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Course timetabling is an ongoing challenge that universities face all around the world. This combinatorial 
optimization task involves allocating a set of events into finite time slots and rooms while attempting to 
satisfy a set of predefined constraints. Given the high number of constraints and the large solution space to be 
explored, the University Course Timetabling Problem (UCTP) is classified as an NP-hard problem. Meta-heuristic 
approaches have been commonly applied to this problem in the literature and have achieved high performance 
on benchmark datasets. This survey paper provides a comprehensive and systematic review of these approaches 
in the UCTP. It reviews, summarizes, and categorizes the approaches, and introduces a classification for hybrid 
meta-heuristic methods. Furthermore, it critically analyzes the benefits and limitations of the methods. It also 
presents challenges, gaps, and possible future work.
1. Introduction

The Educational Timetabling Problem (ETP) is an open-ended, de-
manding administrative task that frequently occurs in most academic 
institutions (Tan et al., 2021, Thepphakorn & Pongcharoen, 2019, Silva 
et al., 2021). The objective of this Combinatorial Optimization Problem 
(COP) (Blum et al., 2011, Sabar et al., 2021, Ngoo et al., 2022) is to 
assign resources in time and space in such a way that satisfies stakehold-
ers’ requirements and increases utilization (Lindahl et al., 2018, Goh et 
al., 2020, Abdelhalim & El Khayat, 2016). Educational timetabling can 
be classified into university and (high) school timetabling. University 
timetabling is further divided into the University Course Timetabling 
Problem (UCTP or UCTTP) and the University Examination Timetabling 
Problem (UETP or UETTP) (Goh et al., 2019b, Rezaeipanah et al., 2021, 
Akkan & Gülcü, 2018). Fig. 1 illustrates the problem diagram for the 
UCTP.

The UCTP has drawn great interest from researchers of various fields 
(Teoh et al., 2015). This task needs to be repeatedly performed at the 
beginning of each academic year (semester) at universities (Tan et al., 
2021, Thepphakorn & Pongcharoen, 2019, Abdelhalim & El Khayat, 
2016, Rezaeipanah et al., 2021). Given a set of events (lectures, stu-
dents, and professors), finite resources (rooms and facilities), and time 
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slots (time periods across the weekdays), the UCTP can be defined as 
the assignment of 𝐸 events to 𝑅 rooms and 𝑇 time slots in compliance 
with a set of optional and mandatory constraints (Goh et al., 2020, 
Lewis & Thompson, 2015). This problem is a special case of the Graph 
Coloring Problem in which events and time slots are represented by ver-
tices and edges, respectively (Lewis & Thompson, 2015). As there exist 
𝑅𝐸 ways of allocation in the UCTP (Tindell et al., 1992), the computa-
tional time increases exponentially with the growth in problem size. 
Thus, the UCTP is regarded as a Non-deterministic Polynomial-time 
hard (NP-hard) problem (Chen et al., 2021, Babaei et al., 2015, Song 
et al., 2018, NoorianTalouki et al., 2022, Hosseini Shirvani & Noorian 
Talouki, 2022). This makes the application of exact algorithms infeasi-
ble, especially on larger problems (Schaerf, 1999).

Another challenge in the UCTP is the development of an approach 
with high general applicability, capable of being easily applied to dif-
ferent instances and problems (Blum et al., 2011, Goh et al., 2019b, 
Rezaeipanah et al., 2021, Akkan & Gülcü, 2018, Bashab et al., 2020, 
Shirvani & Talouki, 2021). The lack of general applicability in the lit-
erature necessitates manual timetabling (Chen et al., 2021), which is 
extremely difficult, time-consuming, and often leads to the wastage of 
resources (Thepphakorn & Pongcharoen, 2019, Abdelhalim & El Khayat, 
2016).
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Fig. 1. UCTP problem diagram.

Meta-heuristic approaches have emerged as effective solutions to 
address these challenges, as they excel in searching large solution spaces 
and handling diverse problem instances (Blum et al., 2011, Teoh et al., 
2015, Ilyas & Iqbal, 2015, Goh et al., 2022). These methods are widely 
employed in the literature and have demonstrated high performance on 
benchmark datasets for the UCTP (Silva et al., 2021, Chen et al., 2021, 
Babaei et al., 2015, Bashab et al., 2020, Bettinelli et al., 2015).

Numerous survey papers on the UCTP have been published to date. 
Table 1 provides a chronological summary of these papers since 2015. 
However, most of these papers primarily offer a general overview of the 
methodologies applied to the UCTP, often overlooking critical analysis 
and discussion of these methods. Additionally, a comprehensive review, 
comparison, and classification of (hybrid) meta-heuristics are lacking.

This paper aims to fill this gap by focusing on meta-heuristic and 
hybrid meta-heuristic approaches for the UCTP. These approaches are 
thoroughly reviewed, and their methods are classified, analyzed, and 
compared.

The main contributions of this paper are:

1. Presenting a thorough overview of the UCTP and its benchmark 
datasets;

2. Classifying the literature based on the problem variant (CB-
CTP/PE-CTP);

3. Introducing a categorization for hybrid meta-heuristic approaches 
based on their type of hybridization (collaborative and integrative);

4. Reviewing and critically analyzing meta-heuristic and hybrid meta-
heuristic approaches in the literature;

5. Identifying trends, strengths, and limitations of the approaches;
2

6. And suggesting future research directions based on the findings.
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The rest of this paper is organized as follows. Section 2 presents the 
methodology used for this survey paper. Section 3 gives a comprehen-
sive overview of the UCTP, its variants, and the benchmark datasets. 
Section 4 provides a detailed review and analysis of meta-heuristic ap-
proaches. Section 5 reviews and categorizes the hybrid meta-heuristic 
approaches in the literature. Strengths, limitations, and trends of differ-
ent meta-heuristic and hybrid meta-heuristic approaches are presented 
in the discussions of Sections 4 and 5, respectively. Possible future re-
search opportunities in the UCTP are suggested in Section 6. Finally, 
Section 7 concludes the findings.

2. Survey methodology

This survey paper conducts a systematic literature review of meta-
heuristic and hybrid meta-heuristic approaches. Firstly, a large-scale 
search of the literature was conducted on online databases using differ-
ent combinations of relevant keywords to retrieve all relevant papers 
published from 2015 onwards. This time frame was chosen as several 
review papers were published in that year, as indicated in Table 1. 
Moreover, the popularity of meta-heuristic and hybrid meta-heuristic 
approaches is evident, as emphasized in Chen et al. (2021), further un-
derscoring the need for a detailed study of these approaches. The search 
strategy used for this survey paper is presented in Table 2. Secondly, a 
process of inclusion and exclusion was applied to filter these papers in 
different stages. Finally, the methodologies of the selected papers were 
categorized and summarized in tables and figures.

All collected papers undergo four filtering stages to identify the most 
appropriate bibliography. Table 3 presents the number of papers after 
each of these filtering stages. In stage 1, all the retrieved papers are fil-
tered based on their title and authors, and duplicate items are removed. 
Table 4 classifies the papers at this stage based on their publication 
year. It can be seen that the UCTP is still a highly active research field. 
In stage 2, the abstracts are reviewed, and the papers are filtered based 
on their problem. Fig. 2 categorizes the papers based on their problem 
type. Papers irrelevant to the UCTP are discarded at this stage. In stage 
3, all the remaining papers are collected, studied, labeled, and filtered 
based on their methodology. As the scope of this survey paper is meta-
heuristics, papers addressing other approaches are cast aside at this 
stage. Fig. 3 depicts the summary of approaches utilized to tackle the 
UCTP at stage 2. It can be seen that among all the meta-heuristics, Evo-
lutionary Algorithms (EA), Swarm Intelligence (SI), and hybrid methods 
are the frequent methodologies in the literature. Other approaches in-
clude hyper-heuristics and mathematical approaches. Finally, in stage 
4, all remaining papers undergo detailed analysis. Information such as 
research gap, methodology, dataset, measurement, performance, limi-
tations, and research opportunities are extracted from various sections 
of the papers. Through citation backtracking, all relevant and missing 
papers are added to our library. Papers with low comprehensiveness 
or competitiveness are excluded, with higher emphasis given to papers 
published in more established journals. Table 5 shows the list of jour-
nals of the final selected papers.

3. University course timetabling

3.1. Problem definition

University course timetabling varies considerably in different coun-
tries and institutions (Lindahl et al., 2018). This can be attributed to 
the unique problems each university faces. Thus, various requirements 
and policies are set by different institutions and the country’s education 
system (Chen et al., 2021).

Many different algorithms have been developed over the years for 
different variants of this problem (Gülcü & Akkan, 2020). This makes 
it extremely difficult for researchers to compare their works and assess 
the performance of their methodology (Lindahl et al., 2018). To address 

this issue, much effort has been made, and through the introduction of 
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Table 1

Summary of UCTP survey papers.

Year Authors Title Scope Limitation

2015 Babaei et al. (2015) A survey of approaches for university 
course timetabling problem

A survey of all approaches in the UCTP, 
focusing on distributed multi-agent systems 
approaches.

Detailed performance comparison of ap-
proaches on benchmarks is missing.

2015 Bettinelli et al. (2015) An overview of curriculum-based course 
timetabling

A detailed analytical review of approaches 
in the CB-CTP.

Only focuses on one variant of the UCTP (CB-
CTP), and lacks the review of many meta-
heuristics applied to other variants.

2015 Ilyas and Iqbal (2015) Study of hybrid approaches used for 
university course timetable problem 
(UCTP)

Classifying hybrid approaches into local 
search or population-based + local search-
based approaches.

Recent state-of-the-art hybrid meta-heuristics 
and problem classification are missing.

2015 Teoh et al. (2015) Review of state of the art for metaheuris-
tic techniques in Academic Scheduling 
Problems

Studying the properties and complexity of 
academic scheduling problems and review-
ing solution optimality of meta-heuristic ap-
proaches.

Lacks methods applied to benchmark datasets 
or reports their solution quality. It also does 
not cover some recent meta-heuristic methods.

2016 Pandey and Sharma (2016) Survey on university timetabling prob-
lem

A detailed introduction on the UCTP and a 
brief review of all approaches.

Analysis of methods and review of hybrid ap-
proaches are overlooked

2019 Oude Vrielink et al. (2019) Practices in timetabling in higher educa-
tion institutions: a systematic review

A systematic literature review aiming to 
identify similarities and differences in the-
ory and practice of timetabling in higher ed-
ucation.

Does not cover the hybrid meta-heuristic ap-
proaches that have been proposed to solve the 
UCTP.

2020 Bashab et al. (2020) A systematic mapping study on solving 
university timetabling problems using 
meta-heuristic algorithms

A mapping study to show the intensity of 
meta-heuristic publications in the UCTP.

Lacks critical analysis and detailed method 
classification.

2021 Chen et al. (2021) A Survey of University Course Providing a general overview of all ap- Limited reviewed hybrid approaches without 

Timetabling Problem: Perspectives, 
Trends and Opportunities

proaches in the UCTP and identifying trend 
and gaps.

classifying hybrid meta-heuristics in the liter-
ature.

