IEICE Electronics Express, Vol.7, No.3, 132-137

Implementation of
Multistructure PID-like

fuzzy logic controller using
FPGA

Zeyad Assi Obaid®, Nasri Sulaiman, M. H. Marhaban,
and M. N. Hamidon

Department of Electrical & Electronic Engineering, Faculty of Engineering,
University Putra Malaysia,
43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

a) eng.alhamdany @yahoo.com

Abstract: This paper presents an implementation of Multistructure
PIDFLC. Modification has been made to structure of the proposed
PIDFLC in order to make it acts as PDFLC, PIFLC or PIDFLC de-
pending on two external signals. Two versions of this controller have
been designed using VHDL language for FPGA implementation. A new
package has been designed in VHDL code to implement trigonometric
functions and fourth-order Runge-Kutta method to test the proposed
design with nonlinear systems. The controller was able to produce
an output in 0.3 usec for linear plants and 0.7 usec for nonlinear plant.
Therefore, the proposed controller will be able to control many systems
with high sampling rate.

Keywords: PIDFLC, FPGA implementation, nonlinear systems, al-
tera

Classification: Electronic instrumentation and control

References

[1] T. Jain, V. Patel, and M. J. Nigam, “Implementation of PID Controlled
SIMO Process on FPGA Using Bacterial Foraging for Optimal Perfor-
mance,” Int. J. Comput. Electr. Eng., vol. 1, no. 2, pp. 107-110, June
2009.

[2] V. Tipsuwanporn, S. Intajag, and V. Krongratana, “Fuzzy Logic PID
controller based on FPGA for process control,” Proc. IEEE Int. Symp.
Ind. Electron., Bangkok, Thailand, vol. 2, pp. 1495-1500, 4-7 May 2004.

[3] Z. A. Obaid, N. Sulaiman, and M. N. Hamidon, “FPGA-based Implemen-
tation of Digital Logic Design using Altera DE2 Board,” International
Journal of Computer Science and Network Security (IJCSNS), vol. 9,
no. 8, pp. 186-194, July 2009.

[4] Z. A. Obaid, N. Sulaiman, M. H. Marhaban, and M. N. Hamidon, “FPGA-
Based Fuzzy Logic: Design and Applications — a Review,” Int. J. Eng.
Technol., vol. 1, no. 5, pp. 491-502, Dec. 2009.

[5] L. Reznik, Fuzzy controllers, Newnes, first edition, 1997.

132




IEICE Electronics Express, Vol.7, No.3, 132-137

1 Introduction

The simplest and most usual way to implement a fuzzy controller is to realize
it as a computer program on a general purpose computer. However, a large
number of fuzzy control applications require a real-time operation to interface
high-speed constraints. Software implementation of fuzzy logic on general
purpose computers cannot be considered as a suitable design solution for
this type of application higher density programmable logic devices such as
FPGA can be used to integrate large amounts of logic in a single IC. Semi-
custom and full-custom application specific integrated circuit (ASIC) devices
are also used for this purpose but FPGA provide additional flexibility: they
can be used with tighter time-to-market schedules [1, 2, 3, 4].

2 Layout of the Proposed Controller

Generally, this controller accept two types of outputs, the first one is the
plant (Yp) and the second one is the desired output (Yd), both of them
is digital signals, and deliver the control action signal as a digital output.
It also accepts four 8-bit digital signals that represent the gain parameters
needed by the controller (proportional gain Kp, derivative gain Kd, integral
gain Ki, and output gain Ko), and other two one-bit signals to select the
type of the controller (PD fuzzy logic controller, PI fuzzy logic controller, or
PID fuzzy logic controller). Fig. 1 shows the general layout of the controller
chip in a unity feedback control system. Fuzzy controller applications do not
require high accuracy. Accuracy of 6-9 bits is enough and is quite sufficient
for different applications. Many designed FIS chips use this range of bits [5],
since two versions of the controller have been designed to make a comparison
in which version is closest to Matlab-based design: the first one uses 6 bits
for each input and output variables, and 4 bits for membership degree, while
the other uses 8 bits and 6 bits respectively.

