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Abstract: With increasing public demand for ready-to-eat fresh-cut fruit, the postharvest industry
requires the development and adaptation of monitoring technologies to provide customers with
a product of consistent quality. The fresh-cut trade of pineapples (Ananas comosus) is on the rise,
favored by the sensory quality of the product and mechanization of the cutting process. In this paper,
a multispectral imaging-based approach is introduced to provide distribution maps of moisture
content, soluble solids content, and carotenoids content in fresh-cut pineapple. A dataset containing
hyperspectral images (380–1690 nm) and reference measurements in 10 regions of interest of 60 fruit
(n = 600) was prepared. Ranking and uncorrelatedness (based on ReliefF algorithm) and subset
selection (based on CfsSubset algorithm) approaches were applied to find the most informative
wavelengths in which bandpass optical filters or light sources are commercially available. The
correlation coefficient and error metrics obtained by cross-validated multilayer perceptron neural
network models indicated that the superior selected wavelengths (495, 500, 505, 1215, 1240, and
1425 nm) resulted in prediction of moisture content with R = 0.56, MAPE = 1.92%, soluble solids
content with R = 0.52, MAPE = 14.72%, and carotenoids content with R = 0.63, MAPE = 43.99%.
Prediction of chemical composition in each pixel of the multispectral images using the calibration
models yielded spatially distributed quantification of the fruit slice, spatially varying according to the
maturation of single fruitlets in the whole pineapple. Calibration models provided reliable responses
spatially throughout the surface of fresh-cut pineapple slices with a constant error. According to
the approach to use commercially relevant wavelengths, calibration models could be applied in
classifying fruit segments in the mechanized preparation of fresh-cut produce.

Keywords: dimensionality reduction; hypercube; quality evaluation; wavelength selection

1. Introduction

Pineapple, Ananas comosus L., is the third most important tropical fruit, in terms of
international trade, after banana and citrus. Pineapple is a good source of vitamin C,
provitamin A and vitamin B, contains nutritionally valuable minerals such as calcium,
magnesium, phosphorus, and iron, and, most important for fresh-cut products the circular
use of by-products is under development in much of the research undertaken at present [1,2].
Therefore, pineapple is considered one of the most critical commercial fruits in the world,
with demand seeing a static rise year after year throughout the past decade, a phenomenon
practically unique in the fruit sector [3]. Due to its large size, firm texture, and time-saving
process of mechanized peeling, pineapple is a fruit suitable for minimal processing in
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the form of fresh-cut. Fresh-cut fruit are products that are partially processed (including
peeling, slicing, dicing, or chopping) and are either ready to consume or packaged.

Fresh-cut pineapple may be offered to the market in either canned form or in regular
packaging. The factors that affect the quality of fresh-cut pineapple include the cutting
method, sanitation in preparation, the packaging technique, cold storage chain, and fruit
chemical composition. Among these, the latter, because of affecting the appearance and
aroma, is of great importance for consumers [4,5]. Pineapple develops a low respiration
rate due to the non-climacteric traits and good storability of the fruit. In recent years, new
packaging methods based on modified atmosphere conditions have been developed in
order to further increase the shelf life of fresh-cut pineapple and particularly to maintain
visual quality and to reduce microbial growth [6,7]. The success of these methods is depen-
dent on the initial quality and level of chemical composition of pineapple [8]. Achieving
this goal of prolonged shelf life requires technologies that can non-invasively determine
the visual quality and quality-related chemical composition of fresh-cut pineapple before
packaging as fresh-cut. In this way, it is possible to remove fruit or fruit parts of lower
quality or aim at conforming pieces in one package before packaging. The morphology of
the fruit is challenging, which consists of many individual fruitlets developing from flowers
showing various flowing time. The variation in the developmental stage of fruitlets may
lead to gradients of chemical composition within the entire fruit. The intra-fruit variation
of chemical properties results in varying raw materials for the fresh-cut product [9].

Non-destructive spectroscopy was applied earlier in the pineapple to analyze fruit
quality [10] and physiological disorders [11] based on ‘point’ spectroscopy. However, the
spatial variability of pineapple is requested to consider the spatial variability within the
fruit. Therefore, an imaging sensor system would be necessary. In the past two decades,
hyperspectral imaging has been widely used for the quality assessment of fruit, vegetables,
and other food materials due to its ability to simultaneously acquire spatial and spectral
information and generate maps of chemical composition [12,13]. Various studies have
reported the performance of predictive/classification models developed with data acquired
from hyperspectral imaging. However, due to the time-consuming image acquisition, big
size of acquired data (hypercubes), and equipment cost, hyperspectral imaging cannot
be used for real-time applications, which require high speed in production lines. Instead,
hypercubes can be analyzed to find wavelengths showing the highest correlation between
spectral data and quality indices of interest. This led to the development of multispectral
imaging systems, which compared to hyperspectral imaging systems, are not only cheaper
but also suitable for online applications [14].

Since a multispectral image consists of several image channels, each taken from a
specific wavelength, it can be acquired using filter-based or light-based methods. In the
filter-based approach, the scene is illuminated by a broad-band light source in the desired
wavelength range. Then, successive images of the scene are captured by a camera equipped
with a wheel containing bandpass optical filters of the selected wavelengths. In the light-
based approach, the scene is illuminated successively by different light sources (such as
LED or divergent laser light) emitting light only at the selected wavelengths and then
multispectral images are created by combining the acquired monochromatic images [15].
Although numerous studies have been conducted to find the optimal wavelengths for
predicting various quality indices of fruit and vegetables [16,17], what remained incomplete
in most of the research is the disregard for the availability/accessibility of the filters or light
sources commercially in the chosen wavelengths and also, sometimes, the large number of
chosen wavelengths. However, the economic success of an application of the technology
depends on the availability and costs of the system components, which means filters or
light sources need to be commercially available in the selected wavelengths, and secondly,
the number of selected wavelengths is as low as possible. Furthermore, the visible and
shortwave near infrared wavelength range is preferred, since the receivers are available
at a lower cost. Therefore, it is necessary to develop methods for selecting the optimal
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wavelengths that consider both the economic aspect and the feasibility of developing a
multispectral system based on the selected wavelengths.

