CHEMICAL MODIFICATION OF POLYMERS:
Current and Future Routes for Synthesizing New Polymeric Compounds
CHEMICAL MODIFICATION OF POLYMERS: CURRENT AND FUTURE ROUTES FOR SYNTHESIZING NEW POLYMERIC COMPOUNDS

ABSTRACT

Chemical modification of polymers is one of the methods used to synthesize new polymeric compounds. It is the most active fields of research in polymer sciences for the past 30 years and enables us to introduce functional or reactive groups into polymers, to alter polymer surfaces, to provide side chain substituents, etc. Important products of polymer modification include polymeric reagents, functionalised resins, catalyst and media for trapping reaction intermediates, organometallic polymers acid carrier for active molecules. This lecture gives an overview of our work on preparation and application of poly(hydroxamic acid) resins, lipase modification and immobilization for hydrolysis of palm oil and fatty ester syntheses, and graft copolymerization of sago starch.

Poly(hydroxamic acid) resins are successfully prepared from several synthetic polymers and poly(methyl acrylate) grafted sago starch. Conversion of the starting polymers into the desired resins is carried out by a simple one-step reaction. N-phenyl and N-methyl derivatives of poly(hydroxamic) are also synthesized and characterized. Based on the ability of the resins to form complexes with many metal ions, several new application are proposed. These include separations of metal ions, use as active membrane for zinc ion selective electrode, preparation of ligand ion exchangers for removal fluoride and arsenate ions and use as a water sorbent.

Several synthetic polymer are identified as suitable carriers for lipase immobilization. Although this enzyme can be immobilized by both chemical and physical techniques, the latter seems to be the best method for this purpose. Lipase is also modified by chemical attachment of hydrophobic groups. These modifications reduce the hydrolytic activity, enhance the lipolytic nature of the enzymes and produce more thermostable enzymes that are better catalysts in organic media. Immobilization of the modified enzymes are also studied and the results indicate that they are useful for ester syntheses. The possibility of producing lipase using immobilised cells are also investigated. These polymers are used for the carriers and the best system is obtained when poly(urethane) is used as the matrix and the cells are immobilized by an adsorbion technique.

In graft copolymerization of vinyl monomer onto sago starch study, various monomers are successfully grafted onto the backbone polymer. Grafting levels are dependent upon the type of initiator, amount of the monomer and sago starch as well as the reaction temperature and period. Based on grafting reactions of methyl acrylate and acrylonitrile onto sago starch, a new rate of equation of polymerization and a new kinetics model for graft fraction are proposed. Characterizations of the grafted products are carried out use TGA, FTIR spectrophotometry, SEM microscopy and differential scanning calorimetry. Further investigations indicate that the copolymers produced are suitable for use as hydrogels and matrices for hydroxamic acid and amidoxime chelating resins.
INTRODUCTION

Polymers are large molecules containing long sequences of one or more species of atoms or groups of atoms joined together by primary bonds. Copolymers are polymers whose molecules contain two or more different types of repeat units (Table 1). Polymers are formed by linking together monomers through a polymerization process.

Table 1. Examples of monomers, polymers and copolymers

<table>
<thead>
<tr>
<th>Monomer</th>
<th>Polymer/copolymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylene</td>
<td>Poly(ethylene)</td>
</tr>
<tr>
<td>Propylene</td>
<td>Poly(propylene)</td>
</tr>
<tr>
<td>Tetrafluoroethylene</td>
<td>Poly(tetrafluoroethylene)</td>
</tr>
<tr>
<td>Styrene</td>
<td>Poly(styrene)</td>
</tr>
<tr>
<td>Methyl methacrylate</td>
<td>Poly(methyl methacrylate)</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>Poly(vinyl chloride)</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>Poly(acrylonitrile)</td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>Poly(ethylene glycol)</td>
</tr>
<tr>
<td>Ethylene glycol & terephthalic acid</td>
<td>Poly(ethylene terephthalate)</td>
</tr>
<tr>
<td>Hexamethylene diamine & sebacic acid</td>
<td>Poly(hexamethylene sebacate)(nylon 6.10)</td>
</tr>
<tr>
<td>Styrene & Acrylonitrile</td>
<td>Poly(styrene-co-acrylonitrile)</td>
</tr>
<tr>
<td>Styrene & butadiene</td>
<td>Poly(styrene-co-butadiene)</td>
</tr>
</tbody>
</table>

The amount of polymeric materials used by industry is enormous as they are used almost everywhere. The most important applications of polymers are in packaging, construction, electronics, furniture, toys and recreation, appliances, medical supplies, transport, agriculture, apparel, footwear and industrial equipment.

The global polymer industry's output was estimated at around US$75 billion in the year 1998 with growth at around 6% per year. In most European countries, the polymer consumption is about 100kg/person/year [Mulder, 1998]. In 1999, the Malaysia polymer industry achieved a turnover of about RM7.2 billion and contributed to about 2.5 percent of the country's gross domestic product. It was estimated that there were around 1200 plastic product manufacturers which provided job opportunities to about 87000 people. In the year 2000, the total production of polymer products was estimated to be RM8.5 billion, an increase of 15% from the turnover of 1999. Polymer manufacturers exported 44% of their products (estimated about RM3.7 billion) which represents a 23% increase over 1999. The polymer industry in Malaysia is expected to continue to grow in the next 20 years as the demand for polymers still strong, especially in electrical and electronic sector, telecommunications, packaging, automotive, advanced composites and construction.

Packaging is the most economically important of application of polymers. Polymer packaging may consist of bags, bottles, boxes, crates, foil and loose fills. Higher grade forms of packaging include blood bags and CD boxes. Important advantages of using polymers as packaging material are low weight, have good processability and are corrosion free. These characteristics lead to cost reduction, for example the transportation of packaged
goods. In Malaysia, the plastics packaging business employs about 25000 out of 87000 workers in the plastics industry, contributes to about 30% of the total production of plastic products and accounts for 35% of the total plastics exported yearly. Malaysia is one of the major producers of plastic bags and film in Asia.

Chemical modification of polymers is one of the methods used to produce new polymeric materials to extend application of the existing polymers. Modification may be carried out as an existing polymer does not have the required properties, and there is difficulty in synthesizing a new monomer and/or the monomer is not stable under the polymerization conditions. The applications of the products include non-material uses such as polymeric reagents which consist of a reactive function bound to an insoluble support, functionalized resins which are used as ion exchangers, chelating agents, reagent for organics syntheses, catalysts and media for trapping unstable reaction intermediates, organometallic polymers which may be useful as semiconductors, and vehicles for carrying active molecules such as hormones and drugs [Akelah and Moet, 1990].

Since chemical modification of polymers is very diverse and has grown to cover a wide range of topics, this lecture is limited to an overview of our work on preparation, characterization and application of poly(hydroxamic acid)s; lipase modification and immobilization for hydrolysis of palm oil and fatty ester syntheses; and graft copolymerization of sago starch to produce hydrogels and chelating ion exchange resins.

PREPARATION, CHARACTERIZATION AND APPLICATION OF POLY (HYDROXAMIC ACID) RESINS

Hydroxamic acids, a group of compounds with the general formula R-CO-NHOH, are very important chelating agents as they form stable complexes with a large number of metal ions and widely used in analytical chemistry [Agrawal, 1980]. They are also as constituents in growth factors, food additives, antibiotics, tumour inhibitors, antifungal agents, cell division factors and enzyme inhibitors [Kurzak et al., 1992; Holmes, 1996].

Early preparative methods of hydroxamic acid resins were based on poly(carboxylic acid)s (Scheme 1) [Petrie et al., 1965].

![Scheme 1. Preparation of poly(hydroxamic acid) resin from poly(carboxylic acid).](image_url)
Since then a large number of poly(hydroxamic acid)s derived from various starting polymers including poly(styrene)[Phillip and Fritz, 1980] and poly(acrylonitrile) [Vernon and Kyffin, 1977] have been prepared. Although hydroxamic functional groups have been successfully attached onto the polymers the kinetics of extraction and hydroxamic acid capacity should be improved for them to be useful as an ion exchanger. In addition, preparation techniques which involve several reaction steps are not only tedious but may also contaminate the resins with other functional groups.

