

UNIVERSITI PUTRA MALAYSIA

ANALYSIS AND FIELD STUDIES OF SALTWATER INTRUSION IN A COASTAL AQUIFER : A CASE OF BACHOK, KELANTAN

RUSLAN HASSAN

FK 2001 15

ANALYSIS AND FIELD STUDIES OF SALTWATER INTRUSION IN A COASTAL AQUIFER : A CASE OF BACHOK, KELANTAN

By

RUSLAN HASSAN

Dissertation Submitted in Fulfilment of the Requirement for the Degree of Doctor of Philosophy in the Faculty of Engineering Universiti Putra Malaysia

October 2001

DEDICATION

I wish to dedicate this work to the poor farmers of Bachok, Kelantan, who simply refused to give up.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

ANALYSIS AND FIELD STUDIES OF SALTWATER INTRUSION IN A COASTAL AQUIFER : A CASE OF BACHOK, KELANTAN

By

RUSLAN HASSAN

October 2001

Chairman : Dato' Prof. Ir. Dr. Muhamad Zohadie Bardaie

Faculty : Engineering

This dissertation deals with the extent of saltwater/chloride distribution in a two-layered coastal aquifer. The area chosen for the study is located in the Mukim of Bachok, Kelantan which covers an area of 72 km² about 20 km South East of Kota Bharu. The area mainly consists of a large flat plain, with soils belonging to the Bris complex (82 - 99% sand) and drained mainly by the meandering Kemasin River and its tributaries. Groundwater contamination by chloride has become a threat to this area, economically and to health. Chloride concentrations have exceeded their permissible limits thereby limiting their eventual uses in tobacco farming and as drinking water. The objectives of this study are therefore to analyse the saltwater intrusion and contamination in the area; to obtain the necessary understanding of the chloride movement and distribution; and finally, to ascertain and make reasonable predictions as to the future contamination of the area by the saltwater.

The approach taken was two-folds, namely to investigate the chloride distribution in the upper aquifer which is mainly utilized for tobacco farming and to analyse the saltwater intrusion using sharp interface and dispersive approaches in the lower aquifer. The analysis on the extent of chloride distribution in the upper aquifer was based on the field investigation covering a period between 1991 - 1995. The field studies were carried out by comprehensive data collection on the upper aquifer for a period of four (4) years which preceded the one (1) year MARDI study. Field studies on the lower aquifer were carried out for a period of two (2) years (1994 and 1995).

The analysis on the Bachok coastal aquifer groundwater systems was done by means of the Regional Groundwater model. The middle stretch of the Kampong Cap transect (DDM1-5) was studied further using the data obtained from Pfeiffer study and the two-zone model. The latter model made use of the discrete space-discrete time approach. To understand the flow paths within the aquifer, an analogue model and PSpice were used.. The parameters thus determined were incorporated in the Regional Groundwater model. Chloride distribution for the upper aquifer was then analysed. As for the upper aquifer, there was an increase in the content of chloride concentration compared to the earlier MARDI study despite the seasonal flushing of the saline water. The chloride increased with higher precipitation (November and December annually) in the flood plains, which was opposite to the long held theory that dilution would decrease the concentration.

The cross-section P-Q which had the most data and better defined than the other cross-sections was chosen for simulating the saline intrusion using SUTRA model. A single unified aquifer was chosen for the purpose since, the aquifer is

hydraulically connected at this cross-section. Cross-sectional intrusion analysis was accomplished in two stages. In the first stage, a steady- state calibration procedure was performed to obtain a match between the theoretical Ghyben-Herzberg position of the interface with that of the computed one and the observed field values. In the second stage, the transient behaviour of the interface was analysed using the dry period and discharge (production wells) and average recharge rates plus the discharge.