Consequently, this research aimed to introduce a practical approach to create a
multispectral system for generating distribution maps of chemical composition in fresh-
cut pineapple. The aim of the study was approached through the following objectives:
(i) registering the hyperspectral data with RGB images to find the spatially distributed
measuring points of chemical analysis, (ii) selecting wavelengths where not only bandpass
optical filters or light sources (LED or laser) are commercially available, but also showing
more correlation between spectral data and changes in the chemical composition of the
pineapple fruit, and (iii) developing regression models based on the selected wavelengths
and generating distribution maps of chemical composition in fresh-cut pineapple.

2. Materials and Methods
2.1. Data Acquisition

In order to capture variation in the chemical composition of the fruit, 60 fresh pineap-
ples of different varieties, produced in different geographical origins in Costa Rica (10 fruit
from each origin), were bought from a fruit import company in Potsdam, Germany. Im-
mediately after transferring pineapples into the laboratory, some physical properties were
measured, including mass (g), height (cm), and arithmetic mean diameter (cm). In the
middle part of each fruit, a 30-mm-thick slice was made along the stem axis. A sharp knife
was used for cutting, and the utmost care was taken to avoid damaging the flesh of the
fruit in the sliced area. Immediately after cutting the samples, hyperspectral images were
acquired. Then, ten cylindrical samples were mechanically extracted using a cork borer
(diameter = 18 mm) from different positions of each slice following a similar pattern [18].
Afterwards, an RGB image of the fruit slice, in which the locations of extracted cylindrical
samples were identified, was taken. Subsequently, each cylindrical sample (n = 600) was
divided into two sections: one section was used to measure the moisture content (MC, in %)
by oven-drying (85 ◦C) until the weight remained stable, usually after 48 h [19]. The water
content was calculated by the mass difference as a percentage of mass before drying. The
other section was subjected to refractometric (DR 301-95, A. Krüss Optronic, Germany)
readings of soluble solids content (SSC, in %), titratable acidity (TA) analyzed by titration
at pH of 8.2 (citric acid, in g/100 mL), and carotenoid content (CC, in mg/100g DM). To
measure total carotenoids content, first, the flesh tissue of fruit underwent homogenization
using an UltraTurax T18 homogenizer from IKA Works, USA, with the continuous addition
of 80% acetone from Roth, Germany, and a small amount of calcium carbonate. This process
effectively separated the organically dissolved pigments from the remaining tissue, which
were then collected using a G3 filter and combined to reach a 100 mL volume of acetone-
pigment extract. To transfer the chromophoric compounds from the polar phase in acetone
to the hexane phase in diethyl ether, a small amount of water and 25 mL of diethyl ether
from Merck, Darmstadt, were added. The spectral absorption of this phase was recorded in
cuvettes with 10 mm pathlength in transmittance geometry within the wavelength range of
350–850 nm with 0.5 nm resolution (Lambda 950, Perkin Elmer, Waltham, MA, USA). From
the spectra obtained, carotenoids’ contents were calculated using the iterative multiple
linear regression, iMLR, and related to the dry mass of the fruit’s cylindrical sample [20].

2.2. Hyperspectral Imaging

A hyperspectral imaging system in the visible-near infrared (VIS-NIR) wavelength
range was used to acquire hypercubes in reflectance mode. This system consists of two spec-
trographs and two cameras: one with a working range of 380 to 1000 nm (Spectrograph:
ImSpector V10E, spectral resolution: 2.8 nm, Specim Spectral Imaging Ltd., Oulu, Finland;
Camera: Pixelfly qe b/w, 696 × 512 pixels, PCO AG, Kehlheim, Germany) and the other
with a working range of 860 to 1690 nm (Spectrograph: ImSpector N17E, spectral resolu-
tion: 5 nm, Specim Spectral Imaging Ltd., Oulu, Finland; Camera: Xenics XEVA-USB 2.0,
320 × 256 pixels, Xenics, Leuven, Belgium). The lighting unit was composed of a stable
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light source (Model 3900 (Smart-Lite), 150 W halogen lamp, Spectral Output: 400–2200 nm,
Illumination Technologies Inc., Onondaga County, NY, USA), an optical fiber, and a linear
light deflector. Hypercubes were acquired at a distance of 60 cm from the surface of fruit
slices by the push-broom method.

In this system, instead of moving the samples against the spectrograph, a two-mirror
mechanism was employed as described earlier [21]. This mechanism provides the possibil-
ity of scanning the scene only by rotating the mirrors without need of movement of sample
or spectrograph. One of the mirrors was fixed, in which the image of the scene was reflected.
The second mirror, which was placed at an angle to the fixed mirror, was movable and its
rotation was provided by a stepper motor. By rotating the movable mirror and changing its
angle with respect to the fixed mirror, the scene in front of the spectrograph slit is changed
and thus a linear scan of the scene is provided. Line-by-line scanning continued until the
spectral signature of each fruit slice was acquired. In order to increase the signal-to-noise
ratio, hyperspectral imaging was performed in a dark room, and the exposure time was set
between 20 to 30 milliseconds. The control of hyperspectral imaging system was performed
by using an in-house software (HyBis 1.0 datalog, ATB, Potsdam, Germany), which was
developed in LabVIEW (ver. 8.6, National Instruments, Austin, TX, USA).