Table 2

Search strategy.

Keywords University Course Timetabling, Hybrid, Meta-heuristic
Year 2015-2022
Online Tools/Databases Google Scholar, Elsevier, Springer, IEEE

Table 3

Papers filtering.

Stage Number Number of Papers

0 151
1 134
2 108
3 77
4 45

Table 4

Papers publication year at stage 1.

Publication Year Number of Papers

<2015 9
2015 17
2016 15
2017 15
2018 16
2019 13
2020 18
2021 17
2022 14

Total 134

Table 5

List of journals of the final selected papers.

Journal Paper Count

European Journal of Operational Research (EJOR) 3
Computers & Operations Research (COR) 3
Applied Soft Computing 2
Expert Systems with Applications 2
Others 35

Fig. 2. Papers problem category at stage 1.
3

Fig. 3. Papers approach at stage 2.
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the International Timetabling Competition (ITC), the standard charac-
terization of UCTP was presented.

The standard UCTP is based on a conventional definition of 
timetabling from 1995 (Wren, 1995). It is a simplified and abstracted 
model of the real-world problem that aims to capture its essential fea-
tures (Rezaeipanah et al., 2021, Akkan & Gülcü, 2018). The standard 
UCTP can be formally stated as follows (Goh et al., 2019b):

Given: a set of events, 𝐸 = {𝑒1, 𝑒2, 𝑒3, ..., 𝑒|𝐸|}
a set of time slots, 𝑇 = {𝑡1, 𝑡2, 𝑡3, ..., 𝑡|𝑇 |} (|𝑇 | = 45 in benchmark 
datasets - 9 time slots per day ∗ 5 days per week)
a set of rooms 𝑅 = {𝑟1, 𝑟2, 𝑟3, ..., 𝑟|𝑅|}
a set of students 𝑆 = {𝑠1, 𝑠2, 𝑠3, ..., 𝑠|𝑆|}
a set of features 𝐹 = {𝑓1, 𝑓2, 𝑓3, ..., 𝑓|𝐹 |}
and a set of days 𝐷 = {𝑑1, 𝑑2, 𝑑3, ..., 𝑑|𝐷|} (𝐷 is commonly con-
sidered as the weekdays, |𝐷| = 5)

Find: an assignment (a timetable) of 𝐸 events (with 𝑆 students) to 𝑅
rooms (with 𝐹 features) and 𝑇 time slots (across 𝐷 days) that 
minimizes constraint violations

The formal mathematical formulation of UCTP constraints is pre-
sented in Lindahl et al. (2018), Goh et al. (2019b), Teoh et al. (2015), 
Lewis and Thompson (2015), Pandey and Sharma (2016).

Constraints in UCTP are generally classified into Hard Constraints 
(HC) and Soft Constraints (SC) (Thepphakorn & Pongcharoen, 2019, 
Goh et al., 2020, 2019b, Rezaeipanah et al., 2021, Babaei et al., 2015, 
Song et al., 2018). While hard constraints are compulsory restrictions 
that determine the feasibility of a given solution, soft constraints are 
optional and ascertain the quality of a solution (Chen et al., 2021, Goh 
et al., 2019a). In many scenarios (theoretical and real-world), a solu-
tion that violates any of the hard constraints (an infeasible solution) is 
considered worthless (Chen et al., 2021).

3.2. Problem variants

The unique necessities and requirements of various universities im-
ply different constraints and objectives, leading to distinct variants of 
the university timetabling problem. The UCTP is commonly divided into 
two subcategories, the Curriculum-Based Course Timetabling Problem 
(CB-CTP) and the Post-Enrollment Course Timetabling Problem (PE-
CTP) (Akkan & Gülcü, 2018, Teoh et al., 2015, Chen et al., 2021, 
Bettinelli et al., 2015). The major difference between these two is their 
source of conflict, i.e., conflicts in the CB-CTP arise from the published 
curriculum, while in the PE-CTP, they primarily originate from students’ 
enrollment data (Song et al., 2021). Each university might opt for one of 
the variants based on its organization. However, both CB-CTP and PE-
CTP are significant in real-world applications (Bettinelli et al., 2015).

CB-CTP and PE-CTP were formally defined and distinguished in two 
different tracks in the International Timetabling Competition 2007 (Di 
Gaspero et al., 2007). In the CB-CTP, a course consists of a set of lec-
tures, which are predefined in a curriculum. In the PE-CTP, however, 
each course is a single event (Bettinelli et al., 2015). In the CB-CTP, 
the curricula of the students are known, but not the student enrollment. 
Meanwhile, students’ enrollment occurs prior to the timetabling pro-
cess in the PE-CTP (Soria-Alcaraz et al., 2016). Although it is shown 
that these variants are closely related (Lewis & Thompson, 2015), a dis-
tinctive feature between these variants is that only the PE-CTP involves 
student sectioning, i.e., the possibility of “assigning students to indi-
vidual sections of a course” (Müller & Murray, 2010). Consideration of 
student sectioning is essential but increases complexity (Bettinelli et al., 
2015).

Depending on the unique demands arising in real-world and theo-
retical applications, distinct variants of the UCTP with a different set 
of requirements and constraints exist. Much research has addressed 
these alternative variants. Babaei et al. addressed the problem of com-
4
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(Babaei et al., 2019). In related research (Song et al., 2017), energy ef-
ficiency was incorporated as an objective on the dataset collected from 
the Liberal Arts Building 1 at Seoul National University. Aschinger et al. 
introduced several new constraints and features into the International 
Timetabling Competition 2007 dataset to cope with the real-world 
terms at University College London (UCL) (Aschinger et al., 2018). Re-
lated research (Thepphakorn et al., 2020, 2021) attempted to minimize 
the total operating cost. Kasemset et al. included a predefined pattern of 
days and time slots in the standard UCTP (Kasemset & Irohara, 2019). 
Fairness was used as an objective to address a real-world UCTP from 
Caraga State University. Gozali et al. focused on the student section-
ing problem (Gozali et al., 2020). And robustness was introduced as a 
new measurement to address the UCTP in Akkan and Gülcü (2018) and 
Gülcü and Akkan (2020). A comprehensive systematic study on differ-
ent subproblems of UCTP can be found in Herres and Schmitz (2021).

3.3. Constraints

The constraints involved in the UCTP include:

• Hard Constraints (HC):
HC1: No student can be assigned more than one course at the same 

time.
HC2: The room should satisfy the features required by the course.
HC3: The number of students attending the course should be less 

than or equal to the capacity of the room.
HC4: No more than one course is allowed for each time slot in 

each room.
HC5: A course can only be assigned to some preset time slots.
HC6: Where specified, a course should be scheduled to occur in 

the correct order.
HC7: All lectures of a course must be scheduled. A violation occurs 

if a lecture is not scheduled.
HC8: Lectures of courses in the same curriculum or taught by the 

same teacher must be all scheduled in different periods.
HC9: If the teacher of the course is not available to teach that 

course at a given period, then no lectures of the course can 
be scheduled at that period.

• Soft Constraints (SC):
SC1: A student should not have a single course on a day.
SC2: A student should not have more than two consecutive 

courses.
SC3: A student should not have a course scheduled in the last time 

slot of the day.
SC4: The number of students attending the course should be less 

than or equal to the capacity of the room (same as HC3 but 
is considered a soft constraint in the ITC2007-Track3).

SC5: The lectures of each course must be spread into the given 
minimum number of days.

SC6: Lectures belonging to a curriculum should be adjacent to each 
other (i.e., in consecutive periods).

SC7: All lectures of a course should be given in the same room.

3.4. Datasets

Different implementations tackling distinct variants of the UCTP 
have reported varying degrees of success. However, the effectiveness 
comparison of different algorithms is difficult if they are executed on 
different problem instances. Standard datasets enable fair comparison 
and assessment of different algorithms. Datasets used in the literature 
can be divided into benchmark and real-world datasets (Chen et al., 
2021).

3.4.1. Benchmark

Benchmark datasets aim to unify the research in the UCTP by 

proposing a consolidated formulation of the problem and suggest-
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Table 6

ITC winners.

Rank 1 Rank 2 Rank 3
ITC2002 SA (Meta-heuristic) 

(Kostuch, 2003)
TS (Meta-heuristic) 
(Cordeau et al., 2003)

GD (Meta-heuristic) 
(Bykov, 2003)

ITC2007-Track2 LS-based (Hybrid Meta-heuristic) 
(Cambazard et al., 2007)

TS-based (Hybrid Meta-heuristic) 
(Atsuta et al., 2008)

LS-based (Hybrid Meta-heuristic) 
(Chiarandini et al., 2008)

ITC2007-Track3 GD-based (Hybrid Meta-heuristic) 
(Müller, 2009)

TS-based (Meta-heuristic) 
(Lü & Hao, 2010)

TS-based (Hybrid Meta-heuristic) 
(Atsuta et al., 2008)

ITC2019 MIP (Mathematical) 
(Holm et al., 2019)

MIP (Mathematical) SA-based (Meta-heuristic) 
(Gashi & Sylejmani, 2019)
ing a standard dataset for benchmarking and comparing different ap-
proaches. Common benchmark datasets in the literature include:

• International Timetabling Competition: PATAT (Practice And The-
ory of Automated Timetabling) is a conference series address-
ing timetabling problems. This conference, which is held every 
two years, plays a vital role in motivating research in the field. 
Through the organization of the International Timetabling Com-
petition (ITC) by PATAT and the Metaheuristic Network, standard 
experimentation and problem formulation of the UCTP were estab-
lished in 2002 (Pandey & Sharma, 2016). As evident in Table 10, 
ITC datasets are the most commonly used benchmark datasets in 
the literature.

ITC2002 dataset is the first ITC held in 2002. It has 20 instances 
that were generated by Ben Paechter. To adhere to fair compari-
son, a time limit is benchmarked for a given machine by running a 
program on a host computer. This benchmark dataset is available 
on the ITC2002 website.1 The hybrid simulated annealing-based 
approach proposed in Goh et al. (2020) appears to be one of the 
best-performing approaches post-competition.

ITC2007 dataset is a further development of educational 
timetabling. The time limit is benchmarked in the same way 
as ITC2002. ITC2007 distinguished the different variants of the 
educational timetabling problems and introduced three distinct 
datasets for UETP, PE-CTP, and CB-CTP, respectively. Track 2 (PE-
CTP) includes 24 instances. Meanwhile, track 3 focuses on the 
CB-CTP problem variant (Bettinelli et al., 2015) and consists of 
21 instances. The benchmark datasets for all three tracks can be 
downloaded from the ITC2007 website.2 The current state-of-the-
art methods on this dataset include Nagata (2018) and Goh et al. 
(2020) for track 2, and Kampke et al. (2019) for track 3.

