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Abstract: The instability of flapping wing aircraft makes them difficult to control. As it is challenging 
to control and puts passengers at risk, it is not currently employed in modern aircraft technology. This 
study aims to analyze the aerodynamic coefficients of flapping wing aircraft at different flapping angles 
in order to understand their effects on the aircraft’s stability. XFLR5 software was used to calculate the 
aerodynamics coefficients and longitudinal derivatives in different range of flapping angles from 40° to 
-40°. This range of flapping angles has been selected for the purpose of this study based on the physical 
limitations of a mechanical vehicle. Theoretically, an aircraft without a tail is unstable because the main 
function of a tail is to produce a moment that counters the moment produced by the wings to balance 
the aircraft. In the presented research, a model has been designed with and without tail, and modeled 
using XFLR5 to produce the aerodynamics coefficients. Then, MATLAB software was used to develop 
the longitudinal flight dynamics for the model. The results show that the longitudinal motion is stable 
for the range of flapping angle between 40° to -40°. The natural frequency increases as flapping angle 
changes from 0° to 40° and from 0° to -40°. In the meantime, for the short period mode’s eigenvalue, 
the real part moves toward the origin as the flapping angle changes from 0° to 40° and from 0° to -40°. 
On the other hand, for the phugoid mode’s eigenvalue, the real part moves away from the origin to the 
left half plane as the flapping angle changes from 0° to 40° and from 0° to -40°. 
 
Keywords: flapping wing; MAV; aerodynamic coefficients; stability; flight dynamics  

1. Introduction 

In general, the aerospace industry is always evolving through implementation of new technologies 
into old and existing ones. It can be noted that the foundation of the industry is largely based on nature 
creatures such as birds, insects and others [1]. The flapping wing aircraft is an example of the earliest 
technologies that mankind has tried to make or replicate from nature. However, due to the complexities 
and challenges, flapping wing aircraft was not used and several other types of inventions such as fixed 
wing aircraft has been used instead because their efficiency [2]-[5]. Flapping wing aircraft is essentially 
difficult to develop because of inconsistency in terms of its stability. It is not implemented in today's 
aircraft technology due to limited understanding of its dynamics. With better understanding, an optimal 
controller can be developed to produce a safe flapping wing flight. To this effect, there are conducted 
researches that have demonstrated the benefits of using flapping wing, though implementation of such 
methods might be more suitable for the smaller-size micro air vehicles (MAVs) [6]-[11]. 

For flapping wing aircraft to find wider applications in the aerospace industry, such as for passenger 
transport missions, more studies are required to better understand its flight dynamics. With this notion, 
the research work presented in this paper is aimed to analyze the aerodynamic coefficients of flapping 
wing aircraft at different flapping angles. The knowledge gained from this study helps to establish their 
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influence on the aircraft’s stability and subsequently facilitates the design of a better controller for a safe 
flapping wing flight. 

2. Methodology 

In XFLR5 software, a flapping wing model was created based on the work by Bomphrey et al. [2]. 
The model was updated with Phoenix airfoil for the main wing section and NACA 0009 airfoil for the 
tail section. Once airfoils were specified and analyzed, the creation of the new plane model in XFLR5 
was completed. It should be noted that the NACA 0009 airfoil was chosen since it is symmetrical and 
commonly recommended for the aircraft’s tail section [12]. Figure 1 illustrates the isometric view of the 
designed plane model in XFRL5 and Table 1 lists the parameters of the model.  