Our research on poly(hydroxamic acid) resins started in 1978 with the aim of producing poly(hydroxamic acid) resins with desirable properties of an ion exchanger such as fast rate of extraction and high capacity for targeted metal ions. In addition to this, we also explored the possibility of using this ion exchanger for new applications. Our first attempt to prepare the resin was using poly(divinyl benzene-acrylonitrile) copolymer as a starting material. This copolymer was synthesized from its monomers i.e. divinyl benzene and acrylonitrile by suspension polymerization. A number of crosslinked poly(hydroxamic acid) ion exchange resin were successfully prepared. By incorporating poly(ethyl acrylate) into the copolymer, the resin in bead form was successfully produced. The copper capacity of the optimized resin at pH2 was 2.13 mmol/g, with a time taken to occupy 50% of the resin sites with this metal ion only 5 minutes [Wan Yunus, 1980]. The uptake of Au(III), Al(III), Ag(I), Fe(III), Mn(II), Ni(II) and Co(II) ions as a function pH was studied and several new applications including recovery and separation of gold (III) and silver (I) [Vernon and Wan Yunus, 1981] were demonstrated.

Synthesis of the hydroxamic acids from poly(acrylonitrile) is simple because it involves only treatment with hydroxylamine, however, since, the production of the hydroxamic acid is through the formation of amidoxime groups (Scheme 2), the product is contaminated by this group, which is also a chelating group capable of forming stable complexes with few metal ions and is also used as a functional group for chelating resins.

\[
\begin{align*}
\text{CH}_2\text{-CH} & \quad \text{NH}_2\text{OH} \\
\text{CN} & \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_2\text{-CH} & \quad \text{H}_2\text{O} \\
\text{CN} & \quad \text{NOH} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_2\text{-CH} & \quad \text{O} \\
\text{NH}_2 & \quad \text{NOH} \\
\end{align*}
\]

Scheme 2. Conversion of acrylonitrile group into the hydroxamic acid.

Treatment of esters with hydroxylamine is a common procedure used to prepare hydroxamic acids. Based on this reaction, we have synthesized and converted crosslinked poly(ethyl acrylate) [Wan Yunus and Ahmad, 1988] and poly(methyl acrylate) [Haron et al., 1992] into hydroxamic acid resins (Scheme 3). The advantages of using poly(ester)s as starting materials for the resin preparation in addition to the simple synthetic route, the high resin capacity, its favourable kinetics of extraction, the resin produced is also free from amidoxime group contamination.
\[-\text{CH}_2\text{-CH}- \xrightarrow{\text{alkaline solution}} \text{NH}_2\text{OH} \xrightarrow{} -\text{CH}_2\text{-CH} \]
\[
\begin{array}{c|c|c}
| & | \\
\text{C}=\text{O} & \text{CH}_3/\text{C}_2\text{H}_5 & \text{NHOH} \\
\end{array}
\]

Scheme 3. Conversion of ester (methyl or ethyl acrylate) group into the hydroxamic acid.

Synthetic polymers are obtained from petroleum products which are in limited supply. These polymers may also create disposal problems as they are not easily degraded in the environment. As an attempt to reduce the environmental problem created from disposal of spent poly(hydroxamic acid) resins we used poly(methyl acrylate) grafted sago starch as a starting material for the resin preparation [Lutfor, 1999, Lutfor et. al., 2001b]. Incorporation of the starch in the matrix may enhance biodegradability of the hydroxamic acid resin as this natural polymer is highly biodegradable.

In addition to the type a chelating group used to form a metal ion complex, the stability of the complex is also affected by substituent group attached to the functional group. In order to study the effect of substituted groups on the selectivity of poly(hydroxamic acid) resin towards metal ion complexation, resins containing N-methyl and N-phenyl hydroxamic were synthesized. Our early attempt to synthesize N-methyl hydroxamic was through hydrolysis of the ester group, formation of acid chloride and treatment of the acid chloride with N-methyl hydroxyl amine [Wan Yunus and Baharom, 1986] (Scheme 4).

\[-\text{CH}_2\text{-CH}- \xrightarrow{\text{NaOH}} -\text{CH}_2\text{-CH} \xrightarrow{\text{SOCl}_2} -\text{CH}_2\text{-CH} \xrightarrow{\text{NHOH}} -\text{CH}_2\text{-CH} \]
\[
\begin{array}{c|c|c|c}
| & | & | \\
\text{C}=\text{O} & \text{C}=\text{O} & \text{C}=\text{O} \\
\text{OCH}_2\text{CH}_3 & \text{OH} & \text{CH}_3 \\
\end{array}
\]

Scheme 4. Preparation of poly(N-methyl hydroxamic acid) resin from crosslinked poly(ethyl acrylate).

This preparation procedure involves four reaction steps (including preparation of the crosslinked poly(methyl acrylate) from ethyl acrylate and divinyl benzene). Only 21% conversion of carboxylic acid groups into hydroxamic acid was observed because the conversion of the carboxylic acid into the acid chloride is not efficient.

Later we investigated the possibility of preparing the resin by directly reacting crosslinked poly(methyl acrylate) with N-methyl hydroxylamine and successfully produced the resin with hydroxamic acid capacity of 2.9 mmol [Balchi, 1998]. This method of preparation
produces a higher hydroxamic acid content (of about 40%) and involves only polymerization of monomers and a one step modification of polymer to obtain the desired polymer.

Another derivative of hydroxamic acid that was studied was N-phenyl hydroxamic acid. When poly(styrene) was used as a starting polymer, the metal ion capacity of the resin produced was low. The introduction of the group onto the polymer required several steps of polymer modification [Phillip and Fritz, 1980]. Scheme 5 describes our method of synthesis of poly(N-phenyl hydroxamic acid) resin from crosslinked poly(methyl acrylate). Conversion of the ester in the starting polymer into the hydroxamic acid is a simple one step reaction but also produces a reasonably high hydroxamic acid capacity [Awang, 1995; Awang et al., 1996].

![Scheme 5. Preparation of poly(N-phenyl hydroxamic) acid from methyl acrylate.](image)

The ability of the hydroxamic acid group to form metal complexes of different stability has been extensively studied to find analytical applications of poly(hydroxamic acid) resins. Among applications reported by other groups of researchers interested in this area are extraction of iron from various alkaline salts; separation of iron from copper, nickel and cobalt; separation of copper from lead, separation of uranium from neodymium; separation of cobalt from copper and nickel; and separation of chromium, copper and iron from plating bath effluent.
We have studied the behaviour of our resin that was prepared from poly(acrylonitrile) towards some metal ions and found that the resin could completely sorb gold and silver ions; separate gold from silver, iron and copper; and extract and separate uranium [Wan Yunus, 1980]. Using the resin prepared from poly(ester), we have demonstrated that the resin could be used for quantitative extraction of iron and copper ions from several concentrated alkaline and alkaline earth metal solutions (Table 2) [Wan Yunus and Ahmad, 1988].

Table 2. Recoveries of iron and copper ions from various concentrated salt solutions.

<table>
<thead>
<tr>
<th>Solutions</th>
<th>% of metal ion recovery</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fe</td>
<td>Cu</td>
</tr>
<tr>
<td>NaCl</td>
<td>103</td>
<td>102</td>
</tr>
<tr>
<td>KCl</td>
<td>98</td>
<td>100</td>
</tr>
<tr>
<td>CH₃COONa</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>BaCl₂</td>
<td>99</td>
<td>98</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

It is also suitable for separation of ions from iron-copper-nickel ions solution (Figure 1) [Wan Yunus and Ahmad, 1988], separation of gold from nickel, cobalt and zinc [Wan Yunus et al., 1996c], separation of ferric and ferrous ions [Wan Yunus and Haron, 1996], extraction of tin [Wan Yunus and Haron, 1988], isolation of gold from cyanide solution [Wan Yunus et al., 1990a; Wan Yunus et al., 1995], chloride solution [Wan Yunus et al., 1996] and sediments [Haron et al., 2002] and separation of yttrium and uranium from xenotime [Haron et al., 2001].

![Figure 1. Iron-coper-nickel separation.](image)

(o) nickel, (□) copper, (△) iron.
Another new application for hydroxamic acid resin which is apparently not reported by any other research group is the use of metal ion loaded poly(hydroxamic acid) resin as a matrix for ligand ion exchangers. For example, poly(hydroxamic acid) resin loaded with yttrium ion [Haron et al., 1995] can be used for sorption of fluoride ions. The sorption of fluoride ion was accompanied by a pH increase as the exchange mechanism involves the release of hydroxide ions (Scheme 6).