ITC2019 dataset is the latest ITC competition by PATAT, co-
organized by UniTime3 (an open-source, comprehensive educa-
tional scheduling system that supports developing course and exam 
timetables). Student sectioning combined with standard time and 
room assignment of events in courses is the key novelty of this 
dataset, which makes it more complex than the previous datasets. 
Benchmarking and solution validation, alongside the 30 instances, 
are available on the ITC2019 website.4 More information about 
this dataset can be found in Müller et al. (2018). The low number 
of publications (see Table 10), coupled with the higher complexity 
of this dataset, has created a gap for future research to focus on.
Table 6 summarizes the winners of ITC2002, ITC2007, and 
ITC2019. It can be seen that meta-heuristic and mathematical 
approaches have achieved the highest performance in these com-
petitions.

• Socha: The 11 instances (5 small, 5 medium, and 1 large) of 
this benchmark dataset were generated by an algorithm devel-

1 http://sferics .idsia .ch /Files /ttcomp2002/ Last accessed: Feb 01, 2022.
2 http://www .cs .qub .ac .uk /itc2007 /index .htm Last accessed: Feb 01, 2022.
3 https://www .unitime .org/ Last accessed: Feb 01, 2022.
5

4 https://www .itc2019 .org /home Last accessed: Feb 01, 2022.
oped by Ben Paechter. Unlike the ITC datasets, the time limits 
in Socha are statically set to 90, 900, and 9000 seconds for the 
small, medium, and large instances, respectively. Further informa-
tion and the dataset are available on the website.5 The proposed 
methods in Goh et al. (2020) and Nagata (2018) are the current 
post-competition state-of-the-art.

• Hard: The Hard dataset was created by Lewis and Paechter (2007)
and includes 60 instances (20 small, 20 medium, and 20 large). 
The time limits are set to 30, 200, and 800 seconds for the 
small, medium, and large instances, respectively. This benchmark 
dataset6 focuses on hard constraints and finding feasible solutions 
(a feasible solution is one that satisfies all the hard constraints (Goh 
et al., 2019a)). Approaches in Song et al. (2018) and Goh et al. 
(2020) have managed to outperform other methods on this dataset 
and appear to be among the best-performing.

Table 7 summarizes the features of the benchmark datasets. Further 
detailed features of problem instances of these datasets are summarized 
in Chen et al. (2021). Table 8 compares these datasets in terms of their 
constraints. The ITC2019 benchmark dataset includes distribution con-
straints.7 The breakdown of the ITC2019 constraints is presented in 
Müller et al. (2018) and Lemos et al. (2021).

3.4.2. Real-world

Real-world datasets are often gathered by different faculties and 
institutions. These datasets aim to address the unique needs of a real-
world problem. Real-world datasets are of vital importance as they can 
highlight the gap between literature and real-world implications. Fur-
thermore, they provide a basis for assessing the performance of state-
of-the-art approaches in real-world applications. Table 11 overviews the 
papers addressing real-world datasets in the literature.

3.5. Performance measurements

Aspects to consider while assessing the performance of a method in 
the UCTP are quality, feasibility, and speed (Chen et al., 2021).

Considering soft and hard constraints, the cost (𝐶) of a candidate 
solution (𝑆) to be minimized can be measured as 𝐶𝑆 =

∑𝑛

𝑖=1𝑊𝑖𝑆𝐶𝑖 +∑𝑚

𝑗=1𝑊𝑗𝑆𝐶𝑗 , where 𝑊𝑖 and 𝑊𝑗 are the weights associated with each 
soft and hard constraint violation, respectively. To simplify, constraints 
are given equal weights, and the cost is often measured as the weighted 
sum of soft and hard constraint violations count in the literature (𝐶𝑆 =
𝑊𝑆𝐶 |𝑆𝐶| +𝑊𝐻𝐶 |𝐻𝐶|). As an infeasible solution is deemed worthless 
both in benchmarks and real-world applications (Chen et al., 2021), the 
quality of a candidate solution can be assessed in terms of the number 
of soft constraint violations.

Another major factor in performance evaluation is speed. Methods 
should be examined under equal implementation and run conditions 

5 https://iridia .ulb .ac .be /supp /IridiaSupp2002 -001 /index .html Last ac-
cessed: Feb 01, 2022.

6 http://www .rhydlewis .eu /hardTT/ Last accessed: Feb 01, 2022.

7 https://www .itc2019 .org /format Last accessed: Feb 01, 2022.

http://sferics.idsia.ch/Files/ttcomp2002/
http://www.cs.qub.ac.uk/itc2007/index.htm
https://www.unitime.org/
https://www.itc2019.org/home
https://iridia.ulb.ac.be/supp/IridiaSupp2002-001/index.html
http://www.rhydlewis.eu/hardTT/
https://www.itc2019.org/format
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Table 7

Features of benchmark datasets.

Dataset # of Instances # of Events # of Rooms # of Features # of Students

ITC2002 20 350, 400, 440 10, 11 5, 6, 10 200, 220, 250, 300, 350

ITC2007 Track2 24 100, 200, 300, 400, 500, 600 10, 20 10, 20, 30 300, 500, 1000

Socha Small 5 100 5 5 80
Medium 5 400 10 5 200
Large 1 400 10 10 400

Hard Small 20 200, 210, 220, 225 5, 6 3, 4, 5, 8, 10 200, 400, 500, 800, 900, 1000
Medium 20 390, 400, 410, 425 8, 10, 11 5, 6, 8, 9, 10 400, 450, 500, 800, 1000
Big 20 1000, 1050, 1075 25, 26, 28 10, 20, 25 800, 900, 1000, 1100

Dataset # of Instances # of Courses # of Rooms # of Curricula # of Constraints

ITC2007 Track3 21 30 - 131 5 - 20 13 - 150 53 - 1368

Dataset # of Instances # of Courses # of Rooms # of Classes # of Students

ITC2019 30 36 - 2839 18 - 768 417 - 8813 0 - 38437

Table 8

Constraints of benchmark datasets.

Hard Constraints Soft Constraints

HC1 HC2 HC3 HC4 HC5 HC6 HC7 HC8 HC9 SC1 SC2 SC3 SC4 SC5 SC6 SC7

ITC2002 ✓ ✓ ✓ ✓ ✓ ✓ ✓
ITC2007-Track2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ITC2007-Track3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Socha ✓ ✓ ✓ ✓ ✓ ✓ ✓
Hard ✓ ✓ ✓ ✓
for a fair comparison. This can be achieved by using a host computer 
or taking your system’s hardware configuration into consideration (as 
directed in ITC2007). For clarity, it is customary in the literature to 
state the programming language and the system’s specifications (CPU 
and RAM) used for benchmarking.

Unlike deterministic methods, the performance of stochastic meth-
ods depends on a set of random variables generated (Bianchi et al., 
2009). The experimental results of these methods are often reported 
as an average of several independent runs of the search algorithm to 
produce more stable results and allow for statistical comparisons to be 
made (Kesur, 2013).

3.6. Approaches

Approaches addressing the UCTP in the literature can be divided 
into five main categories (Chen et al., 2021, Babaei et al., 2015): Op-
erational Research (OR) based, meta-heuristics, hyper-heuristics, multi-
objective, and hybrid approaches.

Approaches for the UCTP can also be categorized based on their 
number of steps in addressing the constraints into single and multi-
stage (and multi-stage with relaxation) (Lewis, 2008). While single-
stage approaches attempt to find solutions satisfying both hard and soft 
constraints simultaneously, multi-stage approaches tackle hard and soft 
constraints in different stages.

4. Meta-heuristic approaches in the UCTP

Meta-heuristic (metaheuristic) is defined as “an iterative process 
guiding heuristics to explore and exploit the search space to find near-
optimal solutions” (Osman & Kelly, 1997). Heuristics are approximate 
approaches that seek a good solution at a reasonable computation cost 
without the guarantee of finding the optimal solution (Burke & Kendall, 
2014). Meta-heuristics operate on a higher level than heuristics (but 
lower than hyper-heuristics), and they can provide a good solution to 
an optimization problem under incomplete or imperfect information or 
limited computation capacity (Bianchi et al., 2009). These general prob-
6

lem solvers are capable of searching a large solution space and handling 
a variety of different problems as they make relatively few assumptions 
about the problem (Blum & Roli, 2003). Meta-heuristics can be cat-
egorized into single solution-based (often known as Local Search (LS) 
algorithms) and population-based approaches (Chen et al., 2021, Babaei 
et al., 2015, Bashab et al., 2020). Fig. 4 presents the categorization of 
all the meta-heuristic approaches applied to the UCTP.

4.1. Single solution-based approaches

4.1.1. Simulated annealing

Simulated Annealing (SA) is among the best LS algorithms, i.e., 
heuristic mechanisms to find approximate solutions by considering 
neighboring solutions (Burke & Kendall, 2014), to tackle COP prob-
lems due to their high performance and wide applicability (Burke & 
Kendall, 2014). Inspired by the analogy of the physical annealing pro-
cess of solids, the SA concept was introduced in Kirkpatrick et al. (1983)
and Černỳ (1985).

Bellio et al. applied a single-stage SA to artificially-generated prob-
lem instances of the CB-CTP (Bellio et al., 2016). To determine the rela-
tionship between method parameters and problem instance features, 
they conducted a statistical analysis. Using cross-validation, method 
parameters were tuned on the artificial instances. Then, ITC2007 in-
stances were used as validation. And for test instances, they introduced 
a novel real-world dataset to evaluate the performance of their method. 
Feature-based tuned SA outperformed the results in the literature on 10 
instances out of 21 of the ITC2007-Track3 dataset.

In related research (Song et al., 2018), a multi-stage SA-based Iter-
ated Local Search (ILS) procedure was proposed for the Hard instances 
introduced in Lewis and Paechter (2007). In the first phase (Initializa-
tion), they incorporated a greedy heuristic to produce partial-feasible 
solutions. Then, SA was employed in the second phase (Intensifica-
tion) until the local optimum was reached. To further improve the 
performance in this stage, acceptance of a worse solution and a novel 
cooling scheme were adopted. In the final phase (Diversification), an 
improvement-perturbation mechanism was applied to improve or per-
turb the current solution. This approach managed to find feasible solu-

tions for 58 of the instances out of 60, which is 3 more than previous 
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Fig. 4. Meta-heuristic approach categories in the UCTP.
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state-of-the-art methods. Furthermore, it achieved better average solu-
tion quality and a lower number of unallocated events.

University course timetables are often finalized in stages. Changes 
are inevitable between these stages, which makes the previous timetable 
infeasible. Two different variants of these disruptions were investigated 
in Gülcü and Akkan (2020): single disruption and multiple disruptions. 
They proposed Multi-Objective Simulated Annealing for Single Disrup-
tion (MOSA-SD) and Multi-Objective Simulated Annealing for multiple 
disruptions with Sample Average Approximation (MOSA-SAA) to ad-
dress these two problems, respectively. The main difference between 
these two methods is in how the robustness of a solution is measured. 
The ITC2007-Track3 benchmark dataset was used for performance 
evaluation. In the single disruption case, MOSA-SD outperformed the 
multi-objective genetic algorithm presented in Akkan and Gülcü (2018)
in terms of generational distance (see Van Veldhuizen, 1999) and hy-
pervolume (see Zitzler & Thiele, 1999). It also provided a wider range 
of Pareto optimal solutions. In multiple disruptions, MOSA-SAA outper-
formed MOSA-SD.