2.3. Image Registration

The region of interest was defined by the cylindrical samples extracted from fruit
slices after acquiring hyperspectral images. To specify the location of the cylinders on the
hyperspectral images, the image taken from the fruit slice after extracting the samples
should be registered on the hyperspectral images taken from the same fruit slice (Figure 1).
The registration process was performed utilizing a series of control points and transfor-
mation functions, which link the corresponding pixels from the distorted image (image
taken from the fruit slice after sample extraction) to the reference image (hyperspectral
images). Three different types of functions were used for image registration and compared
considering the least registration error [22]:

(1) Non-reflective similarity: This transformation is used when shapes in the distorted
image are unchanged, but the image is distorted by some combination of translation,
rotation, and scaling. Straight lines remain straight, and parallel lines are still parallel.

(2) Affine: It is applied when shapes in the distorted image exhibit shearing. Straight lines
remain straight, and parallel lines remain parallel, but rectangles become parallelograms.

(3) Projective: It is used when the scene appears tilted. Straight lines remain straight, but
parallel lines converge toward a vanishing point.

Three binding head screws were placed on the fruit slices before taking hyperspectral
images in order to extract the control points correctly. The slit at the head of the screws
was used as a guideline to extract the control points. A total of 9 points were extracted
from each screw in the fruit slice. The location of 6 points was at the beginning and end of
the slit at the screws’ head, which were used as control points for registration operations.
The other 3 points were selected in the middle of the slit at the screws’ head, which were
used as checking points to assess the accuracy of the registration process (Figure 1). The
root mean square error (RMSE) and mean absolute percentage error (MAPE) metrics were
applied to evaluate the performance of registration functions.

RMSE =

√
∑N

i=1(ŷi − yi)
2

N
(1)

MAPE =
∑N

i=1

∣∣∣ ŷi−yi
yi

∣∣∣
N

× 100 (2)

where, yi, ŷi, and N are target (actual) value, output value, and total number of samples,
respectively.
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Figure 1. Control points (no. 1 to 6) and check points (no. 7 to 9) for image registration. Left, middle,
and right are RGB images of a fruit slice containing the location of samples (holes), 3-channels (460 nm,
550 nm, and 640 nm) image of VIS-SWNIR hyperspectral setup, and 3-channels (1067 nm, 1264 nm,
and 1426 nm) image of NIR hyperspectral setup, respectively.

Finally, the best registration function was selected considering the lowest value of
error metrics for the 60 fruit slices examined, resulting in low registration errors using
the affine transformation function (Figure 2). Subsequently, the registered images were
processed using the Hough transform method to extract the samples’ location on the slices,
which are circular [23]. Since the location of the samples extracted from each fruit slice was
determined in the mask image, the mean spectra of the pixels in each segmented sample
was used as the spectral signature related to that sample for subsequent analysis. Image
registration and mask generation were performed in MATLAB programming environment
ver. R2015b (The MathWorks, Inc., Natick, MA, USA). Implementation of the mask image
on hypercubes and the extraction of samples mean spectra were performed in ENVI (ver. 4.8,
L3HARRIS, Melbourne, FL, USA).

2.4. Spectra Pre-Processing

To isolate the acquired hyperspectral images from the thermal noise of the sensor, the
light intensity was corrected using the pure white and black spectra. The black cap of the
hyperspectral system lens was placed on it, and the resulting spectrum was saved as the
black reference spectrum (BH). A standard white Teflon sheet with a reflectance of 99% was
also used to obtain the white reference spectrum (WH). Finally, the acquired hyperspectral
images (IH) were corrected (RH) using the following formula:

RH =
IH − BH

WH − BH
(3)
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Figure 2. Image registration by affine transformation function and generating mask image capturing
the VIS-SWNIR hypercube (left column) and the NIR hypercube (right column).

Pixel binning was performed considering all the pixels located in the regions of
the fruit slice from which the samples were extracted. Therefore, the mean spectrum of
the pixels located in the region corresponding to each sample was taken as the spectral
signature of that sample. Also, smoothing based on the Savitzky–Golay algorithm was
used to remove random noise from the corrected hyperspectral images. Spectral inspection
showed that the spectral points located below 420 nm and above 1600 nm still appeared
noisy due to the low photon sensitivity of the camera sensor at both edges. Therefore, the
spectral data corresponding to those regions were removed. Since the setup used in this
study consists of two hyperspectral imaging units, the spectra acquired from them (the
ranges 420–1000 nm of the VIS-SWNIR spectrum and 1000–1600 nm of the NIR spectrum)
were integrated into one spectrum in the range 420–1600 nm for subsequent analysis.
Pre-processing of hyperspectral images included light intensity correction and further
increasing the signal-to-noise ratio performed in MATLAB (ver. R2015b).