It was found that for the aquifer system of Bachok, the groundwater in the lower aquifer is being contaminated by saline water. The saltwater wedge had reached a distance of 6 km (DDM4) from the sea. The chloride concentrations had exceeded 1000 mg/L for a 10-months period in 1995. The degree and extent of saline intrusion depends on the season and was obviously furthest inland during the dry season. As a long-term prediction, it is envisaged that within 25 years from 1994, at the present withdrawal rate of 45,000 gallons per day, the chloride concentration at Kg. Cap will attain a value of 103 mg/L (within the 0.1 isochlor line). The dispersive approach was more applicable here rather than the sharp interface. It described with reasonable accuracy the movement of the interface of the P-Q transection in the lower aquifer, with the hydraulic connection existing between the upper and lower aquifer. It is recommended that for the tobacco farming, the activity should be limited to an area, one (1) km away from both the river and the sea. For saltwater intrusion control in this study area, it is proposed that the water withdrawal be regulated, producing wells be redistributed and monitoring system (including the use of SUTRA) be incorporated in such a way that saltwater intrusion remains in equilibrium while developing the aquifer to its maximum possible yield.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

ANALISIS DAN KAJIAN LAPANGAN SUSUPAN AIR MASIN KE SUATU AKUIFER BERHAMPIRAN PANTAI : KAJIAN KES DI BACHOK, KELANTAN

Oleh

RUSLAN HASSAN

Oktober 2001

Pengerusi : Dato' Prof. Ir. Dr. Muhamad Zohadie Bardaie

Fakulti : Kejuruteraan

Disertasi ini menangani setakat mana agihan klorida/air masin di dalam akuifer yang berlapisan dua berhampiran dengan sebuah pantai. Kawasan kajian yang dipilih terletak dalam Mukim Bachok, Kelantan yang luasnya adalah 72 km², dan jauhnya lebih kurang 20 km di Selatan hala Timur Kota Bharu. Kawasan ini terdiri daripada tanah rata yang luas yang tanahnya tergolong daripada jenis kompleks Beris (pasir 82 - 99%) dan disalirkan oleh Sungai Kemasin dan alur-alur yang berliku-liku. Pencemaran oleh kemasukan air masin mengakibatkan kesan buruk kepada kegiatan tanaman tembakau dan kesihatan. Pada kebanyakan tempat, nilai klorida melebihi hadnya yang memberi kesan kepada penggunaannya. Objektif kajian ini meliputi menganalisis kedudukan kemasukan air masin, memahami pergerakannya dan kemudian membuat jangkaan potensi penerobosannya pada masa akan datang.

Pendekatan yang diambil ialah mengkaji akuifer atas yang airnya digunakan untuk tanaman tembakau kemudian menganalisa kemasukan air masin ke dalam akuifer bawah dengan pendekatan permukaan antara jelas dan dispersif.. Kajian di akuifer atas meliputi kajian di tapak di antara tahun 1992 – 1995. Bagi kajian akuifer di bawah, data dikumpul selama 2 tahun (1994 dan 1995).

Penganalisisan sistem air tanah di kawasan pantai Bachok dilakukan dengan menggunakan model air tanah wilayah ('regional ground water model'). Bahagian tengah Kampong Cap (DDM1-5) dipilih untuk kajian lanjutan dengan menggunakan hasil kajian Pfeiffer dan model dua-zon. Model dua zon menggunakan pendekatan ruang diskrit-ruang masa. Untuk memahami laluan air di keratan pilihan ini model analog kemudiannya digunakan. Nilai yang didapati digunakan balik dalam model wilayah. Agihan klorida bagi akuifer dikaji dan ianya menunjukkan peningkatan nilai klorida berbanding dengan kajian MARDI yang terdahulu. Kandungan klorida didapati tinggi bila terdapatnya banjir dan ini berbeza dengan pendapat sebelum ini yang hujan akan mencairkan kandungan klorida.

Keratan P-Q dipilih untuk kajian simulasi dengan menggunakan model SUTRA kerana mempunyai data yang mencukupi berbanding dengan yang lain. Anggapan suatu akuifer tunggal digunakan dalam analisis kerana terdapat kaitan hidraul antara akuifer atas dan bawah pada keratan ini. Analisis kemasukan air masin di keratan rentas ini disempurnakan dengan membuat dua langkah. Pertama, prosedur kalibrasi keadaan stabil didapati dengan menggunakan kedudukan Ghyben-Herzberg dan data yang diukur di tapak. Kedua, kelakuan transien permukaan antara dianalisa

dengan menggunakan kadar musim kering dan pengambilan air (kadar alir keluar) dan purata kadar recaj dengan kadaralir.