Related research (Akkan et al., 2022) aimed to find resilient timeta-
bles that can cope with potential data disruptions, such as changes 
in the availability of professors or rooms. They modeled the CB-CTP 
as a bi-criteria optimization problem, where robustness is a stochas-
tic objective, and the objective is to find a good approximation of the 
Pareto frontier. They developed a Multi-Objective Simulated Annealing 
(MOSA) algorithm that uses a surrogate measure to estimate the ro-
bustness objective. They used ten different slack measures and thirty 
surrogate measures, inspired by the concept of slack in machine and 
project scheduling. They tested their method on ITC2007 instances and 
compared it with other existing methods. They discovered that one of 
their surrogate measures, when used in a multi-start MOSA algorithm, 
consistently produced the best Pareto frontier. However, their method 
still needed manual adjustment of some parameters and did not take 
into account student preferences or satisfaction in the timetabling pro-
cess.

A cooperative variant of SA for the UCTP, named Simulated Anneal-
ing with Cooperative Processes (SACP), was proposed by Cruz-Rosales 
et al. (2022). This method employs multiple processes that perform SA 
on distinct solutions and communicate via collective and point-to-point 
messages. The collective messages allow the master process to share the 
best solution among all the processes to explore the best solution. Mean-
while, the point-to-point messages direct the search procedure toward a 
more promising solution space. SACP was tested on a set of synthetic in-
stances introduced by Rossi-Doria et al. (2003) and outperformed five 
other basic meta-heuristics according to statistical analysis. However, 
the method lacked comparison with other state-of-the-art methods and 
validation on other benchmark datasets.

4.1.2. Tabu Search

Tabu Search (TS) is yet another LS-based meta-heuristic that has 
been successfully applied to countless COPs. It was first proposed in 
Glover (1986) and then formalized in Glover (1989, 1990). This ap-
proach helps hill climbing overcome local optimum by introducing 
short and long-term memory. The term tabu refers to preventive mea-
sures that stop the algorithm from cycling when moving away from the 
local optimum through non-improving moves (Burke & Kendall, 2014). 
The balance between exploitation and exploration in TS can be obtained 
by employing freeze restart intensification and restart diversification 
(Burke & Kendall, 2014).

Finding a feasible solution is essential for course timetabling. The 
Hard benchmark dataset introduced 60 challenging instances with the 
sole purpose of finding feasible solutions. The problem was first trans-
formed into one that considers only one hard constraint by Chen et 
al. (2020). Then, they introduced a single-stage novel Tabu Search al-
gorithm with a Controlled Randomization strategy (TSCR) algorithm 
to tackle this problem. Two complementary neighborhoods were em-
8

ployed to intensify the search, and a threshold mechanism was adopted 
Intelligent Systems with Applications 19 (2023) 200253

for the neighborhood search in TSCR. This method was competitive 
with the 8 compared algorithms and managed to find feasible solu-
tions for 55 instances. Furthermore, it found feasible solutions for all 
instances when the time limit was extended to 24 hours.

4.1.3. Large Neighborhood Search

A single-stage Adaptive Large Neighborhood Search (ALNS) was ap-
plied to the CB-CTP by Kiefer et al. (2017). This algorithm was based on 
destroying and repairing large parts of solutions in a repetitive manner. 
Four features for destroy limit, temperature reheating, infeasible solu-
tions allowance, and repair operators computation times were imple-
mented in ALNS, alongside several destroy and repair operators. ALNS 
achieved highly competitive results for the ITC2007-Track3 dataset and 
found 5 new best solutions.

4.2. Population-based approaches

4.2.1. Evolutionary Algorithms

Inspired by nature, Evolutionary Algorithms (EAs) are a group of 
population-based meta-heuristics based on Darwin’s theory of evolu-
tion (survival of the fittest) (Eiben et al., 2003). These algorithms have 
shown profoundly promising performance on a diverse set of optimiza-
tion problems and are common in the literature. The exploration/ex-
ploitation balance in these algorithms is accomplished by recombina-
tion and mutation operators. Fig. 5 illustrates the general scheme of 
EAs.

Genetic Algorithm.

Genetic Algorithm (GA) is the most widely used type of EAs (Eiben et 
al., 2003). It is based on the principles of natural selection and genetics 
and was introduced in Fraser (1957).

Many necessary constraints in the real-world UCTP are not ac-
counted for in the benchmark datasets. Related research (Abdelhalim 
& El Khayat, 2016) introduced a new variant of the UCTP with maxi-
mizing resource utilization as their objective and proposed a Utilization-
based Genetic Algorithm (UGA) to tackle this problem. The novelty of 
this work was the inclusion of professors’ preferences and constraints. 
Applying to the real-world dataset from the Faculty of Commerce, 
Alexandria University in Egypt, UGA enhanced the occupancy rates 
of the allocated events and managed to save resources. However, it 
was more computationally expensive on smaller instances compared to 
other methods.

Energy consumption is a big concern for universities. Saving energy 
can be fulfilled by an efficient allocation of classrooms. However, there 
have been few attempts to consider spatial and functional capacities re-
lated to energy use in classrooms. Song et al. studied the correlation 
between timetabling and energy usage at the Liberal Arts Building 1 
in the Seoul National University campus in Seoul, South Korea (Song 
et al., 2017). They introduced a new variant of the UCTP, focusing 
on minimizing energy consumption, and applied a single-stage genetic 
algorithm to address this problem. This approach contributed to 4% en-
ergy saving (up to 5% by discarding the hard constraints).

Current generic solutions do not meet certain specific constraints 
of the real-world UCTP. A real-world UCTP at Telkom University was 
addressed in Gozali and Fujimura (2018). A Reinforced asynchronous 
Island Model Genetic Algorithm (RIMGA) was proposed to optimize the 
usage of the computer’s resources. In this design, the slave islands that 
had completed their processes were utilized to assist those who had 
not. RIMGA managed to achieve comparable results with Asynchronous 
Island Model Genetic Algorithm (AIMGA) in half the time. It was also 
less likely to get trapped in the local optimum.

In student sectioning UCTP, a set of preferred classes are cho-
sen by students, and then a timetable is created while attempting 
to minimize constraint violations and adopt students’ preferences. To 
address this problem, a Localized Island Model Genetic Algorithm 

with Dual Dynamic Migration Policy (DM-LIMGA) was proposed in 
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Fig. 5. EAs general scheme (Eiben et al., 2003).
Gozali et al. (2020). In this method, direct representation encoding was 
used for chromosomes, and each gene block consisted of time, room, 
lecturer, class, and students. This approach strictly dedicated one slave 
island to finding feasible solutions, while the second one attempted to 
minimize soft constraints, and the third one focused on student-level 
constraints. For each of these islands, a different variant of GA was 
used. The diversity of each island was estimated using a bias value. 
DM-LIMGA managed to find feasible solutions for student sectioning 
UCTP and outperform GA, AIMGA, and UniTime on the Telkom Univer-
sity and ITC2007-Track2 datasets.

Biogeography-Based Optimization.

Biogeography is the study of the geographical distribution of bi-
ological organisms. Biogeography-Based Optimization (BBO) is an 
evolutionary-based, stochastic, iterative optimization method that was 
first introduced in Simon (2008).

Related research (Zhang et al., 2017) introduced a novel, discrete 
Ecogeography-Based Optimization (EBO) method to address the Uncon-
strained University Course Timetabling Problem (UCTP). EBO enhanced 
BBO by introducing a neighborhood structure for the population. In this 
work, two local and global operators, along with a repair mechanism, 
were incorporated to effectively explore the solution space and reduce 
computational cost. EBO showed competitive performance compared 
to the state-of-the-art approaches when applied to a set of problem 
instances from four universities in China. The main limitation of this 
approach is the need for manual setting of migration rates and the im-
maturity index parameters.

4.2.2. Swarm Intelligence

Inspired by the collective behavior of swarms or insect colonies, 
Swarm Intelligence (SI) aims to design and study efficient computa-
tional methods for solving problems (Burke & Kendall, 2014, Bonabeau 
et al., 1999). SI was introduced in Beni and Wang (1993). Though seem-
ingly, there is no evolution in SI, it does fit the general EA framework 
algorithmically and can be categorized under EA (Eiben et al., 2003). 
SI methods have found an increasing number of applications in the last 
few years.

Particle Swarm Optimization.

Particle Swarm Optimization (PSO) is based on the social behavior 
of bird flocking or fish schooling and was first presented in Kennedy and 
Eberhart (1995). The core idea of PSO is to consider a point in space 
with a position and a velocity as a member of a population, where the 
current velocity determines the new position (and velocity) (Eiben et 
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al., 2003).
Hossain et al. proposed a novel single-stage PSO-based method to 
tackle the UCTP for a real-world dataset (Hossain et al., 2019). Particle 
Swarm Optimization with Selective Search (PSOSS) employed a swap 
sequence-based discrete PSO, in which the velocity was controlled by a 
sequence for global best and a combination sequence. PSOSS managed 
to outperform GA and HS on the dataset from the Computer Science 
and Engineering Department of Khulna University of Engineering and 
Technology.

A Particle Swarm Optimization Based Timetabling (PSOT) tool was 
presented in Thepphakorn and Pongcharoen (2019). In this single-stage 
approach, the conventional Particle Swarm Optimization (PSO), the 
Standard PSO (SPSO), and the Maurice Clerc PSO (MCPSO) were imple-
mented. Applying this tool to the 5 real-world datasets collected from 
their previous work (Thepphakorn et al., 2016), MCPSO outperformed 
the other variants of PSO for most datasets. Moreover, through con-
ducting a statistical experiment, it was found that the setting of PSOs’ 
parameters was significant with a 95% confidence interval.

Ant Colony Optimization.

Ant Colony Optimization (ACO) algorithm is based on the
pheromone-based communication of ants. It was inspired by the double-
bridge experiment in Colorni et al. (1991). ACO algorithms have been 
designed and successfully applied to many different types of COPs, in-
cluding dynamic and multi-objective optimization problems (Burke & 
Kendall, 2014).

Student grouping (placing students in disjoint groups where each 
student belongs to exactly one group based on selected events) was 
investigated in Badoni and Gupta (2015b). Then, a single-stage ACO 
algorithm based on student grouping was presented and applied to 
11 instances obtained from the Socha dataset. Ant Colony Optimiza-
tion With Student Groupings (ACOWSG) excluded students from further 
selection once they were assigned a group. ACOWGS managed to out-
perform ACO on all the studied instances and was competitive with 9 
other methods on 9 of the instances.

A single-stage ACO to tackle CB-CTP was proposed in Kenekayoro 
and Zipamone (2016). Unlike other ACO-based studies that incorpo-
rate different local search algorithms for the improvement phase, an 
ant system was used here. The proposed approach was able to find fea-
sible solutions for all the ITC2007-Track3 instances and near-optimal 
solutions for some instances. The main drawback of this approach is 
the high computational time of the improvement phase.

Cuckoo Search Algorithm.

