Reference [34] considering task scheduling
by proposing a multi-agent-based model that served tasks
according to priority, waiting time, and resource status. The
goal of the study is to raise the utilization of resources
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effectively. Reference [35] presented the trade-off between
cloud cost and makespan by proposing the BAS algorithm for
sequence applications. The technique is based on gathering
the applications on a timeline to guarantee their execution to
reduce necessary expenditures for using the cloud resources.
Reference [36] Discussing the problem of MOP in workflow
scheduling using particle swarm optimization (PSO) based
on Fuzzy resource utilization (FR-MOS) that aims to reduce
makespan and cost with satisfying the reliability constraint.
Even more, considering data transportation order and task
execution location simultaneously.

B. GWO TECHNIQUES IN TASK SCHEDULING
GWO algorithm recently many scholars has adopted duo
to its capabilities. Reference [37] discussed proposed an
enhanced multi- objective grey wolf optimizer (EMGWO)
for multi-objective service composition formulated to get
tradeoff energy consumption and QoS and optimal selection
(MO-SCOS) problem. The proposed algorithm adopted the
backward learning method to increase the initial population’s
exploration, avoid falling into the local optimum solution,
and increase diversity. Also, employ the nonlinear adjustment
strategy to manage the parameters and improve the global
exploration of the algorithm [38] reporting the ideal utiliza-
tion of cloud resources by the proposed MGWO technique
for task scheduling. The study aims to reduce the energy con-
sumption of cloud data centers for the scheduler makespan
for users’ requests. Reference [14] presented an energy-aware
service composition and optimal selection (EA-SCOS)model
to verify the Quality and reduce the energy consumption
while execution task. The proposed algorithm namely, the
grey wolf optimizer (GWO) [39] identifying the practical
resources for scheduling an exact task on time, using the
resources effectively, and minimizing the completion time
for all execution tasks by proposing the grey wolf opti-
mizer nature-inspired algorithm. Reference [40] proposed a
multi-objective parallel machine scheduling method based
on the oppositional grey wolf’s optimization (OGWO) with
adopting Opposition-based learning (OBL) to enhance the
performance of the GWO algorithm during optimizing tasks
and resources. Reference [12] considered themulti-objectives
such as Throughput, makespan, and resource utilization by
presenting amulti-objective greywolf optimizer (TSMGWO)
to find an optimal solution for scheduling tasks. Refer-
ence [41] presented a Modified Fractional Grey Wolf Opti-
mizer for Multi-Objective Task Scheduling (MFGMTS) for
the conflicting objectives communication cost, resource uti-
lization, execution cost, execution time, communication time,
and communication cost using penalty cost function and
epsilon-constraint. The MFGMTS algorithm is motivated by
Fractional Grey-Wolf Optimization (FGWO) collaboration
with a modification in the position update.

III. CLOUD-FOG SYSTEM ARCHITECTURE
As shown in Fig. 1, we assume that the cloud-fog system
form with terminal Devices M, N fog devices, and C cloud

servers. Terminal devices communicate with each other via
a wireless channel. Fog nodes communicate directly with
the terminal devices. Generating data from terminal devices
collected from sensors are forwarded immediately to the Fog
broker, which analyses, estimates, and schedules the incom-
ing request from end users. Then, determine which appropri-
ate devices are between fog and cloud according to the char-
acteristics of the tasks to provide services for execution tasks.
The fog broker places near fog nodes, and we can ignore
the time consumption. For achieving optimal task scheduling,
The MGWO algorithm is installed for the broker to find
optimal task scheduling that satisfies the transmission delay
and energy consumption. According to the various power and
capacity of resources, the traffic model considers terminal
devices as an M/M/1 queue at the end devices, M/M/C queue
at the fog node, and M/M/∞ queue at the cloud server.