Adalah didapati bagi sistem akuifer di Bachok, airnya telah dicemari oleh air masin. Air masin telah sampai di takat 6 km dari pantai iaitu di DDM4. Kepekatan klorida pada jangka masa 10 bulan dalam setahun (1995) telah melebihi 1000 mg/L. Tahap dan sejauh mana penorobosan air masin bergantung kepada musim dan adalah lebih jauh ke darat dalam musim kering. Dalam jangkamasa yang panjang, adalah dianggarkan dalam masa 25 tahun (daripada 1994), pada kadar pengambilan air sekarang iaitu 45,000 gelen sehari, kepekatan klorida di Kg. Cap akan mencapai 103 mg/L (dalam lingkungan 0.1 isoklor). Pendekatan dispersif lebih terpakai di kawasan ini berbanding dengan pendekatan permukaan antara tepat ('sharp-interface'). Pendekatan dispersif menunjukkan dengan agak tepat, pergerakan permukaan antara di keratan P-Q bilamana terdapat kaitan hidraul antara akuifer atas dan bawah.

Berdasarkan hasil kajian, beberapa langkah dicadangkan untuk menangani masalah klorida. Tanaman tembakau mestilah dijalankan pada jarak satu (1) km daripada sungai Kemasin dan juga pantai. Bagi kawalan kemasukan air masin di akuifer bawah, adalah dicadangkan, bahawa pendekatan yang sebaik-bailanya ialah dengan mengatur ekstraksi air daripada akuifer, diagih semula lokasi takat pengeluaran air dan melakukan pemantauan yang rapi dan terkini (termasuk menggunakan model SUTRA ini). Langkah ini adalah untuk memastikan keseimbangan permukaan antara, bilamana akuifer hendak dimajukan ke tahap pengeluaran semaksima mungkin.

viii

ACKNOWLEDGEMENTS

In the name of ALLAH Most Beneficient and Most Merciful, I would like to extend my sincerest appreciation to the following:

- Professor Dato' Dr. Ir. Muhamad Zohadie Bardaie, Associate Professor Dr. Salim Said and Dr Aziz Zakaria for making this undertaking possible especially with the IRPA 1-07-05-0609 (JO3) fund,
- En. Mohammud Che Husain of MARDI, Kubang Keranji, Kelantan who is ever willing to help,
- Rashid Bacik and Mohd Nazan Awang of the Geology Department,
- En. Hamadi Che Harun, the Kelantan State Geology Director,
- The late Associate Professor Dr. Ismail Md. Noor for advising me to take up an area in Bachok, Kelantan as my case study,
- Professor Ken Rushton, Ph.D, DSc., for supervising my work at Birmingham University, UK,
- Dr. John P Watts, Assistant Representative of the British Council, Kuala Lumpur for granting me the 1992 High Commissioner's Award,
- En. Bakhtiar Lubis and Amiruddin Hashim who have made my stay in Birmingham, UK bearable,
- En. Kamkah Ahmad of JKR, Bachok, who never fails to assist me,
- Wan Azman, Hanafi and Yunus who have helped in the data collection, and
- last but not least my wife, Nadirah Yahya who is very supportive and the six children who have endured my intermittent but sometimes long absence from home since embarking on this study.

I certify that an Examination Committee has met on 8th October 2001 to conduct the final examination of Ruslan b. Hassan on his Doctor of Philosophy thesis entitled "Analysis and Field Studies of Salt Water Intrusion in a Coastal Aquifer : A Case of Bachok, Kelantan" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommended that the Candidate be awarded the relevant degree. The Committee Members for the candidate are as follows:

Mohd Amin Mohd Soom, Ph.D. Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Muhamad Zohadie Bardaie, Ph.D. Professor and Vice-Cancellor Faculty of Engineering Universiti Putra Malaysia (Member)

Salim Said, Ph.D. Associate Professor, Faculty of Engineering Universiti Putra Malaysia (Member)

Aziz Zakaria, Ph.D. Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

Md. Noor Salleh, Ph.D. Professor and Vice-Cancellor, Universiti Pendidikan Sultan Idris (UPSI) Tanjung Malim, Perak (Independent Examiner)

Mohd Ghazali Mohayidin, Ph.D. Professor/ Deputy Dean of Graduate School, Universiti Putra Malaysia

Date: 24th October 2001

This Thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy.