2.5. Wavelength Selection Process

In this research, lists of commercially available optical equipment for the develop-
ment of multispectral systems were prepared from the internet (Google search engine,
www.google.com, accessed on 8 July 2023) utilizing the keywords “bandpass optical filter”,
“LED”, “laser”, and “wavelength” in the range of 420–1600 nm with an interval of 5 nm.
One list included bandpass optical filters for filter-based multispectral imaging, and the
other list included light sources (LEDs and lasers) for light-based multispectral imaging.

www.google.com
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Then, for all the acquired spectra of the samples, only the spectral data in the wavelengths
that were commercially available were kept. Subsequently, the wavelength selection was
performed on the remaining spectral data. In this research, two approaches were consid-
ered for selecting optimal wavelengths. The hypothesis used for these approaches is that
a good wavelength subset is one that contains wavelengths highly correlated with fruit
chemical composition, yet uncorrelated with each other. The wavelength selection process
was completed in WEKA (ver. 3.8.6, Waikato Environment for Knowledge Analysis) data
mining software [24].

2.5.1. Approach 1: Ranking and Uncorrelatedness

In this approach, the existing wavelengths in the spectrum were ranked according
to the highest degree of correlation with the changes in the chemical composition of the
fruit by the ReliefF method [25], in descending order. Since highly correlated wavelengths
contain identical spectral information, the existence of one of them that has obtained a
better rank in correlation with changes in the chemical composition of fruit is sufficient.
Therefore, the correlation between the first 20 wavelengths, which had the highest rank
according to the ReliefF method, was calculated with each other. Next, the correlation
of the first wavelength with the second to twentieth wavelengths was calculated and the
wavelengths that had a high correlation with the first wavelength (R > 0.8) were removed.
Then, the correlation between the second wavelength and the remaining wavelengths was
calculated, and the wavelengths that a had high correlation with the second wavelength
were removed. This process was repeated for the remaining wavelengths, and up to the
first six ones were introduced as the best wavelengths.

2.5.2. Approach 2: Subset Selection

In this approach, a subset of the wavelengths in the spectrum is extracted using
the CfsSubset method [26], which in combination with each other provides the highest
correlation with changes in the fruit’s chemical composition. The BestFirst algorithm was
used to search the space of wavelength subsets by greedy hillclimbing augmented with a
backtracking facility. The value of a subset of features is evaluated, taking into account the
individual predictive ability of each feature along with the degree of redundancy between
them. A subset of features that are initially highly correlated with the dependent variable
(here, fruit chemical composition) and secondly have low intercorrelation with each other is
selected as the most appropriate subset. If the number of wavelengths in the subset selected
by CfsSubset is more than six, other subsets are generated from it in such a way that all
cases where subsets have six members are considered. Then, the correlation of each of
the six-member subsets with the changes in the fruit’s chemical composition is calculated.
Finally, the subset with the highest correlation is selected as the subset containing the
best wavelengths.

2.6. Calibration Models

Multilayer perceptron artificial neural networks (MLPs) with four neurons in the
hidden layer were used as calibration models to predict the chemical composition of
fresh-cut pineapple based on the intensity of reflected light at selected wavelengths as
the models’ input and values of reference measurements of chemical composition as their
output. The activation function in the hidden layer was chosen as the tangent sigmoid
function. The Levenberg–Marquardt algorithm was used to train the networks iteratively.
The learning rate, maximum validation failures, mean square error stopping threshold, and
the number of epochs of the network were adjusted to 0.3, 15, 0.0001, and 500, respectively.
The ‘trial and error’ approach was used to find the best selected wavelength set, considering
20 replications for models’ calibration for prediction of each chemical composition. Since
none of the reference measurement data for each origin of pineapple fruits were more spread
over the entire range of reference measurements for all origins (Section 3.1), it was not
possible to put aside the data from one origin for validation of the models. Instead, before
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training of the models, two pineapples of 10 fruits per origin were randomly selected in
order to use them for validation of the MLP calibration models and to generate distribution
maps of chemical composition. Hence, 20% of the total number of samples was included
in the internal validation set (2 [fruit/origin] × 10 [sample/fruit] × 6 [origin] = 120). For
the rest of fruit, the data from all samples, regardless of their origin, were first randomly
shuffled and then it was divided into two parts for calibration (390 samples, 65% of the data)
and cross-validation (90 samples, 15% of the data) using the random sample partitioning
method. The correlation coefficient (R), RMSE, and MAPE of the calibration and cross-
validation stages were then used as a measure of performance to compare models trained
with different selected wavelengths set. The models were chosen as the optimal one, which
demonstrated the highest R and the lowest RMSE and MAPE in the calibration and cross-
validation stages. Finally, the networks with an optimum selected wavelength set were
validated on a set of unseen data to confirm their accuracy. Preparing data and creating
predictive models were performed in MATLAB ver. R2015b.

2.7. Statistical Analysis

Descriptive statistics and significant differences in the chemical composition of pineap-
ples from different origins were obtained using analysis of variance (ANOVA). The mean
difference between the chemical composition and all origins was determined by Tukey’s
test (p < 0.05) using the SAS software (vers. 9.4, SAS Institute, Cary, NC, USA).

3. Results and Discussion
3.1. Statistical Analysis of Chemical Data

The physical properties of the fruit show no significant difference among the geometric
mean diameter of the samples in different origins (p < 0.05). Since the height of the samples
of Origin 4 and 5 was somewhat larger than other origins, the fruit of Origin 4 and 5 were
significantly heavier than other origins (p < 0.05). Therefore, in general, the samples in
Origins 1 to 3 and Origin 6 were of the same size and weight category (Table 1).

Table 1. Descriptive statistics of chemical composition of pineapples (N = 60) from different origins.