Cuckoo Search (CS) is yet another novel SI-based approach. CS is 

based on the aggressive brood parasitism of some cuckoo species and 
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Table 9

Summary of approaches on different UCTP datasets.

UCTP Meta-heuristic Hybrid Meta-heuristic Total

Single Solution-Based Population-Based Collaborative Integrative

Benchmark 7 2 7 15 31
Real-World 0 8 0 6 14

Total 7 10 7 21 45

Table 10

Categorization of approaches applied to different UCTP benchmark datasets.

Dataset Year Methodology Category Reference

ITC2002 2017 Simulated Annealing Hybrid (Collaborative) Goh et al. (2017)
2019 Simulated Annealing Hybrid (Collaborative) Goh et al. (2019b)
2020 Tabu Search Hybrid (Collaborative) Goh et al. (2020)

ITC2007-Track2 2015 Simulated Annealing Hybrid (Collaborative) Lewis and Thompson (2015)
2015 Genetic Algorithm Hybrid (Collaborative) Soria-Alcaraz et al. (2015)
2017 Simulated Annealing Hybrid (Collaborative) Goh et al. (2017)
2019 Simulated Annealing Hybrid (Collaborative) Goh et al. (2019b)
2020 Tabu Search Hybrid (Collaborative) Goh et al. (2020)
2020 Genetic Algorithm Population-Based Gozali et al. (2020)
2021 Genetic Algorithm Hybrid (Integrative) Rezaeipanah et al. (2021)

ITC2007-Track3 2015 Harmony Search Algorithm Hybrid (Integrative) Wahid and Hussin (2015)
2016 Simulated Annealing Single Solution-Based Bellio et al. (2016)
2016 Ant Colony Optimization Population-Based Kenekayoro and Zipamone (2016)
2016 Genetic Algorithm Hybrid (Integrative) Yousef et al. (2016)
2017 Large Neighborhood Search Single Solution-Based Kiefer et al. (2017)
2018 Genetic Algorithm Hybrid (Integrative) Akkan and Gülcü (2018)
2018 Genetic Algorithm Hybrid (Integrative) Matias et al. (2018b)
2020 Simulated Annealing Single Solution-Based Gülcü and Akkan (2020)
2021 Simulated Annealing Hybrid (Integrative) Song et al. (2021)
2022 Simulated Annealing Single Solution-Based Akkan et al. (2022)

Socha 2015 Ant Colony Optimization Population-Based Badoni and Gupta (2015b)
2015 Artificial Bee Colony Hybrid (Collaborative) Ghasemi et al. (2015)
2015 Artificial Bee Colony Hybrid (Integrative) Fong et al. (2015)
2015 Migrating Bird Optimization Hybrid (Integrative) Shen et al. (2015)
2015 Bacteria Swarm Optimization Hybrid (Integrative) Shaker et al. (2015)
2017 Simulated Annealing Hybrid (Collaborative) Goh et al. (2017)
2017 Honey-Bee Mating Optimization Hybrid (Integrative) Aziz et al. (2017)
2019 Simulated Annealing Hybrid (Collaborative) Goh et al. (2019b)
2020 Tabu Search Hybrid (Collaborative) Goh et al. (2020)

Hard 2018 Simulated Annealing Single Solution-Based Song et al. (2018)
2020 Tabu Search Hybrid (Collaborative) Goh et al. (2020)
2020 Tabu Search Single Solution-Based Chen et al. (2020)
their egg-laying strategy. CS was first developed and introduced in Yang 
and Deb (2009).

With the high number of conflicting objectives in the UCTP, a weight 
sum approach (adopting a single objective by combining criteria) might 
be infeasible. Thepphakorn et al. proposed a Multi-Objective Cuckoo 
Search based Timetabling (MOCST) tool to address the multi-objective 
UCTP for minimizing the total operating costs and the number of inade-
quate chairs (Thepphakorn et al., 2016). The CS via Lévy Flight (CSLF) 
and CS via Gaussian Random Walk (CSGRW) were embedded in MOCST 
to find the Pareto optimal solutions. Applying MOCST to the 11 datasets 
obtained from Naresuan University in Thailand, CSLF outperformed CS-
GRW for almost all datasets.

4.3. Discussion

Table 9 summarizes the approaches used to address different UCTP 
datasets. Out of the 45 papers surveyed, 17 were meta-heuristics, in-
cluding 7 single solution-based and 10 population-based methods. All 
of the single solution-based approaches were applied to benchmark 
datasets (see Table 9). This may be because these methods have higher 
exploitative ability than population-based methods (Du et al., 2016), 
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which allows them to find high-quality solutions under a strict time 
constraint. However, population-based methods have better exploratory 
ability (Du et al., 2016), and they were more prevalent in the literature 
(10 versus 7) than single solution-based methods, as shown in Table 9.

Table 10 and 11 classify the methodologies based on the benchmark 
and real-world datasets they used, respectively. Most of the population-
based methods (8 out of 10) were applied to real-world datasets and 
achieved promising results (see Table 11). However, their application 
to benchmark datasets was relatively scarce (only 2 in our survey), and 
they did not perform as well as single solution-based methods in the ITC 
competitions (see Table 6). This is due to their higher time-complexity 
trade-off.

A major drawback of meta-heuristics is the need for parameter set-
ting. The performance of meta-heuristics can be greatly influenced by 
the parameter settings (Thepphakorn & Pongcharoen, 2019, Rodríguez 
Maya et al., 2016, Thepphakorn et al., 2021). To address this issue, the 
irace package was proposed in López-Ibáñez et al. (2016) to find the 
best parameter settings for an optimizer. However, there is still a lack 
of analysis and strategies for parameter control/tuning in the literature.

Among the 7 single solution-based approaches reviewed, 5 were 
based on simulated annealing, 1 on tabu search, and 1 on large neigh-
borhood search (see Table 12). Simulated annealing has shown remark-

able capabilities in solving UCTP benchmark datasets (see Table 6) and 
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Table 11

Categorization of approaches applied to different real-world UCTP datasets.

Year Methodology Category Faculty University Country Reference

2016 Genetic Algorithm Population-Based Faculty of Commerce Alexandria University Egypt Abdelhalim and El Khayat (2016)
2016 Cuckoo Search Population-Based Faculty of Engineering Naresuan University Thailand Thepphakorn et al. (2016)
2017 Genetic Algorithm Population-Based Case Building Seoul National University South Korea Song et al. (2017)
2017 Biogeography-Based 

Optimization
Population-Based 4 Universities China Zhang et al. (2017)

2017 Harmony Search 
Algorithm

Hybrid (Integrative) College of Arts and 
Sciences

Universiti Utara Malaysia Malaysia Wahid and Mohd Hussin (2017)

2018 Genetic Algorithm Population-Based Engineering Telkom University Indonesia Gozali and Fujimura (2018)
2018 Genetic Algorithm Hybrid (Integrative) Department of Information 

Technology Education
Caraga State University Philippines Matias et al. (2018a)

2019 Particle Swarm 
Optimization

Population-Based Computer Science and 
Engineering Department

Khulna University Bangladesh Hossain et al. (2019)

2019 Particle Swarm 
Optimization

Population-Based Faculty of Engineering Naresuan University Thailand Thepphakorn and Pongcharoen (2019)

2020 Cuckoo Search Hybrid (Integrative) Faculty of Engineering Naresuan University Thailand Thepphakorn and Pongcharoen (2020)
2020 Particle Swarm 

Optimization
Hybrid (Integrative) Faculty of Engineering Naresuan University Thailand Thepphakorn et al. (2020)

2021 Particle Swarm 
Optimization

Hybrid (Integrative) Faculty of Engineering Naresuan University Thailand Thepphakorn et al. (2021)

2022 Genetic Algorithm Hybrid (Integrative) International Campus Universiti Malaysia Sabah Malaysia Wong et al. (2022)
appears to be the best-performing single solution-based method. Tabu 
search has also proven to be highly effective in minimizing the hard 
constraint violations (Chen et al., 2020).

As shown in Table 9, from the 10 population-based approaches, 5 
were EA-based and 5 were SI-based. Among the EA-based approaches, 
4 were genetic algorithms and 1 was EBO (see Table 12). GA-based ap-
proaches have been the most common techniques in our survey, mainly 
because of their high flexibility when applied to different problem in-
stances (Song et al., 2017, Gozali et al., 2020). However, they have not 
always succeeded in finding feasible solutions under strict time con-
straints (Abdelhalim & El Khayat, 2016). The 5 SI-based approaches 
reviewed in our survey included 2 PSO, 2 ACO, and 1 CS approach (see 
Table 12).

5. Hybrid meta-heuristics in the UCTP

Hybrid approaches combine two or more different methods to pro-
vide more efficient and flexible solutions for real-world and large-scale 
problems (Blum et al., 2008). The main goal of using hybridization 
techniques is to achieve high-quality solutions by striking an optimal 
balance between global and local search during the optimization pro-
cess (Shirvani, 2020, Noorian Talouki et al., 2021, Tanha et al., 2021). 
Hybridization has led to good results in previous research (Chen et 
al., 2021, Babaei et al., 2015, Bashab et al., 2020). In general, hybrid 
approaches can be classified as either collaborative combinations or in-
tegrative combinations (Blum et al., 2008). Collaborative (cooperative) 
hybrid approaches exchange information (sequentially, intertwined, or 
in parallel) but are not part of each other, while in integrative hybrid 
approaches, one technique is an embedded component of another tech-
nique (Blum et al., 2008, Delorme et al., 2010). Table 12 presents a 
comprehensive summary of all the (hybrid) meta-heuristic approaches 
studied in this survey paper.

5.1. Collaborative approaches

5.1.1. Simulated annealing

A collaborative multi-stage approach based on SA to address PE-
CTP was proposed in Lewis and Thompson (2015). The first stage used 
the PARTIALCOL algorithm to find feasible solutions by minimizing the 
Distance To Feasibility (DTF) measurement. Then, SA was employed 
to explore the space of feasible solutions by minimizing the soft con-
straint violations. The proposed method outperformed the literature on 
the ITC2007-Track2 dataset. A further contribution of this work was the 
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study of the effect of solution space connectivity on solution quality. It 
was shown that higher solution connectivity generally leads to higher-
quality solutions. It would be interesting to see how other neighborhood 
operators would affect the solution space connectivity.

A challenging issue in SA (and meta-heuristics in general) is the ex-
tensive parameter tuning that is often required. Related research (Goh 
et al., 2017) addressed this issue for PE-CTP by presenting a collabo-
rative hybrid approach. In the first stage, Tabu Search with Sampling 
and Perturbation (TSSP) was used to find feasible solutions. To further 
improve the quality of solutions, in the second stage, an improved ver-
sion of simulated annealing, called Simulated Annealing with Reheating 
(SAR), was proposed. This method introduced self-adaptive tuning of 
the temperature parameter based on the balance of exploration and 
exploitation. However, the neighborhood structure still had to be set 
manually. TSSP was highly effective and achieved 100% feasibility on 
Socha, ITC2002, and ITC2007 datasets. Furthermore, SAR was com-
parable to other state-of-the-art approaches in reducing soft constraint 
violations.