![Chemical reaction diagram]

Scheme 6. Mechanisms of yttrium-poly(hydroxamic acid) complex formation (I) and its anion exchange (II).

The rate of fluoride ion exchange was fast and when the resin was tested for removal of fluoride ion from wastewater samples, the ion was reduced to below the permissible level by just a single treatment with the resin. The presence of chloride, bromide, iodide and nitrate ions does not affect the efficiency of the removal but there is slight interference in the presence of phosphate and sulphate ions. Similar behavior was observed when the resin was loaded with cerium ion [Haron and Wan Yunus, 2001]. This study has been extended to sorption of arsenate by iron (III)-poly(hydroxamic acid) complex [Haron et al., 1999].

Another potential application of poly(hydroxamic acid) resins is as a water sorbent or hydrogel [Lutfor et al., 2001d]. We have investigated the swelling behavior of the resin prepared from poly(methyl acrylate) grafted sago starch and observed the maximum absorbency in water was around 190g water / g for the hydroxamic acid sample synthesized from the starting material containing 31% sago starch (Figure 2). The water sorbency in sodium chloride (Figure 3) and other salt solutions decreases with the increase of the salt concentration due to deswelling behavior of the adsorbent occurred when the concentration of the external solution is increased, especially for multivalent salts.
We have also demonstrated that zinc complex of hydroxamic acid could be used for construction of a membrane for an inexpensive zinc selective electrode. The electrode produced gave linear response over a concentration range of $5 \times 10^{-4} \text{M}$ to $2 \times 10^{-3} \text{M}$ of determinant. The slope of linearity is close to the theoretical Nerst slope, 2.303RT/nF, which is 29.78mV per decade for $n=2$ at 27°C. The membrane was useful in the pH range of 4.5 to 6.0 and has working life of at least 4 weeks. The presence of copper, chromium, lead, barium, sodium and potassium ion did not interfere with the zinc ion concentration determination [Kassim et al., 1992].

![Figure 2](image1.png)
*Figure 2. Plots of swelling absorbent in distilled water as a function of time at different sago starch % (-□-sago 31%; -x- sago 43%; -Δ- sago 56%; -o- sago 66%).

![Figure 3](image2.png)
*Figure 3. Absorbency obtained using various concentration of sodium chloride solution (M) at different sago starch % (-□-sago 31%; -x- sago 43%; -Δ- sago 56%; + sago 66%)

To conclude our work on preparation, characterization and application of poly hydroxamic acid resins, it can be said that

1. Poly(hydroxamic acid) resins were successfully prepared from poly(acrylonitrile) poly(ethyl acrylate), poly(methyl acrylate) and poly(methyl acrylate) grafted sago starch. The resins produced from the first three starting materials were in the bead form. The conversion of the starting polymers into hydroxamic resins was through a simple one-step reaction but produced high hydroxamic acid capacity and good kinetics of extractions.

2. N-methyl and N-phenyl derivatives of poly(hydroxamic acid) resin were also successfully synthesized from poly(methyl acrylate). These resins were also prepared by a simple one-step conversion process of the starting material. The products were also in bead form and were found to exhibit high metal ion capacity and good kinetics of exchange.

3. Based on the ability of the hydroxamic acid group to form complexes with many metal ions, new applications of the resins have been proposed. These include separation of nickel and lead, extraction of gold from sediments, and from cyanide and chloride solutions, extraction of tin ion, separation of ferrous and ferric ions and use as an active membrane for zinc ion selective electrode.
4. The ability of the hydroxamic acid group to form stable complexes with metal ions has also been exploited for preparing ligand ion exchangers. Cerium and yttrium complexes were successfully used for fluoride ion removal while the ferric ion complex was used for sorption of arsenate ion.

5. The product obtained by attaching hydroxamic acid groups onto poly(methyl acrylate) grafted starch, can be used as hydrogels in addition to their use as a chelating ion exchanger. Introduction of the starch in the polymer matrix makes the product more environmentally friendly as this natural polymer is biodegradable and produced from a renewable resource.

LIPASE MODIFICATION AND IMMOBILIZATION

Lipases are a class of enzymes (natural polymeric species) that normally hydrolyze a variety of long-chain acyl esters. Under controlled conditions, they can also catalyze esterification and several other synthetic reactions (Scheme 7).

1. Hydrolysis of Ester

\[
\begin{array}{c}
\text{R} - \text{C} - \text{O} - \text{R}' + \text{H}_2\text{O} \rightarrow \\
\text{R} - \text{C} - \text{OH} + \text{HO} - \text{R}'
\end{array}
\]

2. Synthesis of Ester

\[
\begin{array}{c}
\text{R} - \text{C} - \text{OH} + \text{HO} - \text{R}' \rightarrow \\
\text{R} - \text{C} - \text{O} - \text{R}' + \text{H}_2\text{O}
\end{array}
\]

3. Transesterification

3.1. Acidolysis

\[
\begin{array}{c}
\text{R}_1 - \text{C} - \text{O} - \text{R}' + \text{R}_2 - \text{C} - \text{OH} \rightarrow \\
\text{R}_2 - \text{C} - \text{O} - \text{R}' + \text{R}_1 - \text{C} - \text{OH}
\end{array}
\]

3.2. Alcoholysis

\[
\begin{array}{c}
\text{R} - \text{C} - \text{O} - \text{R}_1' + \text{HO} - \text{R}_2' \rightarrow \\
\text{R} - \text{C} - \text{O} - \text{R}_2' + \text{HO} - \text{R}_1'
\end{array}
\]

3.3. Interesterification

\[
\begin{array}{c}
\text{R}_1 - \text{C} - \text{OH} + \text{R}_2 - \text{C} - \text{O} - \text{R}_2' \rightarrow \\
\text{R}_2 - \text{C} - \text{O} - \text{R}_2' + \text{R}_1 - \text{C} - \text{O} - \text{R}_1'
\end{array}
\]

3.4. Aminolysis

\[
\begin{array}{c}
\text{R} - \text{C} - \text{O} - \text{R}_1' + \text{H}_2\text{N} - \text{R}_2' \rightarrow \\
\text{R} - \text{C} - \text{NH} - \text{R}_2' + \text{HO} - \text{R}_1'
\end{array}
\]

Scheme 7. Types of reactions catalyzed by lipase.
Although they are useful biocatalysts for many industrially important applications such as hydrolysis of fat, modification and synthesis glycerides and esters, their applications in industry are limited owing to difficulties in separation of the enzymes from the substrates and the products and/or the instability of the enzymes under operational conditions, as well as the biphasic nature of the reactions.

Lipases have been modified to improve or to obtain desired properties such as specific activity, solubility in organic solvents and enhancement of activity and stability to make them useful for industrial applications. One of the common methods used for lipase modification is immobilization i.e. the localization or confinement of the enzyme. The advantages of lipase immobilization include ease of isolation of the catalyst, increase of enzyme stability and possibility of continuous and repeated usage of the enzyme.

Lipase immobilization has been extensively studied. Methods used involve both chemical (where covalent bonds are formed with the lipase) and physical (where weaker interactions and mechanical containment of the enzyme is used) techniques on various carriers. The objectives of our involvement in this research is to find suitable catalysts for biotechnological modification palm oil and synthesis of fatty esters. Both chemical and physical techniques of lipase immobilization are used in our study but the results show that the physical methods are more encouraging.

To chemically immobilize lipase onto poly(ethyl acrylate-divinyl benzene) beads, three methods were used (Scheme 8).
Scheme 8. Chemical method of immobilization of lipase onto poly(ethyl acrylate-divinyl benzene)
Although a fairly large amount of lipase was successfully bonded onto the matrix using all three methods, lipase activity, was found to be very low, especially the lipase immobilized through the formation of poly (carboxylic acid)(Methods 1 and 2). This is probably due to the low affinity of the substrate (olive oil) for the lipase on the hydrophilic surface of the matrix. The lipase activity was improved when the enzyme was immobilized through partial conversion of the ester group into the hydrazide form (Method 3). Full activity was retained up to 12 cycles of a laboratory scale semi-continuous hydrolysis of olive oil using this immobilized lipase [Salleh et al., 1988].

