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American-style options are important derivative contracts in today’s worldwide financial
markets. They trade large volumes on various underlying assets, including stocks, indices,
foreign exchange rates, and futures. In this work, a penalty approach is derived and exam-
ined for use in pricing the American style of Asian option under the Merton model. The
Black—Scholes equation incorporates a small non-linear penalty factor. In this approach,
the free and moving boundary imposed by the contract’s early exercise feature is removed
in order to create a stable solution domain. By including Jump-diffusion in the models,
they are able to capture the skewness and kurtosis features of return distributions often
observed in several assets in the market. The performance of the schemes is investigated
through a series of numerical experiments.
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1. Introduction

The American-style Asian option is a kind of financial derivative that grants the holder the right, but
not the responsibility, to buy or sell an underlying asset at a certain price, known as the strike price,
on or before a particular date, known as the expiry date. Meanwhile, the Asian option differs from a
standard option in that the payoff is based on the average price of the underlying asset over a specific
period, rather than just the price of the asset at the expiration date.

Instead of just being able to exercise the option at the expiration date as in a European-style of
Asian option, the holder of an American-style Asian option has the right to exercise the option at any
time before the expiration date. This added flexibility can make American-style Asian options more
valuable than their European-style counterparts, but it also makes them more complex to price and
hedge. American-style Asian options are commonly used in financial markets as a tool for managing
risk and speculating on price movements. They are particularly useful in markets where prices are
volatile and difficult to predict, such as the stock market or commodity markets.

Basically, the equivalence between the American and European call prices is evident within the
Black—Scholes framework. However, a disparity arises in the price of put options, which persists within
Merton’s conceptualization of a numerical resolution for the challenge of pricing American options has
commanded considerable scholarly attention during the previous decade. Since analytical solutions
to Black—Scholes models of American option problems are challenging to find. The partial integro-
differential equation (PIDE) lends itself to various computational methods, such as the employment
of multinomial trees as described by [1] and the utilization of the utilization successive over-relaxation
method (PSOR) as elaborated by [2]. Furthermore, [10]| has documented a pricing framework for
Asian options with early exercise features under a jump-diffusion process, employing the Monte Carlo
simulation technique.
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Recently, the applications of the Penalty method to determine the price of American-style options
have become increasingly attractive and popular. Moreover, [3] has carefully studied the advantages
and disadvantages of three models: the stochastic volatility approach, the jump-diffusion model ap-
proach, and the deterministic volatility function approach. The jump-diffusion model has emerged as
exceptionally versatile. [6] demonstrated that the accuracy of the Black—Scholes model should be im-
proved by including discontinuous jump processes into the conventional stochastic process of geometric
Brownian motion (GBM). Notably, 7] pioneered such models for the study of option valuation, and
some studies that included jumps in the pricing model are [12-14]. Hence, we focused on developing a
penalty method for solving a PIDE problem. This mathematical model is the cornerstone for valuing
American-style Asian options featuring a jump-diffusion process. The methods draw upon the linear
complementarity problem and variational inequalities to yield the solution.

Essentially, the concept underlying the penalty method for evaluate the American-style of Asian
option is comparable to the strategy presented in [4] and [5] for American options with the jump-
diffusion process. The pricing of American-style Asian options with a jumps diffusion process using
the penalty method involves two steps. Firstly, the continuous component of the underlying asset price
process is modeled using a diffusion process, such as a geometric Brownian motion or a jump-diffusion
process. Secondly, the discontinuous component of the underlying asset price process is modeled using
a jump process, such as a compound Poisson process.

Since almost all options traded on exchanges include the American-style option with early exercises
feature, knowing that pricing of these options using a jump-diffusion model is practical and useful.
Computing the price of the American-style option is indirectly involves calculating the optimal exercise
policy where a decision maker determines when to terminate the system to optimize a specific objective.
Since the literature evaluating American-style Asian option pricing models with jumps in assets and
volatility is somewhat limited. Therefore, this study aims to contribute to this stream of literature.

2. Mathematical model of Asian option

To derive a pricing formula for Asian options, we consider S and A independent variables. This is
true because the value of S is independent of its past. Assuming that the option’s price is a function
of S, A, and ¢, let us denote it V' (S, A,t). Considering that A must satisfy the stochastic differential
equation. The payoff function of an Asian option is therefore provided as follows:

1 [T
where max(Ar — S,0).