First, the terminal device sends the request for processing
(Step 1). Then, this job redirects to the fog broker (Step 2),
which decomposes into a set of small and independent tasks
for processing over the Cloud–Fog computing infrastructure.
(Step 3). After that, the fog broker analyzed the tasks and
estimated the required resources according to the tasks’ char-
acteristics (Step 4) which they are the number of tasks t ,
length of the task input It , task deadline dt , flag of task
execution ut , and required computing unit by task ψt . Next,
handling all information on tasks and nodes, the Fog broker
runs an MGWO algorithm for scheduling algorithm to find
the optimal task assignment (Step 5). Then, tasks send to
the fog nodes and cloud server (Step 6). In this step, each
node is responsible for executing the assigned tasks (Step 7).
Once the executing tasks finish, the task results send to the
fog broker again (Step 8). The fog broker composes the tasks
again (Step 9) and then sends the job to the terminal device
(Step 10). As illustrated in Fig. 2.

A. DELAYDESCRIPTION AND ENERGYDESCRIPTION
1) END USER DEVICE
We assume the service rate µ of the user device i follows an
exponential distribution, with an M/M/1 task queue. In addi-
tion, the generation of tasks from the end device is based on
at Poisson process with an average arrival rate λ
Ped is the energy of end-device i and Ted is its processing

time. The power consumption of X ied for the task’s execution
at the end device calculated by

PiedTed × Ped =
X ied
µ− λ

× Ped (1)

We consider computing latency because tasks performed on
mobile terminal devices have little communication delay.
As deduced from queue theory, the delay is described as

Died
λ

µ (µ− λ)
(2)

2) FOG NODE
The task queue in fog node j is modelled as M/M/C. The
energy consumption reflects the amount of computation,
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FIGURE 1. Cloud-fog architecture.

FIGURE 2. The cloud-fog operation.

which is a monotonically increasing and strictly convex func-
tion. Quadratic and piecewise linear functions are two alter-
natives to this function. Fog nodes can flexibly adapt to any
function of energy consumption as long they meet these two
attributes:1) there is a direct relationship; that is, increas-
ing energy consumption increases the computation amount.
2) The energy consumption margin increases for each fog
device. The power energy expression Pjfog of the fog node is

related to the workload Y jfog as follows:

PjfogaY
j2

fog + bY jfog + c (3)

where a> 0 and b and, c ≥ 0 are pre-determined parameters.

The fog node j consists of both communication and com-
puting delays. The computing delayDcomfog is related to waiting
time. Using queue theory, we can express the computing
delay as follows:

Dcomfog
QL
λ

× Y jfog (4)

where Y jfog is the workload allocated to fog node j and. QL
is the average queue length. As a result of task execution at
the fog node, communication is related to the input length
of the tasks. The communication delay Dcommj is expressed
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FIGURE 3. Hierarchy of grey wolf (dominance decreases from top down).

as follows:

Fcomm (It)

{
yIt utϵcloud
εIt ut ∈ fog

(5)

where Ig is the input length of the task t (γ ≫ ε). Therefore,
the communication delay of the fog node is Dcommfog = εIg.
The fog node delay is composed of computing and commu-
nication delays, which can be expressed as follows:

Djfog = Dcomfog + Dcommfog (6)

3) CLOUD COMPUTING
For cloud server k, the task queue is modelled as an M/M/
∞ queue. Assuming that every cloud server has several
homogeneous computing machines and that the CPU fre-
quency of all machines is equal; this implies that the energy
consumption for all servers is the same. The approximate
energy consumed by every machine on cloud server k can
be obtained by utilizing the frequency of the CPU machine
function. fk :AkZ kcloud +Bk , where Ak and Bk are positive con-
stants. Assigning more workload to the cloud server implies
more power-on. Whenever the assigned workload decreases,
some cloud servers are turned off to save energy. The power
consumption of the cloud server Pkcloud is related to the on/off
state of the machine.