Immobilization of lipase by physical adsorption of on the polymer beads seems to be an attractive alternative to the chemical method as it produces high expressed activity of the enzyme. In addition, the procedure is simple and cheap. Typical procedure of immobilization of lipase onto a solid matrix is shaking the carrier in the enzyme solution at a chosen temperature and rate for a selected period. Polymer sorbents produced in our own laboratory as well as some commercially available sorbents were used as carriers for the immobilization. These sorbents are vinyl type polymers, so they thermally stable and chemically durable. One of the carriers that we successfully used was Amberlite XAD-7, a commercially available sorbent. Using this matrix, the lipase from Candida rugosa, was physically adsorbed. The study using this enzyme preparation in a packed bed reactor for olive oil hydrolysis indicated that the lipase was very stable. The half life for the closed system was around 80 days (cycles) whereas for the open system it was about 150 days (Figures 4 and 5) [Salleh et al, 1991]. Steady reduction of the hydrolysis efficiency may be due to the leakage of the enzyme from the matrix.

![Figure 4. Continuous hydrolysis of triglycerides in a packed bed system (closed). The maximum conversion achieved was about 65% of the theoretical value. Each cycle was for 24 h duration.](image)

![Figure 5. Continuous hydrolysis of triglycerides in a packed bed system (open). The maximum conversion achieved was about 90% of the theoretical value. Sampling was done on daily basis.](image)

Carrier surface hydrophilicity or hydrophobicity is another important factor determining the expressed activity of an enzyme immobilized onto the matrix. We have compared the activity of the lipase immobilized onto unmodified poly (methyl methacrylate) beads and those with the carboxylic acid and hydroxide groups modified. The best result was obtained when the adsorption was carried out using the purified unbuffered enzyme solution immobilized onto the unmodified beads. The amount of protein adsorbed onto the polymer
increased with the increasing polymer-enzyme contact period but the expressed hydrolytic activity decreased after about 60 min. of exposure. The hydrolytic activity of the enzyme also varied with the bead size of the matrix (Table 3) and its optimal hydrolysis temperature shifted from 37 to 45°C (Figure 6). It was also observed that the immobilized enzyme was more stable than the free enzyme (Figure 7).

Table 3. Effect of bead size on specific hydrolytic activity of lipase immobilized onto poly(methyl methacrylate)

<table>
<thead>
<tr>
<th>Bead size, μm</th>
<th>Specific hydrolytic activity, unit/min/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-300</td>
<td>67.44</td>
</tr>
<tr>
<td>300-850</td>
<td>18.93</td>
</tr>
<tr>
<td>850-1,700</td>
<td>14.01</td>
</tr>
</tbody>
</table>

Its operational half life when it was packed in a column in a closed system was 40 days (Figure 8).

Figure 6. Temperature profile for free (○) and immobilized lipase (●).

Figure 7. Activity of free (○) and immobilized lipase (●) at different temperatures.

Figure 8. Operational stability of immobilized lipase. The substrate was replaced every 24h, but readings were recorded every 5 d.
One of the disadvantages of using non-crosslinked poly(methyl methacrylate) is that it may swell excessively in organic solvents. Organic solvents are sometimes required in order to improve the efficiency of lipase-catalysed reactions. As an attempt to produce a polymeric material which is strong and insoluble in aqueous solutions and organic solvents, we have prepared synthetic polymer beads by a suspension polymerization technique using methyl acrylate, methyl methacrylate and divinyl benzene [Wan Yunus et al, 1995a]. We found that the copolymer beads containing 62% methyl acrylate, 33% methyl methacrylate and 5% divinyl benzene was the best carrier for lipase immobilized by adsorption (Table 4). Optimum immobilization was observed when the lipase was purified, dissolved in water and shaken with the carrier at the rate of 50 rev/min for 30 min.

<table>
<thead>
<tr>
<th>Methyl methacrylate/ Methyl acrylate ratio by weight</th>
<th>Lipase adsorbed (mg/g)</th>
<th>Specific hydrolytic activity (U/min/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20:80</td>
<td>3.10</td>
<td>17.22</td>
</tr>
<tr>
<td>35:65</td>
<td>4.05</td>
<td>38.33</td>
</tr>
<tr>
<td>50:50</td>
<td>3.24</td>
<td>36.39</td>
</tr>
<tr>
<td>65:35</td>
<td>3.26</td>
<td>23.33</td>
</tr>
<tr>
<td>100:0</td>
<td>1.85</td>
<td>17.22</td>
</tr>
</tbody>
</table>

This polymer bead is strong and insoluble in aqueous solution and organic solvents including n-octane, iso-octane, diisopropyl ester, n-hexane and cyclohexane. It is also expected that this polymer is stable towards heat and chemicals as it is a vinyl type polymer. However, surface characterization suggests that the lipase adsorption is only on the outer surface of the beads as the bead porosity is low.

Another approach to alter the original properties of lipases to make them suitable for use in industrial processes is through chemical reaction in which a modifier is chemically attached to the enzyme. This modification may change the microenvironment of the enzyme which consequently alters or improves its properties. We also tried this approach in our study: three type of modifiers i.e. poly(ethylene glycol), aldehydes and imidoesters, were used.

Attachment of aldehydes onto the lipase was carried out by reductive alkylation using sodium cyanoborohydride as the reductant (Scheme 9) [Ampom et al., 1991a, 1991b, 1993a, 1993b, 1994, 1997; Basri et al. 1997]. The degree of the modification depends on the type of aldehyde used in the reaction. Modification reduces the estrolytic activity but improves esterification activity (Table 5) [Ampom et al., 1991b; Salleh et al., 1990]. Lipase derivatised with octaldehyde and dodecyldehydrate gave products which are more thermostable than those modified with shorter chain length aldehydes.
Lipase – NH₂ + R – C – H \rightarrow Lipase – N = CH – R

\rightarrow

NaCNBH₃

Lipase – NH – CH₂ – R

Scheme 9. Reductive alkylation of lipase.

Table 5. Activity of reductively alkylated lipase

<table>
<thead>
<tr>
<th>Carbonyl compounds</th>
<th>% modification</th>
<th>Estrolytic a activity</th>
<th>Synthetic b activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
<td>65.8 (100)</td>
<td>0.354 (100)</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>55</td>
<td>39.7 (60)</td>
<td>0.896 (253)</td>
</tr>
<tr>
<td>Propionaldehyde</td>
<td>58</td>
<td>26.0 (40)</td>
<td>0.646 (18.2)</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>41</td>
<td>7.9 (12)</td>
<td>0.771 (218)</td>
</tr>
<tr>
<td>Octaldehyde</td>
<td>39</td>
<td>6.1 (9)</td>
<td>0.438 (124)</td>
</tr>
<tr>
<td>Dodecylaldehyde</td>
<td>46</td>
<td>4.0 (6)</td>
<td>0.417 (118)</td>
</tr>
</tbody>
</table>

aActivity measured in an emulsified aqueous system containing 50 volumes of olive oil and 50 volumes of water, with poly(vinyl alcohol) as an emulsifier. Percent activity compared to the unmodified lipase is (in parentheses).

bExpressed in terms of micromoles of FFA removed from the reaction mixture per minute per milligram protein and as percent activity compared to unmodified enzyme (in parentheses).

It is also observed that alkylated lipase is relatively more stable in organic solvent than the native enzyme. When this modification was extended to porcine pancreatic trypsin, it resulted in about 5 to 6 fold increase of sugar esterification activity of the enzyme in DMF [Ampon, 1991a].

Scheme 10 shows how lipase was modified by poly(ethylene glycol); p-nitrophenyl chloroformate was used for the activation [Basri et al., 1991, Basri et al., 1995]. The degree of modification of the enzyme increases with increase of molar ratio of activated poly(ethylene glycol) to the lipase. This modified lipase behaves similarly to the product from the reductive alkylation, i.e. it exhibits higher specific ester synthesis activities in organic solvents compared with the native lipase. The degree of enhancement of lipase activity depends on the molecular weight of poly(ethylene) used and the extent of modification. However, optimum esterification temperature (40°C) and degree of preference for fatty acids as acyl donors of the modified enzyme were very similar to those of the native lipase. The modified lipase also showed better temperature, solvent and storage stabilities than unmodified lipase [Basri et al., 1995].
Scheme 10. Poly(ethylene glycol) modification of lipase

In another study, modified lipase was prepared through amidation with imidoester hydrochlorides of different hydrophobicity (Scheme 11). Here again we found out that the modified lipase exhibits higher esterification activity but lower fat hydrolysis than those of native enzyme. The enzyme that was modified with the high molecular weight imidoesters shows higher activity. The best organic solvent for this synthesis is benzene. The modification does not affect the optimum temperature of esterification (Figure 9) but produces an enzyme which is more stable towards heat (Figure 10) and exposure to organic solvents (Figure 11). The highest synthetic activity is recorded when myristic acid is used for the ester synthesis [Basri et al., 1994].