Assuming dt is a small time step, it holds to the first order as follows:

At +dt) = Ay + dA,

1 t4-dt
— H—dt S, dr
Tt dt
= A — = dt + % dt.
Thus,
qa=2"Ay @)

The following partial differential equation (PDE) is fulfilled by applying the two-dimensional Ito’s

Lemma to the variable V (S, A, 1),
OV 1 2528V ov.  S—AoV

o T 052 S% t 0A v =0. (3)
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Due to two spatial dimensions of Equation (3), its solution will require more calculations than the
Black—Scholes equation. Since it is possible to reduce the dimensionality for the floating-strike Asian
options by a change of variables. Hence, consider change of variables defined as follows:

A

H:% and R:§.

We obtain the following partial derivatives of H with respect to S and A in terms of g—g using the
chain rule:

OH OHORA AOH  ROH

dS  OROSS S20R S OR’

0’H 0 AOH\ 2A0H AOR 0’H _ 2ROH R?0’°H

oS 85( 528R> - S30R S?20S OR?  S?2 OR * S2 OR?’

OH OHOR 0 (A\OH 10H

8—14_@8_14_8_A<§>@_§@'
Following that, we derive at the first order partial derivatives of V in terms of H as well as the partial
derivatives of H with respect to t and R,

ov 0 OH ROH OH
ot ~ag ) = HSGg =1 =S gog = H - Rop:
ov 0 OH 10H OH
oA~ 241 =551 = 55%r = ok

Next, we also derive the second derivative of V' with respect to S,
82_‘/ 9 H_|_Sa_H —28_H+5'82H _@8_H+@8_H+R_282H—R_282H
- 708 08?2 S OR S OR S 0?R2 S OR?’

952 ~ S a5
Substituting this into Equation (3) yields the following;:

oH 1 , ,R20°H OH S—AO0H
—+ = — H— — 4+ ———— —rSH =
S@t —1—20 S S IR +rS rSRaR—I— ) rS 0,
OH 1 , ,0°H OH 1-ROH
58t+20R8R2 TSR8R+S " 8R—O.
Then, by dividing with S, the price of the Asian option can be obtained as follows:
OH 1 4 ,0°H OH 1—-ROH
== 4 g R R 4
o 27 W or or T v ar =" )

where payoff function, H(T, R) = max(1 — R,0).
Boundary conditions. We employ boundary conditions by following [11], when the price of under-
lying asset, S — 0, then Equation (3) converges to

88_‘/ - _T‘/’
-
and as S — 0o, we have

2%

W 2 0-

This condition determined via the option payoff since it is a Dirichlet condition. Hence, Equation (3)
can be reduced to the PDE when S =0 and S — oc.

While for the American-style option, the price must satisfy the condition that V(S(7),7) >
V(S(7),0) at all times 7 over the option contract’s lifetime.

The boundary conditions for Equation (4) are straightforward, hence the convection term at R = 0
becomes %g—g. The option will not be exercise as R — oo, thus H — 0.

American-Style Asian option. The price for an American-style Asian option can be determined

by solving a variational inequality as given by following problem:
OH O*H OH 1-ROH

12 2
97 | lpppedi | pof 1T ROB
o T2 M err TR T 1 arm
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H>Q

OH 1 , ,0*H  OH 1-ROH

OH | 1 oped’f - 01 H_0

ar 27 Barr ~mlaR + 7 T oR )=
H(T,R) = Q(R),

where Q(7T', R) = max(l — R,0) on R and we conclude that H satisfies the PDE. Hence, these are
numerical difficulties that needs to be dealt with when we are to solve this equation.

Incorporation of jumps. Consider time dt and underlying asset S follows the stochastic process
under jumps diffusion environment as follows:

dS = uwSdt+ oSdB + (¢ — 1)S dp, (5)

where p = ry — dy — M\iky represented the drift rate, the volatility is represented by o, the dB denoted
as a GBM process, and dp stands for Poisson process. An identically independent distributed random
variable, k; = F(q; — 1), which r depends on ¢, indicated the expected relative jump size with k(¢).
Here, impulse function ¢; — 1 generates a jump from S to S¢;. It is crucial that dp = 1 with probability
Adt and dp = 0 with probability 1 — Adt, where \ is the Poisson arrival intensity, which is the expected
number of event that occur per unit time.