Origin No. Mass (g) Height (cm)
Arithmetic

Mean
Diameter (cm)

Moisture Content
(MC, in %)

Soluble Solids
Content (SSC,

in %)

Titratable Acidity
(TA, in %)

Carotenoids
Content (CC, in
mg/100 g DM)

Origin 1 1146 b ±
337

14.30 bc ±
2.57

10.02 a ±
0.64

86.51 b ±
1.34

13.02 a ±
1.19

0.96 a ±
0.07

0.34 ab ±
0.12

Origin 2 1053.2 b ±
88.6

12.80 c ±
0.95

13.37 a ±
9.95

86.70 ab ±
2.24

12.42 ab ±
2.19

0.95 a ±
0.21

0.42 a ±
0.05

Origin 3 1165.5 b ±
84.7

13.75 bc ±
0.49

10.33 a ±
0.55

85.14 b ±
1.81

13.76 a ±
1.17

0.92 a ±
0.15

0.35 a ±
0.12

Origin 4 1604.6 a ±
133.8

16.60 a ±
0.99

11.03 a ±
0.63

88.54 a ±
1.28

10.52 b ±
1.63

0.98 a ±
0.16

0.23 bc ±
0.10

Origin 5 1521 a ±
377

15.55 ab ±
2.09

10.83 a ±
0.90

86.13 b ±
0.58

12.92 a ±
0.53

0.61 b ±
0.14

0.35 ab ±
0.09

Origin 6 1358 ab ±
320

14.00 bc ±
1.87

11.07 a ±
0.73

86.35 b ±
1.10

13.18 a ±
0.91

0.93 a ±
0.17

0.21 c ±
0.11

All origins 1308 ±
316.2

14.50 ±
2.01

11.11 ±
4.05

86.56 ±
1.75

12.64 ±
1.74

0.89 ±
0.19

0.32 ±
0.10

Data represents the mean ± standard deviation. Different letters within the same column indicate statistical
difference by the Tukey’s test (p < 0.05).

The MC values of pineapples ranged from 85.14 to 88.54% for Origin 1 until Origin
6. Origin 4 (88.54%) recorded the highest MC values of pineapples, followed by Origin
2 (86.70%) and Origin 1 (86.51%), respectively. It was observed that the MC values of
pineapples appeared different (p < 0.05) for all origins. Similar findings of MC were
obtained by Padrón-Mederos et al. [27], ranging between 84.0 and 88.6%. In contrast,
Origin 3 (13.76%) had the highest SSC values, with the lowest values recorded by Origin 4
(10.52%). It was also revealed that the SSC values of pineapples were different (p < 0.05)
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considering all origins (Table 1). The SSC values increased in pineapples which could be
elucidated by starch conversion to sugar during storage [28].

The TA of the pineapples ranged between 0.61 and 0.96% citric acid (Table 1). In
addition, the TA values of pineapples differed (p < 0.05) for all origins. Origin 4 (0.98% citric
acid) recorded the highest TA values of pineapples, followed by Origin 1 (0.96% citric
acid) and Origin 2 (0.95% citric acid), respectively. The changes in TA could be attributed
to the organic acid formation and degradation reaction during the ripening process of
pineapples [29]. On the other hand, the CC values of pineapples ranged from 0.21 to
0.42 mg/100 DM. The lowest CC values were obtained in Origin 6 whereas the highest CC
values were found in Origin 2, respectively. The CC values of pineapples had significant
differences (p < 0.05) for all origins. It can be denoted that the carotenoids’ synthesis
determined the progression of the orange or yellow color of the pineapple flesh [30].

3.2. Image Registration

Overall, the registration error was low for all transformation functions (MAPE < 2.25%,
Table 2). In the two registration modes with VIS-SWNIR images and NIR images, affine
transformation showed the best performance and projective transformation showed the
worst performance. These results indicate that, compared to the hyperspectral images, the
images taken from the fruit slice after extracting the samples suffered from shearing and
scaling because the camera is not entirely perpendicular to the surface of the slices and,
also, it is closer to the surface of the slices. Therefore, the affine transformation function
was used to perform registration operations on hyperspectral images of all fruit slices.
Another advantage of the affine function is its ease of use in addition to its higher accuracy.
Three control point pairs are required to perform image registration operations using this
transformation function. The need for fewer control points increases the speed of image
registration operations.

Table 2. The error metrics in control and checking points for evaluating three transformation functions
applied for image registration of pineapple slices.

Transformation
Function

VIS-SWNIR NIR

RMSEReg
(Pixel) MAPEReg (%) RMSECh

(Pixel) MAPECh (%) RMSEReg
(Pixel) MAPEReg (%) RMSECh

(Pixel) MAPECh (%)

Non-reflective
similarity

2.85 ±
1.15

0.52 ±
0.17

3.09 ±
1.81

0.56 ±
0.26

2.21 ±
0.65

0.84 ±
0.27

2.25 ±
1.02

0.82 ±
0.25

Affine 1.48 ±
1.29

0.25 ±
0.14

1.81 ±
1.84 0.28 ± 0.16 1.17 ±

0.45
0.45 ±

0.16
1.29 ±

1.02
0.49 ±

0.32

Projective 2.40 ±
3.94

0.43 ±
0.69

2.82 ±
3.19

0.55 ±
0.65

1.25 ±
0.83

0.48 ±
0.32

2.45 ±
2.83

1.02 ±
1.22

Data represents the mean ± standard deviation of 10 fruit slices. RMSEReg, MAPEReg, RMSECh, and MAPECh stand
for root mean square error of registration (control) points, mean absolute percentage error of registration points, root
mean square error of checking points, and mean absolute percentage error of checking points, respectively.