Scheme 11. Amidation of lipase with hydrophobic imidoester
These modified enzymes were also immobilized onto solid supports such as synthetic polymers and inorganic adsorbents [Basri, et al., 1996]. Immobilization of the modified lipase showed higher activity than that observed for immobilization of native enzyme. When the same poly(ethylene glycol) modified enzyme was immobilized onto polymer beads, we found that those adsorbed on Amberlite XAD-7 (poly(methyl methacrylate)) gave the highest esterification activity, followed by poly(carboxylic acid) and Amberlite XAD-2 (poly (styrene)). The lipase also favoured medium-chain fatty acids to long-chain fatty acids as acyl donors. However, alcohol selectivity of the enzyme was unchanged upon immobilization.
Immiscibility of microbial cells is another attractive technique for enzyme immobilization. It offers several advantages including ability to catalyze multistep and continuous reactions, elimination of the tedious enzyme isolation and purification procedures. In addition, reactions can be carried out at higher cell concentration and ease of products harvesting. We also studied the possibility of producing lipase using immobilized cells. Using poly (2-hydroxy ethyl methacrylate) [Razak et al., 1996], polyurethane [Salleh et al. 1997, Mohd et. al, 1991] and alginate [Zakaria et al., 1992] we have successfully immobilized lipolytic cells. These cells were physically immobilized either by adsorption or entrapment. It was found that polyurethane was the best matrix for immobilization.

The following conclusions summarize our work on lipase modification and immobilization to date:

1. Although lipase can be immobilized onto synthetic polymers by both chemical and physical techniques, the latter seems to be the best method as the products offer advantages such as high expressed activity and good stability in addition to a simple procedure for immobilization. Several synthetics polymers have been identified as suitable carriers for the enzyme.

2. Modification of lipase by chemical attachment of hydrophobic groups alters several enzyme properties. Such modification reduces the hydrolytic activity but enhances the lipolytic nature of the enzyme. The chemical modification also produces more thermostable enzymes that are better catalysts in organic media. These enzymes are also suitable for immobilization onto polymer matrices and the products are useful for ester syntheses.

3. Lipolytic cells were also successfully immobilized onto poly(2-hydroxyethyl methacrylate), poly(urethane) and alginate by physical techniques. It is found that adsorption is a more favorable technique for cell immobilization. Polyurethane is the best matrix for this purpose.

GRAFT COPOLYMERIZATION OF VINYL MONOMER ONTO SAGO STARCH

Starch, is a natural polymer composed of repeating 1, 4-α-D-glucopyranosyl units (anhydroglucose units [AGU]). It is a mixture of linear and branch components, namely amyllose and amylopectin (1 and 2). It has been used as a substrate for graft copolymerization of vinyl monomers as they can be easily grafted onto it. The products are potentially useful for many commercially important applications such as hydrogels, floculants, ion exchangers, adhesives, sizes, thickeners, resins and plastics. Starch is cheap, readily available, renewable and biodegradable.
(1) Amylose (1, 4-α-D-glucose) (2) Amylopectin (1, 4-α-D-glucose with 1, 6-D-glucose branch)

The general formula of vinyl monomer (3) and several specific examples (4-8) are given below. These monomers polymerize through free radical polymerization.

(3) General formula

CH₂=CH₂

(4) Styrene

CH₃

(5) Methyl methacrylate (MMA)

(6) Methyl acrylate (MAA)

CH₂=CH₂

(7) Acrylonitrile

(8) 2-hydroxyethyl methacrylate (HEMA)

Vinyl polymer grafted starches are copolymers in which a starch is used as a backbone (main chain) polymer and vinyl monomer becomes a branched polymer. In order to attach the branched polymer, a radical has to be created on the backbone polymer and this is achieved through chemical reaction, exposure to radiation or mastication. Grafting of hydrophilic vinyl monomers may produce products that can be utilized as thickness, absorbents, sizers, adhesives or flocculants, while graft copolymerization of hydrophobic monomers onto starch may produce resins and plastics.
Sago starch is extracted from sago palm tree. Like other starches, it does not dissolve in water but gelatinizes if it is heated in water at 75°C. It is produced commercially and ranked as fifth among important commodities in Malaysia (after palm oil, petroleum, rubber and cocoa) with the production capacity of 30,000 ton/ year. Annual production in Southeast Asia of sago starch is 60 million ton.

Sago starch supply in Malaysia is mainly from Sarawak where about 20,000 hectare of its land is cultivated with sago trees. Although it is produced in modern factories, its quality varies depending on the quality of water supply, the method of extraction and the mode of transportation. Production of starch from sago palm tree is very attractive as one matured tree produces up to 550 kg.

Graft copolymerization of sago starch is one of the possible ways to modify the properties of sago starch. We carried out this study with the objective of synthesizing new polymeric materials in hope that with new properties, it can be used for new applications. Currently the price of this commodity is very low (about 40 sen/kg) and its uses are mainly limited to food additives and animal feeds.

The general procedure for grafting vinyl monomers onto sago starch is as follows: The starch is first gelatinized by heating its suspension in water at 80°C for 30 min. The initiation process to create free radicals on the polymer backbone was carried out by adding the required amount of initiator to the gelatinized sago starch and allowing it to react for 15 min before adding the monomer. All the reactions (gelatinization, initiation and propagation) were carried out under nitrogen gas atmosphere. The reaction mixtures were continuously stirred and the reaction temperatures were controlled by placing the reaction flask in a thermostated waterbath. The product was precipitated using a suitable solvent and dried in an oven. Removal of homopolymer formed during the copolymerization, was carried out by Soxhlet extraction using a suitable solvent. The purified copolymer was dried in an oven. Using this procedure we have successfully grafted poly(methyl acrylate) [Lutfor et al., 2000a], poly(acrylonitrile)[Lutfor et al., 2001a], poly(2-hydroxy methacrylate) [Rusli, 2001], poly(acrylic acid) [Bin, 2001], poly(styrene)[Janarthanan, 1999], poly(methyl methacrylate)[Fakhru'larazi et al., 2001] and poly(MAMOA)[Najjar, 2002] onto sago starch. Further investigations show that this procedure could be used to prepare poly(2-acrylamido-2-methyl-propane-sulfonic acid) grafted chitosan using potassium persulfate as redox initiator [Najjar et al., 2000]. The optimum conditions for graft copolymerization of some vinyl monomers onto sago starch are in Tables 6a to 6f.
Table 6a. Optimum conditions for preparation of PMA-g-sago starch

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>50°C</td>
</tr>
<tr>
<td>Reaction period</td>
<td>60 min.</td>
</tr>
<tr>
<td>$[\text{H}_2\text{SO}_4]$</td>
<td>0.175 molL$^{-1}$</td>
</tr>
<tr>
<td>[AGU]</td>
<td>0.135 "</td>
</tr>
<tr>
<td>[CAN]</td>
<td>8.77 x 10$^{-3}$ "</td>
</tr>
<tr>
<td>[MA]</td>
<td>0.803 "</td>
</tr>
</tbody>
</table>

Results:

<table>
<thead>
<tr>
<th>[MA]/molL$^{-1}$</th>
<th>% Grafting</th>
<th>% Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.178</td>
<td>17.4</td>
<td>85.9</td>
</tr>
<tr>
<td>0.389</td>
<td>54.3</td>
<td>84.4</td>
</tr>
<tr>
<td>0.592</td>
<td>77.0</td>
<td>84.3</td>
</tr>
<tr>
<td>0.803</td>
<td>130</td>
<td>82.4</td>
</tr>
<tr>
<td>1.1017</td>
<td>123</td>
<td>65.5</td>
</tr>
</tbody>
</table>