Consider V (¢, .5) as the option values based on the time ¢ and the underlying asset price S. Then,
determine the value of V' by solving the PIDE as follows:

ov ov 1 o0*V

oV oV 12529V U —
5 —i—utSaS +3 S 552 + AE[AV] —rV =0, (6)
where E[AV] represent in the following equation
E[AV] = / V(Sq) g(q)dg —V, (7)

and the expectation operator for the given equation is represented by FEJ[]. Next, we can apply the
reversal time 7 = T — ¢, u(1) = r(7) — M(7)k(7), where T is the expiry time of the option and r is
the continuously compounded risk-free interest rate, and g(g) is the probability density function of the
jump amplitude ¢ with the properties that for all ¢, g(q) > 0:

_ 1 ~ (log(q) = v)?
9(q) = N p{ BT } (8)

where p? is the variance of the jump size probability distribution and v is the mean. Since, the
expectation operator can be represent in the following form:

k(r) = Elq(r) — 1] = exp (u + ”—5) ~ 1.

The PIDE given by Equation (6) can be rewritten as follows:
ov ov 1
5 =S 5e + 50 252852+>\/ q)dg — (A —7)V. (9)

Hence, Equation (4) leads to the pricing formulae for Asian option under jump-diffusion environment
as provided in the following proposition.

Proposition 10. The pricing formula for an Asian option under jump-diffusion environment is given
by

OH | 1 5000°H OH ROH /H
ot 37 ome 9\

—(A—r)R% + ——+)\

oR Tt =0 (10)

3. Discretization

Following the approach described in [9], we transform the integral in Equation (10) into a correlation
integral. Hence, the fast Fourier transform (FFT) method could be implemented to evaluate the
integral term for all values of S in the jump diffusion process.
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By defining the log-price of the underlying asset as x = log .S and using the transformation of
y =logq, and ¢ = €Y, we can have the following operator:

wa—/mvw@mw@

“Jo
_ /_ H(x + 2)f(2)dz =: J(),

where f(z) = g(e*)e* and V(y,7) = V(e¥, 7). Note that f(z) is the probability density of a jump size
of y = log gq. Hence, the discrete form of the correlation integral is

M
2
J(.Z'Z) = Z V;‘_i_jfjAZ, (11)
j=—2%+1
for all feasible i, where V;, = V(kAz) and
fm e [
;= —— z)dz.
! Az j—%)Az
We utilize a fully implicit approach for the standard PDE and a weighted time-stepping approach for

the jump integral part to avoid algebraic complexity. The discrete equations can therefore be expressed
as follows:

V"L + (o) + Bi + 7 + a)AT] — A3 VI — Ara Vi

j=M/2 j=M/2
=V =0)ATA Y VML) [Ay+0ATA Y (V™) Ay, (12)
j=—M/2+1 j=—M/2+1

where the weighting variables # = 0 and # = 1 correspond to an implicit and explicit handling of the
jump integral, respectively.

4. Numerical results

This section demonstrates a numerical solution to the PIDE to evaluate the American-style Asian
option with the jumps-diffusion process. The penalty method presents a trade-off between early exercise
and continuation values which affects the option price. However, the frequency and timing of early
exercise decisions can be significantly impacted by the existence or absence of price movements in the
asset. Algorithm 1 describes the implementation of the Penalty method in option pricing. According
to [8], setting p to the tolerance TOL is an ideal choice. Hence, p = TOL = 10~* has been set in the
implementation.

Algorithm 1 The Penalty Method.

1: Function PENALTY METHOD H, A, f,b,p,TOL

2: res(x) « f+ %max(b —z,0) — A,

3: Define matrix-valued function J with the ij:th component
4: Jij(x) ¢ Aij + 1

5: repeat

6: Hprevious — H

7 H + Hprevious + J(Hprevious)_ITeS(Hprevious)

8: until |[H — Hprevious| < TOL

9: return H

MATLAB is used to program all computations. The parameters of the numerical simulations have
been applied: r =02, T =1, 0 =03, K =100, A =0.2, 0 =05, v = 0.2, ¢ = 0.5, and v = 1.
Figure 1 shows the numerical solution of the PIDE with the penalty term to find the price of the
American-style Asian options jumps diffusion process comparing to the payoff function. Notice that
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the option value starts above the payoff function due to the penalty factor. However, as the algorithm
converges, two curves get closer. This convergence reassures that the numerical solution approaches
the actual option value.