eij-

Aini Ideris, Ph.D. Professor Dean of Graduate School, Universiti Putra Malaysia

Date: 1 3 DEC 2001

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Afrijan Karra -

Ruslan Hassan

Date: 24th October 2001

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
APPROVAL SHEETS	х
DECLARATION FORM	xii
TABLE OF CONTENTS	xiii
LIST OF TABLES	xvi
LIST OF FIGURES	xix
LIST OF PLATES	xxiii
LIST OF SYMBOLS	

AND ABBREVIATIONS xxiv

CHAPTER

Ι	GENERAL INTRODUCTION	1
	Concerns on Saltwater Intrusion in Peninsular Malaysia	2
	Modelling Groundwater Systems	3
	Statement of Problem	4
	Objectives	5
	Scope	6
	Outline of the work	6
II	BACKGROUND AND LITERATURE REVIEW	7
	Salt Water Intrusion Phenomenon	7
	Methods of Solving Saltwater Intrusion and Related Ground	10
	Water Problems	
	Physical Models	11
	Mathematical Models	12
	Analytical Models	13
	Numerical Models	14
	Selection of Approach to be Used in the Present Investigation	16
III	APPROACHES USED IN SALTWATER INTRUSION	18
	Ghyben-Herzberg Equation	18
	Sharp-Interface Approach	20
	Governing equations	
	Mass Balance	22
	Momentum Balance	22
	Three-Dimensional equations	22
	Vertical Integration	23
	Surface Conditions	26

Page

	Final equations	30
	Dispersive Approach	32
	Two-Dimensional Miscible Transport Models	33
	Steady-State Conditions	33
	Transient or Unsteady State conditions	36
	SUTRA Model	38
	Physical-Mathematical Basis of SUTRA Simulation	39
	The Fluid Flow and Flow Properties	40
	Fluid Mass Balance	41
	Simulation Work	43
IV	HYDROGEOLOGICAL SETTING AND ANALYSES	44
	OF THE STUDY AREA	
	Location of the Study Area	44
	Soil Characteristics	44
	Geology and Hydrology	46
	Hydrogeochemical Character and Groundwater Facies	51
	Recognition of Seawater in Groundwater	54
	Hydrogeology	55
	Aquifer Characteristics	60
	Determination of Permeability and Transmissivity	61
	Transmissivity by Means of Theis and Jacob Methods	62
	Pumping Test Analysis	68
	Application of the Two-Zone Model	68
	Representation of the Flow System at Kg. Cap (Test Well 1)	69
	Recharge Assessments	74
	Water Quality of Groundwater	75
	Kemasin River Water Quality	76
V	INVESTIGATIONS ON WATER AND CHLORIDE LEVELS	77
	Field Investigation Set-up	77
	Groundwater Levels	79
	Regional Groundwater Model	79
	Groundwater Levels for the Upper Aquifer	86
	Analogue Model	87
	Theory	88
	Scaling Factor	89
	Equivalent Hydraulic Resistance	90
	Tolerance Errors	91
	Laboratory Set-up	91
	Investigations on Chloride Levels	97
	Sampling Procedure	100
	Sungai Kemasin-Upper Aquifer Interaction	102

VI	RESULTS A	ND DISCUSSION	
	Groundwater	r Levels	104
	Intrusion in t	he Upper Aquifer	109
	Chloride C	Contents vs. Distance from the Coast and River	116
	Chloride c	ontents vs. Precipitation	116
	Chloride c	ontents vs. Landform	117
	Groundwa	iter Flow	117
	Chloride (Contributions from Kemasin River	118
	River-Aqu	uifer Relationship	123
	Groundwa	ter Potential and Sungai Kemasin-Aquifer Flow	123
	Saline Intrus	ion in the Lower Aquifer	125
	Cross-Sec	tional Saltwater Intrusion Model	128
	Initial and	Boundary Conditions and Physical Parameters	129
	Temporal	and Spatial Discretisation of the Cross-Sectional Model	131
	Calibration	n of the Cross-Sectional Model	132
	Transient	Saltwater Intrusion Analysis	137
	Long-Terr	n Saltwater Intrusion Analysis	140
	Sensitivity	/ Analysis	142
	SUTRA as a	Tool of Analysis	144
VII	SUMMARY	Y. CONCLUSIONS AND FUTURE WORK	146
	Summary	-,	146
	Conclusions	5	148
	Recomme	ndations for Future Work	149
BIBL	IOGRAPHY		151
APPE	INDICES		
	Appendix A:	Solving for Concentrations at Specified Nodes using Numerical Approximations in SUTRA model	162
	Appendix B:	Plots of Drawdowns and Recovery Pumping Test Data (Kg. Cap)	167
	Appendix C:	Data on Stations adjacent to Sungai Kemasin to Establish River-Aquifer Relationship	179
	Appendix D:	Recharge Calculations and Associated Data	188
	Appendix E:	Analogue and PSpice Data for P-Q	201
		Transection Stations	
	Appendix F:	Regional Groundwater Model :	201
		Programme, Data and Outputs Two-Zone Programme	
	Appendix G:	Selected Chloride and Groundwater Levels Data For the Upper and Lower Aquifer (including Data on Random Stations)	231
	Appendix H:	Plates	248
BIOG	GRAPHICAL	SKETCH	256