Table 6b. Optimum conditions for preparation of PAN-g-sago starch

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>50°C</td>
</tr>
<tr>
<td>Reaction period</td>
<td>90 min.</td>
</tr>
<tr>
<td>$[\text{H}_2\text{SO}_4]$</td>
<td>0.190 molL$^{-1}$</td>
</tr>
<tr>
<td>[AGU]</td>
<td>0.146 "</td>
</tr>
<tr>
<td>[CAN]</td>
<td>9.52 x 10$^{-3}$ "</td>
</tr>
<tr>
<td>[MA]</td>
<td>0.650 "</td>
</tr>
</tbody>
</table>

Results:

<table>
<thead>
<tr>
<th>[MA]/molL$^{-1}$</th>
<th>% Grafting</th>
<th>% Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.35</td>
<td>26.6</td>
<td>96.3</td>
</tr>
<tr>
<td>0.50</td>
<td>62.3</td>
<td>96.6</td>
</tr>
<tr>
<td>0.65</td>
<td>82.4</td>
<td>96.8</td>
</tr>
<tr>
<td>0.80</td>
<td>79.3</td>
<td>83.8</td>
</tr>
</tbody>
</table>

Table 6c. Optimum conditions for preparation of poly(HEMA)-g-sago starch

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction period</td>
<td>3h</td>
</tr>
<tr>
<td>Temperature</td>
<td>40°C</td>
</tr>
<tr>
<td>Amount of HEMA</td>
<td>0.17 mol</td>
</tr>
<tr>
<td>Amount of ceric ammonium nitrate (CAN)</td>
<td>1.0 x 10$^{-5}$ mol</td>
</tr>
<tr>
<td>[HNO$_3$]</td>
<td>0.01m</td>
</tr>
</tbody>
</table>

II

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction period</td>
<td>2h</td>
</tr>
<tr>
<td>Temperature</td>
<td>40°C</td>
</tr>
<tr>
<td>Amount of potassium persulphate (PPS)</td>
<td>5 x 10$^{-3}$ mol</td>
</tr>
<tr>
<td>Amount of HEMA</td>
<td>0.05 mol</td>
</tr>
</tbody>
</table>
PPS > CAN

Table 6d. Optimum conditions for PMMA grafted sago starch

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction temperature</td>
<td>70°C</td>
</tr>
<tr>
<td>Reaction period</td>
<td>2h</td>
</tr>
<tr>
<td>Amount of CAN</td>
<td>2.0 mmol</td>
</tr>
<tr>
<td>Amount of HNO₃</td>
<td>0.4 mmol</td>
</tr>
<tr>
<td>Amount of MA</td>
<td>1.41 mmol</td>
</tr>
</tbody>
</table>

Percentage of grafting: 246%

II

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction period</td>
<td>50°C</td>
</tr>
<tr>
<td>Temperature</td>
<td>1.5h</td>
</tr>
<tr>
<td>Amount of MA</td>
<td>47 mmol</td>
</tr>
<tr>
<td>Amount of PPS</td>
<td>1.82 mmol</td>
</tr>
</tbody>
</table>

Percentage of grafting: 90%

Table 6e. Optimum conditions for poly(styrene) grafted sago starch preparation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction temperature</td>
<td>50°C</td>
</tr>
<tr>
<td>[HNO₃]</td>
<td>0.01M</td>
</tr>
<tr>
<td>Amount of styrene</td>
<td>350 mmol</td>
</tr>
<tr>
<td>Amount of CAN</td>
<td>1.68 mmol</td>
</tr>
<tr>
<td>Reaction period</td>
<td>2 h</td>
</tr>
</tbody>
</table>

Percentage of grafting: 53.92%

Table 6f. Optimum conditions for preparation of PMA and PAA grafted sago starch

PAA

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>40°C</td>
</tr>
<tr>
<td>Reaction period</td>
<td>1.5h</td>
</tr>
<tr>
<td>Amount of PPS</td>
<td>10 mmol</td>
</tr>
<tr>
<td>Amount of monomer</td>
<td>21.9 mmol</td>
</tr>
</tbody>
</table>

PMA

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>50°C</td>
</tr>
<tr>
<td>Reaction period</td>
<td>1.5h</td>
</tr>
<tr>
<td>Amount of monomer</td>
<td>87 mmol</td>
</tr>
<tr>
<td>Amount of PPS</td>
<td>8.33 mmol</td>
</tr>
</tbody>
</table>

To find the optimum conditions of graft copolymerization of each monomer, reaction period, temperature, and concentration of monomer and initiator were varied. When the copolymerization is carried out in the presence of a crosslinker, an interpenetrating polymer network is produced [Najjar, 2002].
The following compositional parameters are used to express the graft levels:

\[
\text{Percentage of grafting (P_g)} = \frac{\text{weight of grafted polymer}}{\text{weight of backbone}} \times 100
\]

\[
\text{Grafting efficiency (Ge)} = \frac{\text{weight of grafted polymer}}{\text{weight of grafted polymer + weight of homopolymer}} \times 100
\]

\[
\text{Rate of graft polymerization (R_g)} = \frac{\text{weight of grafted polymer}}{(\text{m.w. of monomer} \times (\text{reaction time, s}) \times (\text{volume, L}) \times 1000} (\text{mol L}^{-1}\text{s}^{-1})
\]

\[
\text{Percentage of homopolymer} = \frac{\text{weight of grafted homopolymer}}{\text{total weight of polymer produced}}
\]

Our study indicates that the extent of grafting depends on the type of vinyl monomer used in the copolymerization. Except for styrene, other monomers investigated are easily grafted on sago starch. The percentage of grafting of styrene onto the starch under optimum conditions is only 54% (Tables 6e).

Initiation of the polymerization was carried out using either ceric ion, potassium persulfate or potassium permanganate. A reaction mechanism for the initiation by ceric ion which involves a complex formation and produces cerous ion in addition to the production of transient free-radical species capable of initiating vinyl polymerization is given in Scheme 12.

![Scheme 12. Reaction mechanism of initiation by ceric ion.](image-url)
When potassium persulfate is used as the initiator, the formation of active centers is initiated by sulfate radical and other free radical species which are produced as an aqueous solution of persulfate is heated (Scheme 13).

\[
\begin{align*}
S_{2}O_{8}^{2-} & \rightarrow 2SO_{4}^{2-} \\
SO_{4}^{2-} + H_{2}O & \rightarrow HSO_{4}^{-} + HO^{'} \\
2HO^{'} & \rightarrow HOOH \\
2HO^{'} + HOOH & \rightarrow H_{2}O + HO_{2}^{'} \\
S_{2}O_{8}^{2-} + HO_{2}^{'} & \rightarrow HSO_{4}^{-} + SO_{4}^{2-} + O_{2} \\
St - OH + R' & \rightarrow St - O' + RH
\end{align*}
\]

where St - OH = starch; R = SO_{4}^{2-}, HO' or HO_{2}^{'}

Scheme 13. Persulfate initiation.

If a starch is soaked in KMnO_{4} solution, MnO_{2} is deposited on it. In the presence of an acid, primary radical species will be formed as a result of the acid reaction on the deposited MnO_{2}. The radical produced depends on the type and nature of the acid.

In the case of oxalic acid, the production of primary radical species are as described in Scheme 14.

\[
\begin{align*}
Mn^{4+} + C_{2}O_{4}^{2-} & \xrightarrow{\text{measurable}} Mn^{3+} + CO_{2} + 'COO'^{-} \\
Mn^{4+} + 'COO'^{-} & \xrightarrow{\text{rapid}} Mn^{3+} + CO_{2} \\
Mn^{3+} + 2C_{2}O_{4}^{2-} & \xrightarrow{\text{rapid}} [Mn(C_{2}O_{4})_{2}]^{-} \\
Mn^{3+} + C_{2}O_{4}^{2-} & \xrightarrow{\text{measurable}} Mn^{2+} + 'COO' + CO_{2} \\
Mn^{3+} + 'COO'^{-} & \xrightarrow{\text{rapid}} Mn^{2+} + CO_{2}
\end{align*}
\]

Scheme 14. Formation of primary radical species from MnO_{2} and H_{2}CO_{4}.
Once of the free-radical species (R.) are created, starch macroradicals are produced via direct abstraction of hydrogen ion from hydroxyl groups of the starch molecules. In the presence of a vinyl monomer, the starch macro radical is added to the double bond of the vinyl monomer, resulting the formation of an active center. Subsequent addition of the monomer propagates the graft copolymerization onto the starch (Scheme 15).