100 ; ; ; 100 ‘ ; ; ; ; ; ; ; ;
90 Payoff , 90 il
80 B 80 I 4
70 B 70t 4
<]
=}
60 1 = 60 .
= >
%) —
250 1 S 50 1
= & 0
5
40 B 40 4
30 B 30 4
20 . 20 .
10 . 10 .
0 L L L L L L n 0 L L L L L L L I I
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
S S
Fig.1. Price American-Style Asian Option under Fig.2. Error of Evaluating the American Option
Jumps Diffusion Process. with Penalty Method.

Figure 2 documents the error, which represents the error at each time step, calculated as the
absolute difference between the numerical and actual options values.

5. Conclusion

In conclusion, the penalty method is valuable for handling the early exercise feature in American op-
tions. It transforms the problem of solving optimal exercise time into a mathematical optimization
problem by introducing a penalty term that discourages early exercise. This approach offers a straight-
forward and effective means to encompass both the continuous and discontinuous components of the
asset price dynamics.

To price American-style Asian options with a jump-diffusion framework, we have employed and ana-
lyzed a finite difference scheme designed to approximate the non-linear partial integro-differential equa-
tion. The evaluation of the correlation integral was accomplished by utilizing the Fast Fourier transform
(FFT) method. A penalty term was seamlessly integrated into the original partial integro-differential
complementarity problems to ensure compliance with the constraints inherent in the American-style
option model. Numerical simulations that underscore its effectiveness have been conducted to sub-
stantiate the applicability of the penalty method in the valuation of American-style Asian options.
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MeToa wTpady ANA UIHOYTBOPEHHA B aMepuKaHCbKOMY CTui
a3iaTCbKOro onuioHy 3 npouecom aundysii cTpubkis

Jlaxam M. ®@.!, I6parim C. H. 1.1:2

L Inemumym mamemamunnux docaiosrcerv,
Vnisepcumem Ilympa Manaiizis,
48400 UPM Cepdane, Manratizis

2 Kaedpa mamemamury ma cmamucmury,
Paxysvmem npupooHUNUT HAYK,
Ywieepcumem Ilympa Manatisii,

48400 UPM Cepdane, Manratizis

OmniioHn B aMEPUKAHCHKOMY CTUJI € BasKJUBUMU TOXITHUMHU KOHTPAKTAMHU HA CYJACHHUX
cBiTOBUX (biHAHCOBUX pMHKaX. BOHM TOPryooTh BeauKuMHU oOcsramMu pizHHUX 0a30BUX aK-
TUBIB, BKJIIOYAIOYHN aKIIil, 1HIEKCH, KypCU 1HO3eMHOI BaIOTH Ta (’rouepcu. Y 1iiit poboTi
BUBEJEHO Ta, JIOC/III?KEHO TiXia mrpady /s BUKOPUCTAHHS B IIHOYTBOPEHHI a3iaTChKO-
r'o OIIOHY B aMepHKaHCHKOMY CTHJi 3a Mmojento Meprona. Pisuauus Biaexa—Illoysisa
MICTUTD HEBEJUKHUI HeJiHilHM mrpadHuit KoedimienT. Y 1IbOMy MiIxXoAi BiabHA Ta Py-
XoMa MeXKa, HaKJaJdeHa (DYHKIEI PAHHHROIO BUKOHAHHS KOHTPAKTY, BUJIAJISETHCS, MO0
CTBOPUTH CTi#iKy 00J1acTh PO3B’si3Ky. BrimouuBmm B Mojiesni cTpubKoOnomiony audysiio,
BOHH MOXKYTb BJIOBUTH OCOOJIMBOCTI acMMETPil Ta eKCIeCy PO3MOILTY TPUOYTKY, AKi 9acTO
CITOCTEPITaloThCs B JEKIJIHBKOX aKTUBaxX Ha PUHKY. KeKTuBHICTH cxeM IOCTiIKYEThCS 3a,
JOIIOMOTOIO Cepil YNCeIbHUX eKCIIEPUMEHTIB.

Knw4osi cnosa: amepuxancokull sapianm; asiamcvkul eapianm; cmpubronodioro-
Jugpysitinut npouec; memod wmpadghy.
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