Pkcloud ≜ σknk (akZ kcloud + bk ), (7)

where ak and bk are the positive constants. σk indicates the
on/off state of cloud server k, where 1 denotes the cloud server
on and 0 indicates its off state. nk denotes the number of
on-state machines on the cloud server. Owing to the heavy
computational resources of cloud servers, the computational
delay can be assumed to be negligible; thus, the delay is the
communication delay that defines as

Dkcloud ≜ γ Ii (8)

IV. THE PROPOSED ALGORITHM MGWO
The Grey wolf belongs to the canine family. They live in
groups with a clear division of labor and collaboration to
survive and rely on hierarchical systems as shown in Fig. 3.
The leading grey wolf is called alpha (α) wolf, its next level
is called Beta (β) wolf, the third level is called Delta (δ) wolf,

and the lowest level of the graywolf is calledOmega (ω) wolf.
Where α is the leader and responsible for decision-making
that is related to hunting time, sleeping time, and so on, and
that leads to calling alpha a dominant wolf because it order
must follow by the pack. While β indicates to the subordinate
wolves that assist in alpha in decision-making and discipline
the pack. Whereas, δ should submit to all alphas and betas
and dominate the omega simultaneously. Hence, ω in the
lower level in the hierarchy and its role submit to all the
other dominant wolves [13]. However, GWO algorithm was
implemented to solve the single-objective problem. In con-
trast, this paper discusses the MOP, which means more than
one objective and conflicting. In order to perform MGOW,
we cooperate the non-Pareto dominance solutions and the
external archive to save non-dominated Pareto optimal solu-
tions obtained so far. See Fig.6. However, the main stages
of grey wolf hunting are as follows:1) Tracking the prey.
2) Encircling the prey until it stops moving. 3) Hunting the
prey. 4) Attack towards the prey.

A. TRACKING THE PREY
This is the first stage and the wolves randomly diverge in
hunting their prey, it can be modelled mathematically by
involving the computation of the distance between the Prey
and the Grave wolf.

Dvector = abs(CVector .LP (t)− Lw (t)) (9)

Dvector indicates the computation distance between the Prey
and Grey wolf, where Cvector referred to coefficient vector,
LW(t) represents the location of the grey wolf at a given time
interval t; Lp indicates the location of prey at a given time
interval t.

The value of Cvector can be calculated by

CVector = 2.rand (1, 0) (10)

Function generates random numbers between [0,1]

B. ENCIRCLING STAGE
is the process of prey detection by alpha, beta, and delta
wolves, the rest of the wolves change their positions at a time
interval of t+1 based on the equations

Lw (t + 1) = LP (t)− Dvector .A (11)

A indicates as factor to adjust the abilities of exploration and
exploitation during the optimization

A = 2.a.r2 − a (12)

r2 is a random vector in the interval [1,0], where a is a
convergence factor that presents values start from 2 then
decreasing linearly to 0. The current value a in an iteration
t in the tmax computed in the equation:

a = 2(1 −
t

tmax
) (13)

t refers to the current iteration, and tmax expresses the maxi-
mum iteration.
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C. HUNTING STAGE
In this stage, the wolves have better knowledge about the
position of the prey. Thus, the wolves change their position
according to the prey position for attacking due to considering
the top three dominating wolves as alpha, beta, and delta
in the hierarchy as the best solution. Therefore, the alpha
can attack the prey. The prey position is updated as per the
position of the three dominated wolves as equation (14).
Whereas omega update their locations randomly close the
prey.

Dα = abs(C1.Xα (t) .L (t))

Dβ = abs(C2.Xβ (t) .L (t))

Dδ = abs(C3.Xδ (t) .L (t))

X1 = Xα (t)− C1.Dα
X2 = Xβ (t)− C2.Dβ
X1 = Xδ (t)− C3.Dδ

X (t + 1) =
(X1 + X2 + X3)

3
(14)

1) ATTACKING PREY
The prey attack indicates the exploitation process, and as
mentioned above, the grey wolves finish the hunt by attacking
the prey when it stops moving. This process accomplishes by
shrinking the values of a linear decrease from 2 to 0 through-
out iterations.