To address the shortcoming of their previous work, a reinforcement 
learning-based composition of neighborhood structure was incorpo-
rated in SAR to create Simulated Annealing with Improved Reheating 
and Learning (SAIRL) in order to further improve solution quality for 
PE-CTP (Goh et al., 2019b). This eliminated the need for manual set-
ting of neighborhood structure in SAR. Finding feasible solutions was 
handled identically by using TSSP in the first stage. SAIRL was highly 
competitive with SAR and TSSP + SAIRL achieved new best results for 6 
instances and new mean results for 14 instances on the Socha, ITC2002, 
and ITC2007-Track2 benchmarks.

5.1.2. Tabu Search

A further extension of Goh et al. (2017) was presented in Goh et al. 
(2020). Here, TSSP was hybridized with ILS in an integrative manner. 
If TSSP failed to find a feasible solution, the best-found solution was 
passed to an iterative local search in the last quarter of the execution 
time for further improvement. TSSP-ILS outperformed both TSSP and 
ILS in finding feasible solutions for stage 1. Moreover, it did not require 
manual parameter setting, which made it a leading approach for finding 
feasible solutions. As SAR required a manual setting of neighborhood 
structure, two preliminary runs were added to it so that a good compo-
sition could be obtained automatically. Tabu Search with Sampling and 
Perturbation with Iterated Local Search + Simulated Annealing with 
Reheating with Two Preliminary runs (TSSP-ILS + SAR-2P) achieved 
new best results for 3 instances and new best mean results for 7 in-
stances when applied to Socha, ITC2002, and ITC2007-Track2 datasets 

in addressing PE-CTP.
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5.1.3. Genetic Algorithm

The corresponding study (Rezaeipanah et al., 2019) proposed a GA-
based collaborative hybrid approach to tackle UCTP. Parallel Genetic 
Algorithm and Local Search (PGALS) used a direct representation of a 
timetable and encoded the distance to feasibility measurement in the 
fitness function to prevent the generation of infeasible solutions. After 
the termination condition of GA was met, an LS with a maximum num-
ber of iterations was applied to the best chromosome to improve the 
quality of the solution. When applied to the BenPaechter dataset, the 
proposed algorithm produced some of the best-known results but was 
unable to find feasible solutions for all large instances.

With the technological advancements in multi-core and hyper-
threading technologies, the solution quality and the Number of Fitness 
Evaluations (NFE) needed for parallel design of heuristics can greatly 
benefit compared to conventional sequential approaches. Soria et al. im-
plemented and investigated a parallel set of heuristic algorithms based 
on GAs, Scatter Search (SS), and discrete PSO for PE-CTP (Soria-Alcaraz 
et al., 2015). A further contribution of this work was the introduction 
of “Methodology of Design” which ensures easy adaptability to new in-
stances in order to improve generality. Conducting 100 independent 
comparative runs between sequential and parallel computing models 
for GA, SS, and PSO, cGA demonstrated high potential in terms of solu-
tion quality and speed.

5.1.4. Artificial Bee Colony

Artificial Bee Colony (ABC) is an SI-based optimization algorithm. It 
is inspired by a particular intelligent behavior of honey bee swarms and 
was first introduced in Karaboga (2005).

A multi-stage collaborative approach was presented in Ghasemi et 
al. (2015) based on an ABC algorithm. In the first stage, Genetic Group-
ing (GG) was employed to generate feasible solutions. These solutions 
were then passed to an ABC algorithm to minimize the soft constraint 
violations. A novel neighborhood structure based on three neighbor-
hoods was applied to both stages. The proposed approach was applied 
to medium and large instances of the Socha dataset and achieved better 
performance in 4 out of 5 cases compared with 3 other hybrid methods.

5.2. Integrative approaches

5.2.1. Simulated annealing

A novel Competition-guided Multi-neighborhood Local Search 
(CMLS) algorithm based on SA was proposed in Song et al. (2021)
to tackle CB-CTP. In the first stage of this multi-stage approach, a 
greedy heuristic was used to generate a feasible solution. Then, six 
neighborhood operators were adopted in the proposed SA-based multi-
neighborhood local search. Here, a new way of combining multiple 
neighborhoods was presented. To determine the probabilities of neigh-
borhood selection, two heuristic rules were proposed. Finally, the elite 
solution was chosen for the next iteration from the two SA procedures, 
each with a different probability set, through the competition-based 
restart strategy. This approach achieved 16 best average results for the 
ITC2007-Track3 dataset. The main limitation of this approach is the 
need for manual setting of the selection probabilities of the different 
neighborhoods, which can be addressed by an adaptive method in fu-
ture research.

5.2.2. Genetic Algorithm

A single-stage Hybrid approach combining a steady-state Genetic 
Algorithm with a Local Search technique and Tabu Search (HGALTS) 
was presented in Jaengchuea and Lohpetch (2015). LS and TS were 
integrated into the procedure of GA to address PE-CTP. An LS, based 
on three neighborhoods, was applied to the initial random population 
and offspring after crossover and mutation. The quality of offspring was 
further improved by applying TS. HGALTS managed to find feasible 
solutions for all 11 instances of the “MN dataset” (Socha et al., 2002) 
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and was competitive with 16 other methods from the literature.
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A combination of Genetic Algorithm and Iterated Local Search 
(GAILS) was employed by Badoni and Gupta (2015a) to tackle UCTP. 
GAILS took advantage of the diversification ability of GA and inten-
sification superiority of ILS for fast convergence and avoiding local 
optimum. The ILS employed three neighborhoods and four perturba-
tion moves. It was applied to individuals after random initialization and 
mutation during the GA process. GAILS was able to find the optimal so-
lutions for all small instances of the dataset adopted from Rossi-Doria 
et al. (2002) and new best results for two of the medium instances.

Yousef et al. presented an integrative hybrid GPU-based Genetic Al-
gorithm (Yousef et al., 2016). In this parallel, single-stage approach, 
GA was employed to address CB-CTP. Gender selection was utilized to 
balance selection pressure and keep a diverse population. Moreover, 
LS was applied to each produced offspring after crossover and muta-
tion. The fitness function was parallelized, using the CUDA framework, 
and was GPU accelerated. For large instances of the ITC2007-Track3 
dataset, this approach achieved up to 2.8 times faster time.

Addressing the multi-objective PE-CTP in Lohpetch and Jaengchuea 
(2016), a Hybrid Non-Dominated Sorting Genetic Algorithm-II with 
Two LS techniques and a TS heuristic (HNSGA2LTS) approach was 
suggested. TS and LS approaches were applied to child solutions af-
ter the crossover and mutation operators. This approach was tested on 
the MN dataset, and it was shown that the embedded TS and LS ap-
proaches helped improve the exploration ability of the NSGA-II, while 
the introduced LS approach took the role of improving solution quality. 
Moreover, the final produced result was a set of non-dominated solu-
tions, which gave the users the opportunity to select the most preferable 
solution from the set of non-dominated solutions.

Feng et al. extended the standard UCTP by incorporating consecu-
tiveness and periodicity conditions of multi-session lectures as decision 
variables, which are common, realistic conditions observed in many 
Eastern Asian universities (Feng et al., 2017). Then, they presented an 
integrative Hybrid Genetic Algorithm (HGA) and Mixed Integer Lin-
ear Programming (MILP) to address this UCTP. A Layer-based Bottom 
Deepest Left with Fill (LBDLF) strategy was employed for the assign-
ment of lectures. The problem was converted into a three-dimensional 
container packing problem (3DCPP). Then, MILP and HGA with an em-
bedded LS were utilized to solve this problem. HGA outperformed TS 
in terms of solution quality for the small, medium, and large instances 
adopted from the ITC-2007 benchmark dataset.

Four neighborhood structures were integrated into GA in Matias et 
al. (2018a) to address a real-world UCTP. After the random popula-
tion initialization, individuals were evaluated, and feasible solutions 
were collected. A guided repair mechanism was introduced and applied 
to infeasible timetables. After crossover and mutation, a neighborhood 
operator was selected and applied. In this approach, a data structure, 
keeping track of the least used resources, was maintained as a guided or 
directed strategy to improve the previously generated individuals. The 
performance of the method was evaluated on a real-world dataset from 
the Department of Information Technology Education at Caraga State 
University. The proposed methodology outperformed the classical GA 
in terms of speed and solution quality.

As an extension of their previous work, a GA with guided search 
and self-adaptive neighborhood strategies was proposed in Matias et 
al. (2018b). The general procedure of GA, the utilization of a guiding 
data structure, and the introduction of a repair mechanism remained 
similar to their previous work. The data structure was used to guide 
the neighboring structures and the repair operator to utilize unused 
pairs of rooms and time slots. Furthermore, a self-adaptive mechanism 
was integrated after the genetic operators to enhance the optimality 
of individuals. This proposed methodology produced optimal or near-
optimal solutions for the instances of the ITC2007-Track3 dataset when 
compared to the literature.

Changes after the finalization of a timetable are sometimes in-
evitable. A robust timetable can easily adapt to changing inputs. Akkan 

et al. considered late changes in an event’s time in CB-CTP and intro-
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duced an integrative hybrid GA-based approach to undertake this prob-
lem (Akkan & Gülcü, 2018). Robustness was introduced as a practical 
measurement alongside constraint violations, and a Multi-Objective Ge-
netic Algorithm hybridized with Hill Climbing and Simulated Annealing 
(MOGA + HC + SA) was proposed. The fitness of individuals was calcu-
lated based on their violations and robustness, with four measurements 
included in assessing robustness. An HC-based mutation was applied to 
selected parents to form offspring. And, to further improve the popula-
tion, SA was randomly applied to individuals in the final stage. The 
Pareto-fronts resulted from this approach included highly robust so-
lutions while maintaining competitive quality in terms of constraint 
violations on the ITC2007 Track3 dataset. Moreover, the solutions were 
widely diverse and provided alternatives.

Related work (Rezaeipanah et al., 2021) proposed a multi-stage in-
tegrative hybrid approach based on Parallel GA (PGA). The Improved 
PGA hybridized with LS (IPGALS) started with creating parallel popu-
lations of feasible solutions. Then, LS was applied to GA after crossover 
and mutation to enhance its performance and prevent it from getting 
stuck in local optima. A Distance to Feasibility (DF) measurement (over-
all number of students in conflicting events) was employed as guidance 
toward feasible solutions. Finally, an elitism approach stored the best 
individuals in shared memory. IPGALS achieved competitive perfor-
mance on small and medium data instances compared with state-of-
the-art approaches when applied to ITC2007-Track2 and BenPaechter 
datasets but failed to produce feasible solutions for large instances.

Wong et al. proposed an integrative hybrid GA that incorporates 
TSSP within the first step of the GA procedure to solve a real-world 
PE-CTP that arises at Universiti Malaysia Sabah (UMS-LIC) (Wong et 
al., 2022). The TSSP was utilized in the first step of the GA to gen-
erate a pool of feasible solutions satisfying the hard constraints. They 
conducted experiments to find the optimal parameter values for the GA 
under a preset computational time limit and tested their method on a 
real-world dataset collected from the semester 1, session 2018/2019 
student registration data. They compared their automated timetables 
with those manually generated by the administrative staff of UMS-LIC 
and found that their method reduced hard and soft constraint violations 
by as much as 54%.