Propagation:

\[
\text{ST} - \text{CH}_2 - C' + n\text{CH} = C \rightarrow \text{ST} - (\text{CH}_2 - C)_{n} - \text{CH}_2 - C'
\]

Scheme 15. Propagation reaction of vinyl monomer onto starch macro radical.

Based on this proposed mechanism, a rate equation for the polymerization was derived. The equation for the rate of polymerization of grafting methyl acrylate or acrylonitrile onto sago starch using ceric ammonium nitrate as an initiator is a first order dependence of the monomer concentration and the square root of the initiator concentration [Lutfor et. al., 2001d, Lutfor et. al., 2000e].

Several analytical techniques were used to study the formation and properties of graft copolymer. Infrared spectroscopy is used to determine the presence of characteristic peaks of the products. For example, the presence of the absorption peak at 1741 cm\(^{-1}\) (Figure 12) indicates the existence of a C=O group which confirms that poly(methyl acrylate) is successfully grafted onto the starch and the sharp absorption peak at 2244 cm\(^{-1}\) in purified poly(acrylonitrile) grafted sago starch FTIR spectrum (Figure 13) supports the gravimetric analysis which suggests that acrylonitrile is copolymerized onto the starch.

![Figure 12. IR spectra of sago starch and PMA-g-sago starch](image-url)
Surface morphology of the starch and its modified products is studied by scanning electron microscopy. Sago starch particles are smooth oval granules but the granular structure is destroyed after gelatinization (Figure 14). The compact surface of the gelatinized starch may be due to crystallization. Surface morphology of poly(2-hydroxy methacrylate) is similar to that of the gelatinised starch (Figure 15) which suggests that this polymer is homogenously grafted onto the starch and has a good compatibility with the backbone polymer.

Figure 13. IR spectra of sago starch and PAN-g-sago starch

Figure 14. SEM photographs of sago and gelatinized sago starch

Figure 15. SEM photographs of Pg=90% and Pg=30% of sago starch of -g-poly (HEMA)
Figures 16 and 17 show the thermal behaviour of sago starch and poly(2-hydroxy ethyl methacrylate), respectively, studied by thermogravimetric analysis. Sago starch shows a characteristic two-step thermogram (Figure 16) where the first weight loss is due to water evaporation and second weight loss which occurs between 264-399°C is owing to the decomposition of sago starch. Figure 17 shows the thermal stability of poly(2-hydroxy ethyl methacrylate) grafted sago starch. The presence of the synthetic component in the composite is indicated by the third peak of weight loss.

![Figure 16. TGA and DTG Thermograms of Sago](image)

![Figure 17. TGA and DTG Thermograms of 81% Starch-g-Poly(HEMA)(%G)](image)

Grafting of hydrophilic polymer onto the starch drastically increase the water sorption capacity. The degree of sorbency does not only depend on the type of polymer grafted onto the starch but also on the degree of grafting. For example, for poly(2-hydroxy ethyl methacrylate) grafted sago starch, the percentage of swelling increases with the increase of percentage of grafting (Figure 18).

![Figure 18. Percentage of swelling as a function of swelling period](image)
Another potential application of vinyl monomer grafted sago starch is as matrices for ion exchanger resins. Functional groups can be introduced onto the copolymers by treating these starting materials with suitable chemicals. We have, using both poly(methyl acrylate) and poly(acrylonitrile) grafted sago starches as starting materials, successfully prepared poly(hydroxamic acid) [Lutfur et. al., 2001b, 2001c] and poly(amidoxime) [Lutfor et. al., 2000b] resins respectively. The conversion of these starting materials into the resins is a simple (one-step reaction) (Scheme 16 and 17) but produces resin having very high capacity (Table 7 and 8) and good kinetics of extraction.

Scheme 16. Preparation of poly(hydroxamic acid) from PMA-g-copolymer and chelate complex formation

Scheme 17. Preparation reaction of poly(amidoxime) from poly(acrylonitrile)-g-sago-starch and its chelate complex formation.
Table 7. Metal Ion Capacity of Poly(hydroxamic acid) Resin

<table>
<thead>
<tr>
<th>Metal Ions</th>
<th>Metal ions capacity / mmolg⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PH 2</td>
</tr>
<tr>
<td>Cu²⁺</td>
<td>1.25</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>1.40</td>
</tr>
<tr>
<td>Cr³⁺</td>
<td>0.56</td>
</tr>
<tr>
<td>Ni²⁺</td>
<td>0.51</td>
</tr>
<tr>
<td>Co³⁺</td>
<td>0.42</td>
</tr>
<tr>
<td>Zn²⁺</td>
<td>0.35</td>
</tr>
<tr>
<td>Cd²⁺</td>
<td>0.17</td>
</tr>
<tr>
<td>Dy³⁺</td>
<td>0.85</td>
</tr>
<tr>
<td>Gd³⁺</td>
<td>0.67</td>
</tr>
<tr>
<td>Nd³⁺</td>
<td>0.58</td>
</tr>
<tr>
<td>Ce³⁺</td>
<td>0.42</td>
</tr>
<tr>
<td>La³⁺</td>
<td>0.40</td>
</tr>
<tr>
<td>U⁶⁺</td>
<td>0.59</td>
</tr>
<tr>
<td>Th⁴⁺</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Table 8. Metal Ion Capacity of Poly(amidoxime) Resin

<table>
<thead>
<tr>
<th>Metal Ions</th>
<th>Metal ions capacity / mmolg⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PH 2</td>
</tr>
<tr>
<td>Cu²⁺</td>
<td>0.89</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>0.68</td>
</tr>
<tr>
<td>Zn²⁺</td>
<td>0.55</td>
</tr>
<tr>
<td>As⁴⁺</td>
<td>0.19</td>
</tr>
<tr>
<td>La³⁺</td>
<td>0.78</td>
</tr>
<tr>
<td>Gd³⁺</td>
<td>0.59</td>
</tr>
<tr>
<td>Nd³⁺</td>
<td>0.39</td>
</tr>
<tr>
<td>Ce³⁺</td>
<td>0.52</td>
</tr>
<tr>
<td>U⁶⁺</td>
<td>0.68</td>
</tr>
<tr>
<td>Th⁴⁺</td>
<td>0.31</td>
</tr>
</tbody>
</table>

In summary, it can be said that various vinyl monomers such as methyl methacrylate, methyl acrylate, acrylonitrile, styrene, acrylic acid and 2-hydroxyethyl methacrylate, were successfully grafted onto sago starch by free radical graft copolymerization. The optimum yield of grafting, grafting efficiency and rate of graft copolymerization are dependent upon the type and amount of the initiator, the amount of the monomer and sago starch in the reaction mixture as well as the reaction temperature and period. A new rate equation for the polymerization was derived from the proposed reaction mechanism. A new kinetic model for graft fraction was also proposed and the validity of the model was satisfactorily supported by the experimental results up to a certain concentration of the monomer. Characterization of the copolymers produced could be carried out using thermogravimetric analysis, scanning electron microscopy, FTIR spectroscopy and differential scanning calorimetry. Further investigations indicated that some of the copolymers produced were suitable for use as hydrogels and matrices for chelating ion exchange resins.
CONCLUSION

Chemical modification of polymers has been one of the most active fields of research in polymer sciences for the past several decades. Chemical modification enables us to introduce functional or reactive groups into polymers, to alter the polymer surfaces, to provide side chain substituents, etc. Therefore this research field is very wide and covers many topics. Current applications such as polymeric reagents and catalysts, separation on functionalized polymers, polymeric supports for active groups, conductive polymers and polymeric stabilizers, focus mainly on chemical properties of the products. It is expected that polymer modification will still be a major component of polymer science research but future emphasis of the research will also focus on physico-mechanical properties and biodegradable polymeric materials.