3.3. Wavelength Selection

The spectral data were filtered based on the wavelengths at which light sources were
commercially available (Figure 3) and then the optimum wavelengths were identified by
“ranking and uncorrelatedness” and “subset selection” approaches (Table 3). The yellow
color of pineapple flesh is caused by carotenes and xanthophylls, both groups of which
are located in the non-polar parts of the chromoplasts. Carotenes are the more dominant
of the two pigment groups [31]. Carotenes and xanthophylls display a strong absorption
across the wavelength range from 420 to 515 nm [32]. An increase in the amount of
crystallized carotenoids can be found in the vacuoles of fruit and vegetables [33]. However,
in neutral (pH 7 and 8) and constant acidity conditions carotenoids are reduced [34].
Maybe more important, the SSC contains the carotenoids to a certain percentage. Overall,
results obtained in the current research appear in line with previous work. Based on the
destructive reference measurements, R between changes in CC with changes in MC, SSC,
and TA was −0.56, 0.52, and −0.14, respectively (p-value < 0.01). This shows linearly a
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decrease and an increase in CC, respectively, when MC and SSC increase. A weak linear
relationship between changes in TA and CC indicates the low variation in acidity of samples
(coefficient of variation = 0.30). Similar results were observed between spectral data at
selected wavelengths and changes in chemical composition of fruit flesh (Table 3). R values
between light reflectance data at 485, 490, 495, 500, 505, 510, and 515 nm with values of
chemical composition confirm a relatively strong negative, positive, and negative linear
relationship between changes in MC, SSC, and TA with light absorption, respectively.
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Table 3. Selected wavelength based on “ranking and uncorrelatedness” and “subset selection”
approaches for the dataset contacting the commercially available wavelengths of bandpath optical
filters and lights sources.

Chemical Composition

Bandpath Optical Filters Light Sources

Ranking and
Uncorrelatedness Subset Selection Ranking and

Uncorrelatedness Subset Selection

Moisture content (MC, in %) 490 nm (0.54) *,
1565 nm (0.07)

495 nm (0.54),
500 nm (0.54)

490 nm (0.54),
1565 nm (0.07)

495 nm (0.54),
500 nm (0.54)

Soluble solids content (SSC, in %) 485 nm (−0.49) 495 nm (−0.49) 485 nm (−0.49) 495 nm (−0.49)

Titratable acidity (TA, in %) 515 nm (0.32),
960 nm (0.19)

500 nm (0.34),
505 nm (0.34),
1215 nm (0.26)

515 nm (0.32),
960 nm (0.19)

500 nm(0.34),
505 nm (0.34),
1240 nm (0.25)

Carotenoids content (CC,
in mg/100g DM) 510 nm (−0.53) 505 nm (−0.55),

1425 nm (0.21) 510 nm (−0.53) 505 nm (−0.55),
1425 nm (0.21)

* The digits in parentheses show the correlation of light reflectance at that wavelength with each chemical composition.

The light absorption at around 960 nm is generally correlated with the second overtone
of the OH stretching band of water molecule. Furthermore, spectral reflectance at 1215 nm
and 1240 nm is associated with the second overtone of the stretching vibration of sugars and
the citric acid CH2 bands. This result is in agreement with the findings of Subedi et al. [35]
in determination of sensitive wavebands for assessment of TA in fruit. Carotenoids decrease
the membrane fluidity and increase the order of alkyl chains [36]. The 1425 nm vibration is
associated with the CH stretching of molecules containing alkyl and aromatic groups and
the first overtone of vibration of the OH bond in the water molecule [37].

3.4. MLP Prediction Models

The chemical composition of fresh-cut pineapple samples was predicted by MLP
models using light reflectance at selected wavelengths (Table 4). The results showed that
the R and error metrics were very close between the calibration and cross-validation stages,
indicating MLP models are performing well, i.e., good precision, and are not overfitting.
The R for calibration and cross-validation indicated a moderate correlation between the
predicted values and the reference values for MC, SSC, and CC. Except for CC, the error
metrics indicated a low difference in predicted values with the reference ones, especially
for MC. The higher values of the error indicate that MLP models are not very reliable for
the prediction of CC using selected wavelengths.
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Table 4. Prediction of chemical composition of fresh-cut pineapple by MLP models using selected
wavelengths in the calibration and cross-validation stages.

Statistical
Measure

Moisture Content
(MC)

Soluble Solids
Content (SSC)

Titratable Acidity
(TA)

Carotenoids Content
(CC)