= SRR
,Ir FPGA chip
PIDFLC

i

L

Fig. 1. Main Structure of Proposed PIDFLC

3 Structure of the Proposed PIDFLC

Generally, to represent PID fuzzy logic controller, it was required to design

133



IEICE Electronics Express, Vol.7, No.3, 132-137

a fuzzy inference system with three inputs that represent the proportional,
derivative, and integral components, and each one of them can have up to
eight fuzzy sets. So that the maximum number of the required fuzzy rules
to 83=>512 rules. To avoid this huge number of rules, the proposed controller
has been designed using two parallel PD fuzzy logic controllers to implement
the PID fuzzy logic controller. The second PDFLC has been converted to
PIFLC by accumulating its output. Fig. 1 shows the structure of proposed
PID fuzzy logic controller. Both controllers, PD fuzzy logic controller and
PI fuzzy logic controller, receive the same error signal. The error signal is
calculated by subtracting plant output (yp) from the desired output (yd).
The main block in the PD fuzzy logic controller is the fuzzy inference block.
The proposed fuzzy inference block is two inputs, one output fuzzy system
of Mamdani type that uses singleton membership functions for the output
variable. The first input is the error signal e(n), and the second input is the
rate of change of error signal defined as the difference between two consecutive
error values.

Before entering the fuzzy inference block, each one of these two inputs
have been multiplied by a gain coefficient inside the PD fuzzy controller (K,
and Kg or K and K;). In similar manner, the output of the fuzzy inference
block is multiplied by a gain coefficient inside the PD fuzzy logic controller,
(K,). At the same time, the output of the fuzzy inference block in the second
PD fuzzy controller is multiplied by a gain coefficient then accumulated to
form the uPIFLC. Both outputs (uPD and uPI) are added together to form
the PIDFLC output (uPID). Since each PDFLC has its own gains and rules,
the final design could work as a PDFLC, PIFLC or a PIDFLC) depending on
the two selection lines swl and sw0, where, swlsw0= 00, gives PD fuzzy logic
controller, swl swO= 01 gives PI fuzzy logic controller, and swl sw0=0x gives
PID fuzzy logic controller. The main components in the proposed PD fuzzy
logic controller are: Input/Output block, Fuzzifier block, inference engine
block, and Defuzzifier block.

4 Test Bench and Simulation Results

For the purpose of simulation symmetric triangular fuzzy sets and singleton
fuzzy sets with 8 linguistic variables have been used for input and output
variable respectively, in addition to rule table of 64 fuzzy rules. At first, a
test is performed to make sure that the fuzzy inference system used inside
the FPGA-based design is working properly This test is performed to make
sure that the fuzzy inference system used inside the FPGA-based controller
(6FBC or 8FBC) is working properly. This test involves generating control
surface using fuzzy sets and rule table, this test has been used to make a
comparison between both types of FBC with Matlab-based (MSBC), and
shows that 8FBC is superior to 6FBC and it’s much close to MSBC.

Case Study 1: Second order model may represent process such as posi-
tion control of an ac motor [7] Equation (1) shows the mathematical plant

134



IEICE Electronics Express, Vol.7, No.3, 132-137

model, discrete transfer functions of this model has been obtained using ZOH
method, and the selected sampling period (T) is 0.52. The values of Kp, Kd,
Ki, and Ko used in this test were selected using trial and error.

~0.02511z71 4 0.01997z2 0
©1—1.48271+0.502822

The controller gives action at 0.3 us; when PIDFLC applied for this system,

G(z)

as shown in Fig. 2, 8FBC response is close to the responses using MSBC,
with zero error and little overshot. The Mean differences between MSBC
and 6FBC for Step response and control action are —0.0256 and —0.0009
respectively, and The Mean differences between MSBC and 8FBC for Step
response and control action are —0.0030 and 0.0021 respectively, since the
8FBC is superior to 6FBC and its much close to MSBC.