D. FITNESS FUNCTION
MGWO is the metaheuristic algorithm, which schedules the
task depending on a fitness function to find the appropriate
computing resources. Fitness function is responsible to deter-
mine the solution based on the objective’s requirements. So,
in this study fitness function chooses the solution according
on the minimum delay and energy consumption. So, the
value of the fitness function has a significant impact on the
proposed algorithm. It is mandatory to improve the various
conflicting objectives in MOP simultaneously. Generating
solutions cannot be compared to one another via the fitness
function. Thus, the ideal solution is implementing the Pareto
dominance to choose the optimal solution in each iteration.
In contrast, optimal solutions considered as trade-off solu-
tions instead of single solutions, namely Pareto optimal solu-
tions. The Fitness Function of the given multi-objective task
scheduling problem based on the weighted sum approach for
balancing the objectives is defined as follows.

F = α ∗ Total Delay

+ (1 − α)Total energy consumption (15)

α is the Energy-delay balance factor where α (α ϵ [0, 1]) is the
balance coefficient between total Energy and total delay. α =

0.5means that total Energy and total Delay have same priority
in optimizing. When α > 0.5, our mechanism focuses on
minimizing the Energy with higher priority than total Delay,
which is the case task will be late to obtain minimum energy
consumption. Inversely, when α < 0.5, the Delay is more

FIGURE 4. Inverse mutation operator.

FIGURE 5. Algorithm 1.

prioritized than Energy, i.e., the user has an instant better task
delay.

E. MUTATION THE SOLUTION
The essential role of mutation is to increase the population’s
diversity and global search capability. In this paper, we imple-
mented the inverse mutation operator. As evident in Fig. 4.
First, select two random position points as C1 and C2 to the
exchange between them to generate a solution. Then, If C1 >

C2, then inverse between c and c; otherwise, no swapping.
See Fig. 5.

F. THE EXTERNAL ARCHIVE
We implemented an archive to store Non dominated solutions
in MOP algorithms in every iteration as global best solution
and considered the final approximated Pareto front [40].
There are a m number of new nondominated solutions S =

(s1, s2,. . . , sm) inserted into A in each generation since the
number of nondominated solutions in the external archive is
finite and determined by the size of the population. The

archive must terminate because it can only hold so many
non-dominated solutions before reaching its maximum size.
The archive update approach is essential since it affects how
well the algorithm works by Using the crowding distance as
a tool to delete other solutions.

G. CROWDING DISTANCE
It is implemented to evaluate solutions with the same rank
of non-dominated by measuring the relative density of the
individuals to avoid the exhaustive search for getting an
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TABLE 1. Simulation key parameters.

optimal Pareto front. It also raises diversity in the solution
selection, which prevents local optimality. The strategy of
crowding distance is limiting the archive size, which solution
in the archive sorting in descending order according to the
crowding distance values, then determining if the solutions
exceed the archive size, then deleting the non-dominated
solutions beyond the size [42]. See equation (16)

CD =
DSJ

DSmax − DSmin
∀J = 1 : N (16)

where N indicates the number of non-dominated solutions,
DSJ , DSmax , DSmin are the distance between two neigh-
bouring solutions of the Jth solution, the maximum distance
between two solutions, and the minimum distance between
two solutions in the direction of the Jth objective function,
respectively.

V. SIMULATION AND RESULT
In this section, we conduct experiments to evaluate our
proposed algorithm MGWO compared to the Cloud-fog
cooperation algorithm [42], NSGA-II, and MPSO algo-
rithms regarding the objective’s functions delay and energy
consumption. In an Edge-Cloud environment, various
IoT/mobile devices generate several applications. These
applications include multiple tasks and required to be pro-
cessed in the Edge-Cloud resources. We assume we have
seven IoT/mobile devices connected to three fog nodes and
one cloud server. Our simulation conducting with five groups
of tasks, and their total workloads are 30, 50, 90, 150, and
200. The length of tasks is random due to the difficulty
of predicting it in reality. The simulation tool is MATLAB
R2018b on a computer with core i7 running on the windows
operating system to verify the effectiveness of our proposed
algorithm. Table 1 represents the key parameters of our
simulations.