LIST OF TABLES

Table		Page
4.1:	Results from Previous Study (1977)	66
		00
4.2:	Results of Pumping Test (Binnie and Partners, 1980)	66
4.3:	Parameters for the Kampong Cap Flow Representation	71
4.4:	Parameters for the Kampong Cap Flow System	72
4.5:	Water Quality in Bachok area, Kelantan	75
5.1(a):	Voltage Drop with Current Source 2.0 A	96
5.1(b):	The Equivalent Analogue between Discharge and Current	96
5.1(c):	Heights of Stations above sea level	96
6.1:	Comparison between Measured and Simulated Levels	127
B1:	Pumping Test Data	171
C.1:	The relationship between the Groundwater Potential with	
~ •	River-Aquifer flow for Sungai Kemasin system (S3)	178
C.2:	The relationship between the Groundwater Potential with Piver A quifer flow for Sungai Kemasin system (DSM7)	178
C.3:	The relationship between the Groundwater Potential with	170
	River-Aquifer flow for Sungai Kemasin system (DSN3)	179
C.4:	The relationship between the Groundwater Potential with Piver Aquifer flow for Sungai Kemasin system (DSM4)	170
	River-Aquiter now for Sungar Kemasin system (DSIV14)	1/9
D.1:	Calculated Runoff for 1994	191
D.2:	Summary of Results for July 1994	192
D.3:	Daily Rainfall	193
D.4:	Effective Daily Rainfall	194
D.5:	Soil Moisture	195
D.6:	Water Surplus	196
ד ס.	Water Deficit	107
D./.		19/

D.8:	Available Water for Runoff	198
D.9:	Rainfall and Runoff	199
D.10:	Baseflow in m ³ /s for July 1994	199
E.1:	The Analogy between Discharge and Current	202
E.2:	Flow of Water, Q (m^3/d) for Upper Aquifer (P-Q)	203
E.3:	Flow of Water, Q (m^3/d) for Lower Aquifer (P-Q)	203
E.4:	Flow of Water, Q (m^3/d) for Upper and Lower Aquifer (P-Q) With I = 2.0 Ampere - Analog	204
E.5:	Flow of Water, Q (m^3/d) for Upper and Lower Aquifer (P-Q) With I = 2.0 Ampere - PSpice	204
E.6:	Voltage Drop with Current Source of 2.0 Amperes	205
E.7:	Summary of Results using Analog with $I = 2.0 A$	206
E.8:	Height above sea level $(I = 2.0 \text{ A})$ - analog	207
E.9:	Height above sea level $(I = 2.0 \text{ A})$ - PSpice	207
E.10:	Summary of Results on Heights (Percentages)	208
G.1:	Year 1994 (Chloride Concentration in mg/L) (Lower Aquifer)	232
G.2:	Year 1995 (Chloride Concentration in mg/L) (Lower Aquifer)	233
G.3:	Year 1995 (Groundwater Depth from Ground Level in cm) Lower Aquifer	234
G.4:	Year 1993 (Chloride Concentrations in mg/L) (Upper Aquifer)	235
G.5:	Year 1994 (Chloride Concentrations in mg/L) (Upper Aquifer)	236
G.6:	Year 1995 (Chloride Concentrations in mg/L) (Upper Aquifer)	237
G.7:	Year 1993 (Chloride Concentrations in mg/L) (Upper Aquifer)	238
G.8:	Year 1994 (Chloride Concentrations in mg/L) (Upper Aquifer)	239
G.9:	Year 1995 (Chloride Concentrations in mg/L) (Upper Aquifer)	240