5.2.3. Particle Swarm Optimization

Thepphakorn et al. proposed a Hybrid Particle Swarm Optimization-
based Tool (HPSOT) that combined Maurice Clerc PSO (MSPSO) with 
a local search (LS) approach (Thepphakorn et al., 2020). The LS ap-
proach consisted of Insertion Operators (IO) and Exchange Operators 
(EO) that were used to improve the solutions generated by MSPSO. HP-
SOT was applied to a variant of UCTP that aimed to minimize the total 
operating costs. Five different combinations of IO and EO were tested in 
HPSOT. HPSOT outperformed MSPSO on 11 real-world instances from 
their previous work (Thepphakorn et al., 2016) in terms of operating 
costs, running time, and convergence speed.

A further improvement to HPSOT was presented in Thepphakorn et 
al. (2021) by incorporating Standard PSO (SPSO). In this single-stage 
hybrid approach, two types of LS, namely Insertion Operator (IO) and 
Exchange Operator (EO), were integrated with PSO, and five differ-
ent IO:EO ratios were evaluated and compared. A repair mechanism 
was used to handle infeasible solutions. The hybrid SPSO and MCPSO 
with IO:EO ratios achieved better average total operating costs than 
their original versions for all problem instances. Moreover, hybridiza-
tion showed to improve computational complexity.

An integrative approach called Hybridizing Genetic-based Discrete 
PSO with LS and TS (HGDPSOLTS) was developed in Unprasertporn and 
Lohpetch (2020) to solve the PE-CTP. The genetic-based discrete PSO 
adopted the concepts of GA to PSO by using a population of swarms, 
crossover, and mutation operators. In this multi-stage approach, LS was 
used to find feasible solutions first. LS and TS were embedded into 
HGDPSOLTS and were applied to swarms after crossover and mutation 
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operations. This approach leveraged the exploration ability of GDPSO 
Intelligent Systems with Applications 19 (2023) 200253

and the exploitation of LS and TS. HGDPSOLTS was applied to the 11 
instances of the MN dataset and outperformed all other approaches in 
the literature in terms of the number of soft constraint violations.

5.2.4. Cuckoo Search

An enhancement to the Cuckoo Search (CS) algorithm was suggested 
in Thepphakorn and Pongcharoen (2020) utilizing a Self-adaptive Pa-
rameter Setting (SPS), a movement strategy based on Lévy flight or 
Gaussian random walks, and local search hybridization based on Inser-
tion Operator (IO) and Exchange Operator (EO). Hybrid Self-adaptive 
Cuckoo Search-based timetabling (HSCST) followed 6 steps: initial-
ization, strategic movement procedure, repairing, fitness evaluation, 
hybridization, and parameter updating. HSCST was tested on the 11 in-
stances of the real-world dataset from the Faculty of Engineering, Nare-
suan University, and outperformed conventional CS and PSO. Moreover, 
the hybridization of CS with local search improved the feasibility and 
total operation cost of the solutions.

5.2.5. Artificial Bee Colony

To overcome the limitations of exploration and exploitation capabil-
ities in the literature, Fong et al. proposed an integrative hybrid swarm-
based approach to solve both UCTP and UETP (Fong et al., 2015). The 
hybrid Nelder-Mead Great Deluge Artificial Bee Colony (NMGD-ABC) 
combined a PSO-based global best model to enhance exploration with 
Great Deluge (GD) to intensify exploitation. Thus, the proposed method 
was able to maintain a good balance between exploration and exploita-
tion improving the convergence speed of ABC. NMGD-ABC was applied 
to the Socha and Carter dataset and significantly outperformed ABC. 
This was one of the few works in the literature that addressed general-
ity by tackling different problems.

5.2.6. Migrating Bird Optimization

Migrating Bird Optimization (MBO) was first proposed in Duman 
et al. (2011). This SI-based method mimics the v-shaped formation of 
migrating birds during seasonal changes.

Falling into local optimum has been identified as the main weakness 
of MBO. Shen et al. attempted to overcome this limitation by propos-
ing a single-stage hybrid approach to solve the PE-CTP (Shen et al., 
2015). The proposed Modified Migrating Bird Optimization (M-MBO) 
algorithm began by creating a random population of feasible solutions 
generated using a combination of multiple graph coloring heuristics. 
ILS was integrated within this approach to improve the best solution in 
the next phase. Then, a neighborhood-sharing mechanism was used to 
help MBO escape local optimum and improve the quality of non-leading 
solutions. Comparing basic MBO and the proposed M-MBO on the 11 in-
stances of the Socha dataset, M-MBO produced better quality solutions 
and performed faster. However, the exploitation ability of M-MBO was 
still insufficient.

5.2.7. Bacteria Swarm Optimization

Bacteria Swarm Optimization (BSO) is another novel SI-based 
method that was proposed in Shaker et al. (2015). BSO is inspired by 
the behavior of bacteria searching for nutrients.

Related research (Shaker et al., 2015) integratively incorporated Dif-
ferential Evolution (DE) algorithm within BSO to solve the UCTP. In this 
multi-stage approach, a constructive heuristic was used to create an ini-
tial population of feasible solutions. Then, the search space was divided 
into three regions: risk, null, and rich. DE was applied within the BSO 
procedure to guide the solutions, find the global minimum, improve the 
convergence, and use fewer control parameters. BSO had a faster con-
vergence speed than other methods from the literature on the Socha 
dataset.

5.2.8. Harmony Search Algorithm

Harmony Search (HS) is a simple yet effective evolutionary algo-

rithm. It simulates the improvisation of music players (especially Jazz 
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musicians) and was proposed in Geem et al. (2001) to solve the Travel-
ing Salesman Problem (TSP).

Integrative hybridization of HS with GD to solve the CB-CTP was 
proposed in Wahid and Hussin (2015). In the first stage, initial feasible 
solutions were generated using a constructive heuristic. Then, three hy-
bridizations of GD with HS (GD within the RC operator of HS (NGD), 
GD within the MC operator (GDN), and GD within both (GDGD)) were 
proposed and compared. The NGD produced solutions with the lowest 
total cost among these three versions of hybridization. Moreover, it was 
able to achieve competitive results with the literature on the instances 
of the ITC2007-Track3 benchmark dataset.

A further improvement of the previous work was presented in Wahid 
and Mohd Hussin (2017). Hard constraint violations were handled in a 
similar way in the first stage of this approach. Then, GD was embed-
ded into the random consideration operator of HS. This approach was 
applied to the real-world dataset of the College of Arts and Sciences, 
Universiti Utara Malaysia, which consisted of 247 courses, 850 lectures, 
32 rooms, 350 lecturers, and 20,000 students to be scheduled on a five-
day week (Sunday to Thursday). Their proposed method outperformed 
their existing timetabling software.

5.2.9. Honey-Bee Mating Optimization

The Honey-Bee Mating Optimization algorithm was proposed in 
Haddad et al. (2006). It imitates the behavior of honey bees during 
mating in nature and uses the crossover and mutation operators of GA.

Steepest descent LS is used as a worker in the standard HBMO. 
This makes this method susceptible to falling into the local optimum, 
which affects performance. To overcome this problem, an integrative 
hybridization of HBMO with Adaptive Guided Variable Neighborhood 
Search (HBMO-AGVNS) as the worker was investigated by Aziz et al. 
(2017). In the first stage, AGVNS created a population of feasible so-
lutions. Then, the most suitable neighborhood structure was used to 
handle the soft constraint violations. HBMO-AGVNS showed a good bal-
ance between explore and exploit, and the integration of AGVNS helped 
in escaping the local optimum. This approach outperformed its individ-
ual components and was competitive on the Socha dataset instances.

5.3. Discussion

Hybridization of local search and population-based approaches (also 
known as the Memetic Algorithm (MA)) has shown remarkable perfor-
mance in solving the UCTP. The balance of exploration and exploitation 
in these approaches enables them to explore the solution space ef-
fectively. Moreover, the hybridization of different methods can help 
enhance their performance by combining the strengths of each com-
ponent and avoiding their weaknesses. As shown in Table 9, 28 out 
of the total 45 reviewed papers in this survey were hybrid, which fur-
ther indicates the popularity of these approaches in recent years. 7 of 
these approaches were hybridized in a collaborative manner, while the 
remaining 21 used integrative hybridization. All the collaborative ap-
proaches and 15 out of the 21 integrative approaches have been tested 
on benchmark datasets.

Collaborative hybridization of simulated annealing, in particular, 
has been very successful in producing high-quality solutions on bench-
mark datasets (see Table 10). The collaborative hybridization of SA and 
TS proposed in Goh et al. (2020) is among the current state-of-the-art 
on several benchmark datasets. Advantages of collaborative approaches 
include simpler implementation due to the independent operation of 
their components (Blum et al., 2008).

This survey revealed that not only are integrative approaches com-
mon in the literature (see Table 9), but they are also capable of handling 
different UCTP problems efficiently (Table 12). 10 out of the 21 in-
tegrative approaches were based on genetic algorithms, as shown in 
Table 12. Integration of exploitative single solution-based approaches 
within the genetic operators of a GA has resulted in a good performance 
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on real-world and benchmark datasets (see Tables 10 and 11). Another 
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observation is that many novel, swarm intelligence-based approaches 
with integrative exploitative strategies were introduced in the litera-
ture since 2015. However, further research has not been conducted to 
extend them (refer to Table 12).

6. Future work

To bridge the gap between real-world UCTP and the literature, the 
International Timetabling Competition was organized by Practice and 
Theory of Automated Timetabling (PATAT) and the Metaheuristic Net-
work. The field researchers have also contributed to achieving this goal 
over the years. However, this gap is still large, which has made many 
universities rely on manual timetabling. In meta-heuristic approaches, 
this gap can be attributed to the lack of generality among these meth-
ods in the literature. The excessive parameter tuning of meta-heuristics 
in pursuit of optimality on a specific problem can reduce their general 
applicability (Zamli, 2018, Bibai et al., 2010). We strongly recommend 
future research to focus on the gap between the UCTP approaches in the 
literature and their real-world implications to identify their underlying 
causes. Future studies can be conducted to introduce measurements to 
assess the generality of approaches, along with their optimality to dis-
courage problem-tailored solutions and reduce the gap.

Hybridization of approaches seems to be the best-performing ap-
proach in the literature. Combining different methods can improve their 
performance by eliminating the weaknesses of each one and exploiting 
their strengths (Matias et al., 2018b). There are many research oppor-
tunities to explore alternative hybrid meta-heuristics, especially on the 
latest benchmark dataset (ITC2019).