—
- Step it o MBEC
S MSBC 09 —— 8FBC
—— 8FBC — BFBC
o8t — BFBC 08
07 07
06+ 06
05 - e 05
04 |r 04
03 03
02 02
01 01
0 n L L L L0 L L L L .
0 5 10 15 El] % 5 10 15 2 F]
timea (second) time (second)
(a) )

Fig. 2. Case study 1 controlled by PIDFLC (a) step re-
sponse, (b) control action

Case Study 2: This case is considered as a special case with the proposed
design, because of VHDL accepts four mathematical operation only, addition,
subtraction, division and multiplication, since it’s difficult to represent non-
linear elements like trigonometric functions. In this case, a mathematical
model of nonlinear plant has been used to test the proposed controller with
unity feedback control system; this model is characterized by Equation (2)
and Equation (3).

9.8sin(y) + cos(y) l_ﬂ = 0255‘1} : Sin(y)]

OS5 = jj =

(2)
0.5 [% - %cosz(y)]
i = —100a + 100u (3)

The first order filter on u to produce u represents an actuator. Assume
the initial conditions y(0) = 0.1 radians (= 5.73deg.), ¥(0) = 0, and the
initial condition for the actuator state is zero. For simulation of the fourth-
order, Runge-Kutta method has been used with an integration step size of
0.01. Again, this plant has been designed using MATLAB software (for sim-
ulation in MATLAB), and in non-synthesizable VHDL code (for simulation

135



IEICE Electronics Express, Vol.7, No.3, 132-137

in ModelSim). A special package was designed in VHDL code to implement
trigonometric functions and fourth-order Runge-Kutta method which are not
available in Quartus II (or in ISE) standard libraries. The values of K, Ky,
K, and K, used in this test were selected using trial and error. The controller
gives action at 0.7 us after the input latching. When using nonlinear system
for test, both versions (6FBC and 8FBC) provide generally good responses
though there is some oscillation. (one must not be deceived by the steady
state error that appears in Figure (4), since it represents less than 1% of the
output range in the case of 6FBC and less than 0.5% of the output range,
in the case of 8FBC). The absolute mean difference between the nonlinear

Angular pesition (rad)

!
0 /V?IV“:" ool !

0 1 2 3 4 5 6
time (second)

(@)

012

e
-

2

8

2

8

Angular position (rad)

o

S
=

2

-0.06 ' s
0 1 2 2 4 5 6
time (second)

(b)

Fig. 3. Nonlinear plant response controlled by (a) 6FBC
(b) 8FBC

136




IEICE Electronics Express, Vol.7, No.3, 132-137

plant response, using MSBC, and the nonlinear plant response, using 6FBC,
is less than 0.0155. The absolute mean difference between the nonlinear plant
response, using MSBC, and the nonlinear plant response, using 8FBC, is less
than 0.0085 as shown in Fig. 3.

5 Implementation of the Proposed PIDFLC

The proposed PIDFLC has been implemented using Altera DE2 board, this
board offers a rich set of features that make it suitable for use in a labo-
ratory environment for university and college courses and can used for any
design implementations, as well as for the development of sophisticated dig-
ital systems by using hardware description language (HDL). All connections
are made through the Cyclone II 2C35 FPGA device in order to provide
maximum flexibility for the user. Thus, the user can configure the FPGA to
implement any system design.

6 Conclusion

Simulation environments have been built using non-synthesizable VHDL code
for the purpose of simulation in ModelSim, and the same design is coded in
Matlab for the purpose of simulation in Matlab (MSBC). Two version of
the controller has been designed, the first one is 6-bits which uses 6-bits
for each input/output variables (6FBC), while the second uses 8-bits each
input/output variables (8FBC). Two case studies have been used in order
to test this controller. From these results, 8FBC is superior to 6FBC and
it’s much close to MSBC. The controller was able to produce an output
in 0.3 usec (after input latching) for linear plants and 0.7 usec for nonlinear
plant. Therefore, the proposed controller will be able to control systems with
high sampling rate.

Acknowledgments

The authors would like to thank firstly, our god, and all UPM staff and all
friends who gave us any help related to this work. Finally, the most thank is
to our families and to our countries which born us.

137