G.10:	Year 1995 (Chloride Concentrations in mg/L) (Upper Aquifer)	241
-------	---	-----

G.11: Data of Rainfall Amount, Groundwater Level and Chloride Concentration 242 for Stations T18, T19 and DSN1

Figure		Page
2.1 :	Interface between Freshwater and Saltwater (Ghyben-Herzberg Theory)	8
3.1:	Groundwater Flow Near the Coast (Sharp Interface Theory)	19
3.2:	Two-dimensional Finite Element Mesh and Quadrilateral Element	40
4.1:	Location of the Study Area	45
4.2:	Major Soil Types within the Study Area	47
4.3:	Geology of Kelantan	49
4.4 (a):	Average Rainfall over 20-years (Bachok: Station	50
4.4 (b):	Rainfall Pattern during the Study period	50
4.5:	Zonation of Hydrochemical Facies (water type)	53
45(a)	The Three Aquifer Zones Bachok District	56
4.5(a):	Location of the Cross-Section (Plan)	57
4.5(b):	Hydrogeological Cross-Section (Bachok Kelantan)	58
4.5 (d):	Locations of Test and Observation Wells	59
4.6:	The Transmissivities of the Kelantan Lower Aquifer	67
4.7 (a):	Flow Representation of Kg. Cap Test Well	70
4.7 (b):	Two-Zone Model Approach	70
4.8:	Predicted and Field Drawdowns for Pumping Duration of 2.7 days	73
5.1 :	Field Investigation Set-up for Upper and Lower Aquifers	78
5.2 :	Water Table Condition of Kelantan Aquifer on 1st. December 1994	85
5.3 (a):	Aquifer Profile	92

LIST OF FIGURES

5.3 (b):	Location of Stations along the transect P-Q from Pantai Irama, Bachok	93
5.4 (a): 5.4 (b):	Node and Resistor Division Analogue Model	94 95
5.5 :	Schematic Diagram of Pizeometer	98
5.6 :	Location of Transects and Piezometers within the Northern part of the Study Area	99
5.7 (a):	Typical Relationship between Flow from Aquifer to the River and Groundwater Potential	103
5.7 (b):	The Cross-Section of the River-Aquifer interactions	103
6.1 :	Location of the Piezometer and 'Control' Transection	105
6.2 :	Water Levels below GL (DSS3-DSS1) (Nov.'93-June '95) and (N3-N1) (Nov. '92-June'95	108
6.3 (a): 6.3 (b):	Chloride Levels for DSS1-DSS5 (Nov. '93-June '95 ('Control') Chloride Levels of Electrical Conductivities (E.C.) in (μS/cm for Transect (DSS1-DSS5) ('Control')	111 111
6.4 :	The chloride Levels for the Northern Transect (N 1 -N8) and without (N3&N4) (Nov.'92-June'95)	113
6.5 :	Chloride Levels for Southern Transect (with and without S3 and S4)	114
6.6 (a):	Variation of Chloride Content in Groundwater in the Northern Transect in Relation to Rainfall and Landscape	119
6.6 (b):	Variation of Chloride Content in Groundwater in the Middle	120
6.6 (c) :	Variation of Chloride Content in the Groundwater in the Southern Transect in Relation to Rainfall and Landscape	120
6.7:	Chloride Levels in December '93 and '94	122
6.8 (a), (b), (c) and (d)	The Relationship between Groundwater Potential with River- Aquifer Flow for Sungai Kemasin System	124