490 nm +
1565 nm

495 nm +
500 nm 485 nm 495 nm 515 nm +

960 nm

500 nm +
505 nm +
1215 nm

500 nm +
505 nm +
1240 nm

510 nm 505 nm +
1425 nm

Rc
0.59 ±

0.03
0.58 ±

0.03
0.50 ±

0.04
0.50 ±

0.03
0.33 ±

0.03
0.37 ±

0.03
0.37 ±

0.05
0.54 ±

0.02
0.65 ±

0.02

RMSEc
2.05 ±

0.07
2.05 ±

0.07
2.09 ±

0.05
2.09 ±

0.06
0.26 ±

0.02
0.26 ±

0.02
0.26 ±

0.02
0.13 ±

0.00
0.12 ±

0.00

MAPEc
1.90 ±

0.07
1.89 ±

0.07
14.97 ±

0.52
14.88 ±

0.62
23.02 ±

0.97
22.29 ±

2.09
22.72 ±

1.05
50.43 ±

2.70
44.45 ±

2.58

Rcv
0.55 ±

0.05
0.56 ±

0.05
0.49 ±

0.07
0.52 ±

0.07
0.37 ±

0.06
0.35 ±

0.06
0.37 ±

0.09
0.53 ±

0.05
0.63 ±

0.04

RMSEcv
2.11 ±

0.11
2.10 ±

0.15
2.99 ±

3.95
2.07 ±

0.11
0.24 ±

0.03
0.25 ±

0.03
0.25 ±

0.04
0.13 ±

0.01
0.12 ±

0.01

MAPEcv
1.93 ±

0.09
1.92 ±

0.12
14.80 ±

1.04
14.72 ±

1.26
23.05 ±

2.18
23.53 ±

1.95
23.70 ±

2.15
49.61 ±

4.60
43.99 ±

5.08

Data represent the mean ± standard deviation of 20 replicates. Rc and Rcv, RMSEc and RMSEcv, and MAPEc and
MAPEcv are the correlation coefficient, root mean square error, and mean absolute percentage error for calibration
and cross-validation stages, respectively.

Overall, the results showed that for all the studied chemical compositions, the MLP
models generated by the selected wavelengths using “ranking and uncorrelatedness” and
“subset selection” approaches yielded similar performance both in calibration and cross-
validation stages. Since the equipment in the visible wavelength range is more affordable
than that in the NIR region, the combination of 495 nm and 500 nm wavelengths may be
proposed for predicting MC by both filter-based and light-based multispectral imaging
methods. However, the calibration would be partly based on correlation of MC and com-
pounds absorbing in the visible range. Because of higher R and lower RMSE and MAPE
values in calibration and cross-validation stages, rationalized by the actual absorption
coefficients of OH bonds, 495 nm wavelength and combination of 505 nm and 1425 nm
wavelengths are recommended for implementing on filter-based and light-based multispec-
tral imaging systems in order to predict SSC and CC in fresh-cut pineapple, respectively.
The best prediction results for TA are obtained by MLP models in the calibration and
cross-validation stages when a combination of 500, 505, and 1215 nm wavelengths is used
for the filter-based method and a combination of 500, 505, and 1240 nm wavelengths is used
for the light-based method. In the case of TA, the relevant wavelengths responsible for the
acidity may coincide with other molecules with functional groups OH and CO providing
less pronounced calibration. Similar low correlation results for TA were found in many
fruits, e.g., tomato [38]. In previous work, SSC was predicted by means of the full spectrum,
e.g., providing R = 0.72, while MC reached enhanced correlation coefficients [11,39]. How-
ever, the present approach of reduction from full spectrum to the commercially available
wavelengths can better support the development of a commercial application.

The MLP models calibrated by superior selected wavelengths were tested using the
validation dataset (Figure 4). The results indicated that the models were able to predict the
MC (%) and SSC (%) with good accuracy. TA (%) showed a degree of accuracy similar to the
cross-validation stage, with values of 0.37 for R, 0.26 for RMSE, and 24.28–24.80% for the
MAPE in the validation stage. For CC (mg/100g DM), the error metrics in the validation
stage were better than those in the calibration and cross-validation stages, 0.11 for RMSE,
and 39.42% for MAPE. These results demonstrate the potential of the models developed in
this study to non-invasively predict the parameters of interest, especially for MC and SSC.
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based on the superior selected wavelengths.

3.5. Chemical Composition’s Distribution Maps

The main advantage of multispectral imaging compared to other non-destructive
optical methods is the ability to create distribution maps of the chemical composition of the
product. These maps provide a comprehensive overview of the physiological conditions of
the fruit. To do this, by coding in the IDL programming environment of ENVI software,
ver. 5.3, hypercubes were converted to two-dimensional (2D) matrices while preserving
the spectral information. In each row of the 2D matrices, the spectrum associated with
each image pixel is placed. Then, in the MATLAB programming environment, the data
related to the matrices containing the reflectance spectrum of the pixels of the image in
the superior selected wavelengths (according to the results presented in Section 3.4) were
entered into the calibrated MLP models. The output of the models, which is a vector with
the same size of image spatial dimension, indicates the predicted chemical composition of
the image pixels. To remove the non-useful areas of the image, including the background
pixels and screws, a binary mask was created by using the thresholding method in which
the pixels of the areas including pineapple slices were valued one and the rest with a
value of zero. Next, the mask matrix was converted from the 2D format to a vector of
image spatial dimension, the same size as the output vectors of the calibration models. By
multiplying the mask matrix in the output vectors of the calibration models, vectors are
formed that only contain the predicted values of the desired chemical composition in the
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areas containing the pineapple slices. Finally, by turning the vectors into matrices with
the same size of original images, the distribution maps of the chemical composition for
the pineapple slices were obtained (Figure 5). Moisture content showed a gradient from
inner to outer parts due to the central stem axis with slightly lower moisture content. More
important, the maturity gradient, indicated by the SSC and by the CC, appeared along
the stem axis, which is usually seen, due to the difference in ripening time of each fruitlet
as determined by the time of flowering in the inflorescence. Such gradient challenges the
production of fresh-cut produce. Having a low-cost system available would reduce food
waste and enhance consistent product quality within a single fresh-cut package.
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of fresh-cut pineapple, which was separated out for validation of MLP models: (A) moisture
content in % (495 nm + 500 nm), (B) soluble solids content in % (495 nm), (C) titratable acid-
ity in g/100 mL (500 nm + 505 nm + 1215 nm), and (D) carotenoids content in mg/100g DM
(505 nm + 1425 nm). Circles and digits show the regions and their corresponding number, respec-
tively, in which samples were taken for measurement of reference tests.