Fig. 7, demonstrates the transmission delay for the pro-
posed algorithm and cloud-fog cooperation, NGSA-II, and
MOPSO algorithms [30,50,90,100,150]. The purpose of the
experiments was to reduce the delay for IoT applications.

FIGURE 6. Algorithm 2.

We can observe the apparent difference in the proposed
algorithm with the related approaches in reducing the delay,
that MGWO reduces delay more than comparing algorithms.
Even more, the linear increase of delay with the increas-
ing values of workloads proves the stability and effective-
ness of MGWO while generating a vast number of tasks
from IoT devices. In contrast, the cloud-fog cooperation
algorithm provides the worst results compared to the other
algorithms. On the other hand, NGSA-II performs better in
reducing delay than MOPSO due to the operations operators
of the NGSA-II, which avoid premature convergence, explore
more in the search space, and avoid premature convergence,
explore more in search space and these leads to better results
than MOPSO. See Table. 2 from illustrated.
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FIGURE 7. Delay comparison between the proposed algorithm state of art algorithms.

TABLE 2. Result of delay based on various workload.

TABLE 3. Result of energy consuptio based on various workload.

Fig. 8, shows the comparison between the proposed
algorithm and other related algorithms in terms of
energy consumption based on different workload sizes
[30,50,90,100,150]. The figure shows the significant differ-
ence between the MGWO and compared algorithms that
obtain the best results in reducing energy consumption. The
stability of reducing energy consumption is proven while

increasing the number of workloads. On the contrary, cloud-
fog cooperation provides the worst result compared to the
other algorithms. In addition, MOPSO provides better results
in reducing energy consumption than NGSA-II. Hence,
MOPSO has fewer parameters, which makes the algorithms’
complexity low, meaning minimum execution time and con-
suming less energy than the NGSA-II algorithm. See Table 3.
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FIGURE 8. Energy Consumption comparison among the proposed algorithm and state of art algorithms.

Overall, many aspects lead to getting this result. First,
the benefits of meta-heuristics are in providing reasonable
solutions with less complexity, and that reduces the execu-
tion time of the system and the energy consumption. Also,
the crowding distance technique limits the archive’s size
and guarantees the optimal solutions while storing the non-
dominated solutions. Even more, this paper covers imple-
menting the inverse mutation to increase the diversity and
solve the problem of the meta-heuristics approach when
trapped into a local optimum solution.

VI. CONCLUSION AND FUTURE WORK
This work focused on task scheduling problems using the
MOP approach in Cloud–Fog computing environment. This
study considered the fog broker to analyze, estimate, and
then Schelling all sending requests from terminal devices for
execution in the cloud-fog system and holding the MGWO
for scheduling tasks. The proposed algorithm, namely the
MGWO algorithm, aims to reduce the delay and energy con-
sumption of QoS objectives. The simulation is conducted to
evaluate the performance of the MGWO algorithm compared
to the state-of-the-art algorithms in reducing delay and energy
consumption. The simulation results reveal that MGWO out-
performs the comparison algorithms in reducing delay and
energy consumption. The proposed algorithms maintain their
stability and increase linearly with increasing workloads.
It proves it can handle the enormous increase in generating
requests from IoT devices. Investigate the heterogeneity of
resources. The main limitation is that this work needs to
consider the heterogeneity of resources, which may affect
resource utilization and lead to an imbalance in the load.
In future work, the study can extend to optimize many other

objectives, such as transmission costs, computing resources,
and load balancing. We can apply more algorithms to solve
scheduling problems and adopt the AI approach for optimiz-
ing. Also, investigate the heterogeneity of resources.
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