6.9 :	Water Table Condition of Kelantan Aquifer on 1st. December 1994 showing Measured and Computed Water Levels for Bachok area	126
6.10 :	Comparison of Observed and Computed Heads along Section P-Q	128
6.11 :	Piezometers, Production Wells and Boundary Conditions for the Cross-Section Model	130
6.12 :	Cross-sectional Finite Element Mesh for the Bachok plain P-Q Transection	130
6.13 :	Chloride Concentration (Measured) vs. Distance in 1994 for P-Q Transection	133
6.14 :	Chloride Concentration (Measured) vs. Distance in 1995 for P-Q Transection	133
6.15 :	Depth vs. Chloride Concentration (Measured) in 1994 for P-Q Transection	134
6.16 :	Depth vs. Chloride Concentration (Measured) in 1995 for P-Q Transection	134
6.17 :	Comparison of Calibrated Concentration Isochlors (seawater = 1.0), Ghyben-Herzberg and Measured Levels	136
6.18 :	The initial and Final Salt Concentration Distribution (seawater = 1.0) for Complete Period of Dry and Recharge	139
6.19 :	Comparison of Salt Concentration Distribution (seawater = 1.0) for $t = 0$ year and t = 25 year	141
6.20 :	Sensitivity Analysis for the Cross-Section Model of P-Q Transection	143
B.1 :	Drawdown and Recovery Plots for BH4	160
B.1 :	Drawdown and Recovery Plots for BH5	108
		109

B.1:	Drawdown and Recovery Plots for ENEX Borehole	170
C.1:	River-Aquifer Interaction for Sungai Kemasin, Station S3	180
C.2:	River-Aquifer Interaction for Sungai Kemasin, Station S4	181
C.3:	River-Aquifer Interaction for Sungai Kemasin, Station DSM6	182
C.4:	River-Aquifer Interaction for Sungai Kemasin, Station DSM7	183
C.5:	River-Aquifer Interaction for Sungai Kemasin, Station DSN2	184
C.6:	River-Aquifer Interaction for Sungai Kemasin, Station DSN3	185
C.7:	River-Aquifer Interaction for Sungai Kemasin, Station DSM3	186
C.8:	River-Aquifer Interaction for Sungai Kemasin, Station DSM4	187
D:	Unit Hydrograph for July 1994	200
E.1:	Comparison of Voltage drop between Analog and PSpice	209
E.2:	Comparison of Field, Analog and PSpice Head Values	210
G.1:	Relationship between Rainfall Amount, Groundwater Level and the effect on Chloride Concentration at T18	243
G.2:	Relationship between Rainfall Amount, Groundwater Level and the effect on Chloride Concentration at T19	244
G.3:	Relationship between Rainfall Amount, Groundwater Level and the effect on Chloride Concentration at DSN1	245
G.4:	Relationship between Rainfall Amount, Groundwater Level Chloride Concentration at T18, T19 and DSN1	246
G.5:	The Comparison between Chloride Concentration at each Station (T18, T19 and DSN1)	247

LIST	OF	PLA	ATES
------	----	-----	------

Plate		Page
5.4 (b)	Analogue Model	95
H1	A View of Sungai Kemasin ('Salty River')	249
H2	Water Table Measurement Set	249
H3	Measuring Depth to Water Table (Location T 18)	250
H4	Pumping out the Sample (Location DDM4)	250
H5	Tobacco Cultivation in the Study Area	251
H6	'Floating Bridge' across Kemasin River (Location DDN3)	251
H7	Pumping the Sample at Location DDN5	252
H8	Measuring Water Table at Location DDM3	252
H9	Kg. Cap Water Treatment Plant	253
H10	Production well at Kg. Cap Treatment Plant (formerly Test Well 1)	253
H11	Jelawat Treatment Plant (Transect DDS 1 - DDS5)	254
H12	Production Well at Jelawat	254
H13	Level Gauge in Kemasin river	255
H14	Tidal Gate	255

LIST OF SYMBOLS AND ABBREVIATIONS

b	thickness occupied by the indicated fluid (L)
С	concentration (ML ⁻³)
С	the fluid solute mass fraction
C^*	the solute mass fraction of fluid sources
cumecs	cubic metres per second
D	hydrodynamic dispersion coefficient (L^2T^{-1})
D	the dispersion tensor
D_m	the apparent molecular diffusivity of solutes in solution in a porous medium including tortuosity effects
g	gravitational acceleration (LT ⁻²)
h_F	fresh-water head (L)
h_s	salt-water head (L)
h	head in overlying aquifer (L)
Ι	identity tensor
К	hydraulic conductivity (a tensor quantity)
k	intrinsic permeability (L ²)
MARDI	Malaysian Agricultural Research and Development Institute
р	pressure ($ML^{-1}T^{-2}$)
ppm	parts per million
Qp	fluid mass source
q	Darcy velocity (LT ⁻¹)
R	recharge (L)
SF	specific storage in fresh-water zone