REFERENCES

SENARAI SYARAHAN INAUGURAL

1. Prof. Dr. Sulaiman M. Yassin
 The Challenge to Communication Research in Extension
 22 Julai 1989

2. Prof. Ir. Abang Abdullah Abang Ali
 Indigenous Materials and Technology for Low Cost Housing
 30 Ogos 1990

3. Prof. Dr. Abdul Rahman Abdul Razak
 Plant Parasitic Nematodes, Lesser Known Pests of Agricultural Crops
 30 Januari 1993

4. Prof. Dr. Mohamed Suleiman
 Numerical Solution of Ordinary Differential Equations. A Historical Perspective
 11 Disember 1993

5. Prof. Dr. Mohd. Ariff Hussein
 Changing Roles of Agricultural Economics
 5 Mac 1994

6. Prof. Dr. Mohd. Ismail Ahmad
 Marketing Management: Prospects and Challenges for Agriculture
 6 April 1994

7. Prof. Dr. Mohamed Mahyuddin Mohd. Dahan
 The Changing Demand for Livestock Products
 20 April 1994

8. Prof. Dr. Ruth Kiew
 Plant Taxonomy, Biodiversity and Conservation
 11 Mei 1994

9. Prof. Ir. Dr. Mohd. Zohadie Bardaie
 Engineering Technological Developments Propelling Agriculture into the 21st Century
 28 Mei 1994

10. Prof. Dr. Shamsuddin Jusop
 Rock, Mineral and Soil
 18 Jun 1994

11. Prof. Dr. Abdul Salam Abdullah
 Natural Toxicants Affecting Animal Health and Production
 29 Jun 1994
12. **Prof. Dr. Mohd. Yusof Hussein**
Pest Control: A Challenge in Applied Ecology
9 Julai 1994

13. **Prof. Dr. Kapt. Mohd. Ibrahim Haji Mohamed**
Managing Challenges in Fisheries Development through Science and Technology
23 Julai 1994

14. **Prof. Dr. Hj. Amat Juhari Moain**
Sejarah Keagungan Bahasa Melayu
6 Ogos 1994

15. **Prof. Dr. Law Ah Theem**
Oil Pollution in the Malaysian Seas
24 September 1994

16. **Prof. Dr. Md. Nordin Hj. Lajis**
Fine Chemicals from Biological Resources: The Wealth from Nature
21 Januari 1995

17. **Prof. Dr. Sheikh Omar Abdul Rahman**
Health, Disease and Death in Creatures Great and Small
25 Februari 1995

18. **Prof. Dr. Mohamed Shariff Mohamed Din**
Fish Health: An Odyssey through the Asia-Pacific Region
25 Mac 1995

19. **Prof. Dr. Tengku Azmi Tengku Ibrahim**
Chromosome Distribution and Production Performance of Water Buffaloes
6 Mei 1995

20. **Prof. Dr. Abdul Hamid Mahmood**
Bahasa Melayu sebagai Bahasa Ilmu - Cabaran dan Harapan
10 Jun 1995

21. **Prof. Dr. Rahim Md. Sail**
Extension Education for Industrialising Malaysia: Trends, Priorities and Emerging Issues
22 Julai 1995

22. **Prof. Dr. Nik Muhammad Nik Abd. Majid**
The Diminishing Tropical Rain Forest: Causes, Symptoms and Cure
19 Ogos 1995
23. **Prof. Dr. Ang Kok Jee**
The Evolution of an Environmentally Friendly Hatchery Technology for Udang Galah, the King of Freshwater Prawns and a Glimpse into the Future of Aquaculture in the 21st Century
14 Oktober 1995

24. **Prof. Dr. Sharifuddin Haji Abdul Hamid**
Management of Highly Weathered Acid Soils for Sustainable Crop Production
28 Oktober 1999

25. **Prof. Dr. Yu Swee Yean**
Fish Processing and Preservation: Recent Advances and Future Directions
9 Disember 1995

26. **Prof. Dr. Rosli Mohamad**
Pesticide Usage: Concern and Options
10 Februari 1996

27. **Prof. Dr. Mohamed Ismail Abdul Karim**
Microbial Fermentation and Utilization of Agricultural Bioresources and Wastes in Malaysia
2 Mac 1996

28. **Prof. Dr. Wan Sulaiman Wan Harun**
Soil Physics: From Glass Beads To Precision Agriculture
16 Mac 1996

29. **Prof. Dr. Abdul Aziz Abdul Rahman**
Sustained Growth And Sustainable Development: Is there A Trade-Off or Malaysia
13 April 1996

30. **Prof. Dr. Chew Tek Ann**
Sharecropping in Perfectly Competitive Markets: A Contradiction in Terms
27 April 1996

31. **Prof. Dr. Mohd. Yusuf Sulaiman**
Back to The Future with The Sun
18 Mei 1996.

32. **Prof. Dr. Abu Bakar Salleh**
Enzyme technology: The Basis for Biotechnological Development
8 Jun 1996

33. **Prof. Dr. Kamel Ariffin Mohd. Atan**
The Fascinating Numbers
29 Jun 1996
34. Prof. Dr. Ho Yin Wan
Fungi. Friends or Foes
27 Julai 1996

35. Prof. Dr. Tan Soon Guan
Genetic Diversity of Some Southeast Asian Animals: Of Buffaloes and Goats and Fishes Too
10 Ogos 1996

36. Prof. Dr. Nazaruddin Mohd. Jali
Will Rural Sociology Remain Relevant in The 21st Century
21 September 1996

37. Prof. Dr. Abdul Rani Bahaman
Leptospirosis - A Model for Epidemiology, Diagnosis and Control of Infectious Diseases
16 November 1996

38. Prof. Dr. Marziah Mahmood
Plant Biotechnology - Strategies for Commercialization
21 Disember 1996

39. Prof. Dr. Ishak Hj. Omar
Market Relationships in The Malaysian Fish Trade: Theory and Application
22 Mac 1997

40. Prof. Dr. Suhaila Mohamad
Food and its Healing Power
12 April 1997

41. Prof. Dr. Malay Raj Mukerjee
A Distributed Collaborative Environment for Distance Learning Applications
17 Jun 1998

42. Prof. Dr. Wong Kai Choo
Advancing the Fruit Industry in Malaysia: A Need to Shift Research Emphasis
15 Mei 1999

43. Prof. Dr. Aini Ideris
Avian Respiratory and Immunosuppressive Diseases - A Fatal Attraction
10 Julai 1999

44. Prof. Dr. Sariah Meon
Biological Control of Plant Pathogens: Harnessing the Richness of Microbial Diversity
14 Ogos 1999
45. Prof. Dr. Azizah Hashim
 The Endomycorrhiza: A Futile Investment?
 23 Oktober 1999

46. Prof. Dr. Noraini Abd. Samad
 Molecular Plant Virology: The Way Forward
 2 Februari 2000

47. Prof. Dr. Muhamad Awang
 Do We have Enough Clean Air to Breathe?
 7 April 2000

48. Prof. Dr. Lee Chnoong Kheng
 Green Environment, Clean Power
 24 Jun 2000

49. Prof. Dr. Mohd. Ghazali Mohayiddin
 Managing Change in the Agriculture Sector: The Need for Innovation Educational Initiatives
 12 Januari 2002

50. Prof. Dr. Fatimah Mohd. Arshad
 Analisis Pemasaran Pertanian Di Malaysia: Keperluan Agenda Pembaharuan
 26 Januari 2002

51. Prof. Dr. Nik Mustapha R. Abdullah
 Fisheries Co-Management: An Institutional Innovation Towards Sustainable Fisheries Industry
 28 Februari 2002

52. Prof. Dr. Gulam Rusul Rahmat Ali
 Food Safety: Perspectives and Challenges
 23 Mac 2002

53. Prof. Dr. Zaharah Binti A. Rahman
 Nutrient Management Strategies for Sustainable Crop Production in Acid Soils: The Role of Research using Isotopes
 13 April 2002

54. Prof. Dr. Maisom Abdullah
 Productivity Driven Growth: Problems & Possibilities
 27 April 2002
55. Prof. Dr. Wan Omar Abdullah
Immunodiagnosis and Vaccination for Brugian Filariasis: Direct Rewards from Research Investments
6 Jun 2002

56. Prof. Dr. Syed Tajuddin Syed Hassan
Agro-ento Bioinformation: Towards the Edge of Reality
22 Jun 2002

57. Prof. Dr. Dahlan Ismail
Sustainability of Tropical Animal- Agricultural Production Systems: Integration of Dynamic Complex Systems
27 Jun 2002

58. Prof. Dr. Ahmad Zubaidi Baharumshah
The Economics of Exchange Rates in the East Asian Countries
26 October 2002

59. Prof. Dr. Shaik Md. Noor Alam S.M. Hussain
Contractual Justice in Asean: A Comparative View of Coercion
31 October 2002