For all the fruit considered as the internal validation data set, spatial distribution
maps were generated and the mean absolute percentage of the difference of the mean
values of predicted chemical compositions of pixels within each of ten regions of interest,
where samples were taken for measurement of reference tests, with the actual values of
chemical composition at those regions was calculated (Table 5). The mean comparison
using Tukey’s test showed no difference among the errors of MLP models in predicting
chemical composition spatially throughout the fruit slices (p < 0.05). This shows not only
the generalizability of the calibration models but also the robustness of their responses in
predicting the chemical composition throughout the slices and its feasibility to measure
the practically relevant intra-fruit differences. The spatial distribution maps provide the
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possibility to monitor the surface of fruit slices completely. A histogram can be generated
from these maps to provide a visual representation of the pixel distribution within the fruit
slice, which can aid in the interpretation of the prediction image. The shape and offset of
the histograms (quantitatively as mean, skewness, and kurtosis) can be used as criteria to
identify whether a slice of pineapple is acceptable in terms of quality or not. Accordingly,
such technology can be implemented on the cutting machines to ensure that only fruit parts
with the desired quality are packaged together.

Table 5. Mean absolute percentage of the difference between mean values of predicted chemical
composition of pixels within 10 different regions of the slices with the actual values of chemical
composition for 12 fruits in the validation dataset. The location of measuring spots has been shown
in Figure 5A.

Chemical Composition
Region No.

1 2 3 4 5 6 7 8 9 10

Moisture content
(495 nm + 500 nm)

2.39 a ±
1.15

1.54 a ±
1.28

2.41 a ±
1.82

2.52 a ±
1.51

2.53 a ±
1.30

1.76 a ±
1.22

2.17 a ±
1.23

1.39 a ±
1.02

1.61 a ±
1.23

1.67 a ±
1.48

Soluble solids content
(495 nm)

16.25 a ±
11.10

11.86 a ±
5.31

11.26 a ±
6.40

13.52 a ±
9.53

21.69 a ±
19.19

18.54 a ±
15.38

16.86 a ±
14.48

8.48 a ±
5.69

7.50 a ±
5.59

7.48 a ±
6.93

Titratable acidity
(500 nm + 505 nm +

1215 nm)

27.88 a ±
31.63

20.83 a ±
21.22

18.70 a ±
17.16

18.06 a ±
17.43

26.07 a ±
20.16

24.05 a ±
21.79

28.84 a ±
37.62

32.21 a ±
40.01

24.64 a ±
26.71

21.03 a ±
20.21

Titratable acidity
(500 nm + 505 nm +

1240 nm)

26.31 a ±
32.81

22.10 a ±
20.58

21.47 a ±
14.76

18.13 a ±
16.16

26.83 a ±
20.68

25.45 a ±
23.16

28.48 a ±
42.04

31.90 a ±
43.28

25.53 a ±
29.63

21.20 a ±
20.04

Carotenoids content
(505 nm + 1425 nm)

27.53 a ±
15.40

28.50 a ±
17.80

19.43 a ±
17.51

32.31 a ±
38.66

76.04 a ±
89.12

70.63 a ±
70.57

52.15 a ±
49.40

27.63 a ±
35.82

27.33 a ±
20.90

34.12 a ±
25.52

Data represents the mean ± standard deviation of 12 samples. Same letters within the same row indicate no
statistical difference by the Tukey’s test (p < 0.05).

4. Conclusions

Different levels of quality can be seen in pineapples by means of hyperspectral imag-
ing, which is usually seen along the stem axis, due to the difference in ripening time of
each fruitlet as determined by the flowers in the inflorescence. This can make it difficult
to achieve consistent quality within a single fresh-cut package. To address this issue,
the postharvest industry requests non-contact imaging systems to analyze the quality of
pineapple slices spatially. This will help identify any differences in quality that may exist
along the stem axis, thereby helping to ensure uniform quality across the entire package
and avoid food waste due to earlier decayed fruit pieces in otherwise marketable packaged
fruit pieces.

In this research, a practical approach was presented which can be used to set up
filter-based or light-based multispectral imaging systems to create spatial distribution
maps of chemical compositions over the surface of pineapple slices. This was achieved
initially by preparing a list of wavelengths in the range of 420–1600 nm in which optical
equipment is commercially available. Then, dimensionality reduction methods show a
high sensitivity to changes in chemical compositions. Accordingly, it has been determined
that [495, 500, 505, 1215, and 1425 nm] and [495, 500, 505, 1240, and 1425 nm] are the most
suitable set of wavelengths for setting up filter-based and light-based multispectral imaging
systems, respectively. The rate of linearity for the results of calibrated MLP models was
for CC (R = 0.63), MC (R = 0.56), and SSC (R = 0.52). Furthermore, the calibration models
were able to predict MC (MAPE = 1.92%) and SSC (MAPE = 14.72%) with a low error.
However, due to the high error in prediction, the calibration models were not of sufficient
confidence to predict CC (MAPE = 43.99%). Compared to the MLP models created by the
first four principal components of the whole spectra (420–1600 nm) on the same dataset, the
performance of the calibration models created by the selected wavelengths is acceptable,
since similar results was yielded in terms of linearity and the error rate of prediction for
MC and SSC. Statistical analysis revealed that there is no difference between the error
rates of MLP models spatially across the surface of the fruit slices considering ten spatially
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distributed references per fruit slice. This is an indication of the reliability of calibration
models in mapping the spatial distribution of chemical compositions in fresh-cut pineapple.

The results show that the variability of chemical composition can be analyzed by
means of the feasible solution proposed. Further research and in-depth analysis will be
needed to develop more precise and robust models, especially for prediction of CC.
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