The main drawback of meta-heuristics is the need for parameter set-
ting. Numerous studies have confirmed the effect of parameter setting 
on the performance of these approaches (Thepphakorn & Pongcharoen, 
2019, Rodríguez Maya et al., 2016, Thepphakorn et al., 2021). There-
fore, a suitable set of parameters is essential for optimal performance. 
Future research can be conducted on different parameter control/tuning 
techniques. It would be very interesting to observe how different pa-
rameter settings can affect the performance of (hybrid) meta-heuristics, 
both in terms of their optimality and general applicability.

Many recent, successful meta-heuristic approaches such as Bat Algo-
rithm (BA) and Grey Wolf Optimizer (GWO) have never been applied 
to the UCTP problem in the literature. Future research can investigate 
the effectiveness of these methods on real-world and benchmark UCTP 
and compare the results with common meta-heuristic approaches in the 
literature to identify their strengths and weaknesses.

The operation of many universities has changed significantly since 
2020. With the outbreak of COVID-19, numerous universities have 
switched to virtual learning, and many international students have re-
turned to their home countries. This eliminates many of the constraints 
of the standard UCTP (such as the maximum number of students in a 
class, the necessary facilities in a classroom, and the maximum physical 
distance between consecutive classes) and introduces some new con-
straints (such as consideration of different time zones). Furthermore, 
the post-covid operation of universities introduces new challenges (such 
as adhering to 50% room capacity and maintaining minimal physical 
interactions). Future research can investigate these changes, introduce 
appropriate datasets, and address these problems.

7. Conclusion

University course timetabling is a crucial task for many educational 
institutions. The high number of constraints and the immense size of 
its solution space have made this challenging task an active and impor-
tant research area. An accurate scheduler is essential for the efficient 
operation of universities. Meta-heuristic and hybrid meta-heuristic ap-
proaches are widely applied to the UCTP in the literature due to their 

high flexibility and exploration/exploitation balance. These methods 
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Table 12

Literature review summary.

Year Authors Problem Algorithm Approach Single/Multi-Stage Dataset

2015 Badoni and Gupta (2015b) UCTP Ant Colony Optimization With Student 
Groupings (ACOWSG)

Swarm Intelligence Single-stage Socha

Lewis and Thompson (2015) PE-CTP PARTIALCOL + Simulated Annealing Hybrid (Collaborative) Multi-stage ITC2007-Track2
Ghasemi et al. (2015) UCTP Genetic Grouping + Artificial Bee Colony Hybrid (Collaborative) Multi-stage Socha
Jaengchuea and Lohpetch (2015) PE-CTP Hybrid Genetic Algorithm with Local 

Search and Tabu Search (HGALTS)
Hybrid (Integrative) Single-stage MN

Badoni and Gupta (2015a) UCTP hybrid Genetic Algorithm with Iterated Lo-
cal Search (GAILS)

Hybrid (Integrative) Single-stage Rossi-Doria

Fong et al. (2015) UCTP Nelder-Mead Great Deluge Artificial Bee 
Colony (NMGD-ABC)

Hybrid (Integrative) Single-stage Socha, Carter’s

Shen et al. (2015) PE-CTP Modified Migrating Bird Optimization (M-
MBO)

Hybrid (Integrative) Multi-stage Socha

Shaker et al. (2015) UCTP Bacteria Swarm Optimization (BSO) Hybrid (Integrative) Multi-stage Socha
Wahid and Hussin (2015) CB-CTP Harmony Search Algorithm (HSA) Hybrid (Integrative) Multi-stage ITC2007-Track3
Soria-Alcaraz et al. (2015) PE-CTP Parallel set of heuristics based on GA, Scat-

ter Search, and discrete PSO
Hybrid (Collaborative) Multi-stage ITC2007-Track2

2016 Bellio et al. (2016) CB-CTP Simulated Annealing (SA) Simulated Annealing Single-stage ITC2007-Track3
Abdelhalim and El Khayat (2016) UCTP Utilization-base Genetic Algorithm Evolutionary 

Algorithm
Single-stage Real-World

Kenekayoro and Zipamone (2016) CB-CTP Ant System Swarm Intelligence Single-stage ITC2007-Track3
Thepphakorn et al. (2016) UCTP Multiple Objective Cuckoo Search based 

Timetabling (MOCST)
Swarm Intelligence Single-stage Real-World

Yousef et al. (2016) CB-CTP GPU Based Genetic Algorithm Hybrid (Integrative) Single-stage ITC2007-Track3
Lohpetch and Jaengchuea (2016) PE-CTP Hybrid NSGA-II with Two LS techniques 

and a TS heuristic (HNSGA2LTS)
Hybrid (Integrative) Single-stage MN

2017 Goh et al. (2017) PE-CTP Tabu Search with Sampling and Perturba-
tion + Simulated Annealing with Reheat-
ing (TSSP + SAR)

Hybrid (Collaborative) Multi-stage Socha, ITC2002, 
ITC2007-Track2

Kiefer et al. (2017) CB-CTP Adaptive Large Neighborhood Search 
(ALNS)

Large Neighborhood 
Search

Single-stage ITC2007-Track3

Song et al. (2017) UCTP Genetic Algorithm Evolutionary 
Algorithm

Single-stage Real-World

Zhang et al. (2017) UCTP Ecogeography-Based Optimization (EBO) Evolutionary 
Algorithm

Single-stage Real-World

Wahid (2017) CB-CTP Harmony Search Algorithm (HSA) Hybrid (Integrative) Multi-stage Real-World
Aziz et al. (2017) UCTP Honey-Bee Mating Optimization with 

Adaptive Guided Variable Neighborhood 
Search (HBMO-AGVNS)

Hybrid (Integrative) Multi-stage Socha

Feng et al. (2017) UCTP Hybrid Genetic Algorithm (HGA) and 
Mixed Integer Linear Programming (MILP)

Hybrid (Integrative) Single-stage ITC2007

2018 Akkan and Gülcü (2018) CB-CTP Multi-Objective Genetic Algorithm + Hill 
Climbing + Simulated Annealing (MOGA 
+ HC + SA)

Hybrid (Integrative) Single-stage ITC2007-Track3

Song et al. (2018) UCTP Iterated Local Search (ILS) Simulated Annealing Multi-stage Hard
Gozali and Fujimura (2018) UCTP Reinforced asynchronous Island Model Ge-

netic Algorithm (RIMGA)
Evolutionary 
Algorithm

Single-stage Real-World

Matias et al. (2018a) UCTP Genetic Algorithm with Guided Search 
Technique

Hybrid (Integrative) Single-stage Real-World

Matias et al. (2018b) CB-CTP Genetic Algorithm with Guided Search and 
Self-Adaptive Neighborhood Strategies

Hybrid (Integrative) Single-stage ITC2007-Track3

2019 Goh et al. (2019b) PE-CTP Tabu Search with Sampling and Pertur-
bation + Simulated Annealing with Im-
proved Reheating and Learning (TSSP + 
SAIRL)

Hybrid (Collaborative) Multi-stage Socha, ITC2002, 
ITC2007-Track2

Hossain et al. (2019) UCTP Particle Swarm Optimization with Selec-
tive Search (PSOSS)

Swarm Intelligence Single-stage Real-World

Thepphakorn and Pongcharoen (2019) UCTP Particle Swarm Optimization Based 
Timetabling (PSOT)

Swarm Intelligence Single-stage Real-World

Rezaeipanah et al. (2019) UCTP Parallel Genetic Algorithm and Local 
Search (PGALS)

Hybrid (Collaborative) Single-stage BenPaechter

2020 Chen et al. (2020) UCTP Tabu search algorithm with controlled ran-
domization strategy (TSCR)

Tabu Search Single-stage Hard

Goh et al. (2020) PE-CTP Tabu Search with Sampling and Perturba-
tion with Iterated Local Search + Simu-
lated Annealing with Reheating with Two 
Preliminary runs (TSSP-ILS + SAR-2P)

Simulated Annealing Multi-stage Hard, Socha, 
ITC2002, 
ITC2007-Track2

Gülcü and Akkan (2020) CB-CTP Multi-Objective Simulated Annealing for 
Single Disruption (MOSA-SD), Multi-
Objective Simulated Annealing for 
multiple disruptions with Sample Av-
erage Approximation (MOSA-SAA)

Simulated Annealing Multi-stage ITC2007-Track3
15
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Table 12 (continued)

Year Authors Problem Algorithm Approach Single/Multi-Stage Dataset

Gozali et al. (2020) PE-CTP Localized Island Model Genetic Algorithm 
with Dual Dynamic Migration Policy (DM-
LIMGA)

Evolutionary 
Algorithm

Single-stage ITC2007-Track2, 
Telkom 
University

Thepphakorn and Pongcharoen (2020) UCTP Hybrid Self-adaptive Cuckoo Search-based 
Timetabling (HSCST)

Hybrid (Integrative) Single-stage Real-World

Thepphakorn et al. (2020) UCTP Hybrid Particle Swarm Optimization-based 
Timetabling (HPSOT)

Hybrid (Integrative) Single-stage Real-World

Unprasertporn and Lohpetch (2020) PE-CTP Hybrid Genetic-based Discrete Particle 
Swarm Optimization algorithm hybridiz-
ing with two different local search algo-
rithms including Local Search and Tabu 
Search (HGDPSOLTS)

Hybrid (Integrative) Multi-stage MN

2021 Rezaeipanah et al. (2021) PE-CTP Improved Parallel Genetic Algorithm and 
Local Search (IPGALS)

Hybrid (Integrative) Multi-stage BenPaechter, 
ITC2007-Track2

Thepphakorn et al. (2021) UCTP Hybrid Particle Swarm Optimization-based 
Timetabling (HPSOT)

Hybrid (Integrative) Single-stage Real-World

Song et al. (2021) CB-CTP Competition-guided Multi-neighborhood 
Local Search (CMLS)

Hybrid (Integrative) Multi-stage ITC2007-Track3

2022 Akkan et al. (2022) CB-CTP Multi-Objective Simulated Annealing 
(MOSA)

Simulated Annealing Single-stage ITC2007-Track3

Cruz-Rosales et al. (2022) UCTP Simulated Annealing with Cooperative 
Processes (SACP)

Simulated Annealing Single-stage MN

Wong et al. (2022) PE-CTP Genetic Algorithm with Tabu Search with 
Sampling and Perturbation (GA + TSSP)

Hybrid (Integrative) Multi-stage Real-World
have achieved high performance on the UCTP benchmark datasets and 
appear to be the trend (Chen et al., 2021).

This paper surveys (hybrid) meta-heuristic approaches for solving 
the UCTP proposed since 2015. The approaches are reviewed, catego-
rized, analyzed, and compared. Moreover, a detailed introduction of the 
UCTP problem and features of its benchmark datasets is provided. Fi-
nally, trends in the field are identified, and research opportunities in 
the UCTP are discussed. We strongly believe that this survey paper can 
be of great importance to the OR community in planning their research 
in the UCTP domain.

This survey paper reveals that there has been a shift towards hy-
brid meta-heuristic approaches in the literature since 2015 (refer to 
Table 9). These methods are common in both real-world and bench-
mark UCTP. In addition, a rise in incorporating mathematical optimiza-
tion and matheuristics in the UCTP can be observed, especially on the 
ITC2019 benchmark dataset, as shown in Table 6.
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