 

Figure 1: Isometric view of the designed plane model in XFLR5 

Table 1: Parameters of model from XFLR5 

Parameter Value 

wingspan 1.56 m 

xyProj. Span 1.56 m 

Wing Area 0.39 m2 

xyProj. Area 0.39 m2 

Plane Mass 2.25 kg 

Wing Load 5766.048 g/m2 

Tail Volume 0.445 

Root Chord 0.18 m 

MAC 0.256 m 

Tip Twist 0 

Aspect Ratio 6.237 

Taper Ratio 1 

Root-Tip Sweep 0 

XNP = d(XCp.Cl)/dcl 0.112 m 

 

Firstly, using XFLR5 software, aerodynamics and stability analyses were done on the entire model 
to obtain its aerodynamics coefficients at Reynolds number of 6 x 106. Using the obtained aerodynamic 
coefficients and also previously estimated model parameters, the stability coefficients were computed. 
In this study, MATLAB software is applied in the calculation of the longitudinal and lateral coefficients 
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based on formulas from Nelson [13]. Next, the stability derivatives were calculated. Subsequently, the 
corresponding state matrix, natural frequency and damping ratio were derived. These parameters were 
then utilized to simulate the plane model. 

2.1. Equations of longitudinal motion  

A first-order vector differential equation known as the state equation describes the natural form of 
aircraft motion. It is a mathematical representation of the aircraft's stability and control. The following 
Equation 1 describes the current condition of a trimmed aircraft, where A is the state coefficient matrix, 

𝑥⃗ is the state vector, B is the driving matrix and 𝑢⃗⃗ is the control vector [13]. 

𝑥̇ = 𝐴𝑥⃗ + 𝐵𝑢⃗⃗ (1) 

Moreover, the longitudinal state equation is given by the following Equation 2. 

[

𝑢̇
𝑤̇
𝑞̇

𝜃̇

] = [

𝑋𝑢 𝑋𝑤 0 −𝑔
𝑍𝑢 𝑍𝑤 𝑈𝑜 0
𝑀𝑢 𝑀𝑤 𝑀𝑞 0

0 0 1 0

] [

𝑢
𝑤
𝑞
𝜃

] +

[
 
 
 
𝑋𝜂

𝑍𝜂

𝑀𝜂

0 ]
 
 
 
𝜂 (2) 

To use this state equation, the coefficients are first needed to find the longitudinal derivatives [12]. 
In general, the longitudinal derivatives can be attributed to changes in forward speed, pitching velocity 
and also time rate of change of angle of attack. Firstly, changes in the aircraft's forward speed will also 
alter its drag, lift and pitching moments. Plus, the aircraft's thrust is also a function of its forward speed. 
Meanwhile, the derivatives due to pitching velocity correspond to the change in the z-force and pitching 
moment coefficients caused by the pitching velocity, which is represented by stability coefficients, Czq 
and Cmq. The aircraft’s pitching motion affects the aerodynamic properties of both wing and horizontal 
tail. In most cases, the wing contribution pales in comparison to that of the tail. On the other hand, the 
derivatives due to time rate of change of angle of attack relate to the lag in wing’s downwash reaching 
the tail section and causing the stability coefficients below to increase. The circulation around the wing 
will change as its angle of attack varies. The downwash at the tail is altered by the change in circulation. 
However, the change takes a finite amount of time to occur. All in all, after calculating the coefficients, 
the longitudinal derivatives can be derived and the longitudinal state equation is obtained [13]. 

2.2. Validation study  

In order to show that the steps and process followed in this study were correct, an initial case study 
was conducted for validation purposes. This validation study was made based on the presented case of 
Cessna 172 aircraft wing that was published by Hidayat et al. [14]. The wing model, which has NACA 
2412 airfoil cross-sectional shape, was constructed in XFLR5 and it is as shown in Figure 2. The wing 
model was then analysed in XFLR5 under the same analysis settings as those specified in the reference 
literature. In this case, the Mach number was set to 0.19 and the range of Reynolds number was between 
6 x 106 to 6.5 x 106, with increment of 500,000.  

The analysis results from XFLR5 in the form of the plot of lift coefficient versus angle of attack is 
presented in Figure 3(a) while the one from the published reference is depicted in Figure 3(b). It can be 
observed that the two results are essentially consistent and greatly in line with each other, which is taken 
to validate the adequacy of steps and process used in this study. With this notion, the same methodology 
was applied in the analysis of the designed plane model that was the main focus of this study.  
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Figure 2: Constructed Cessna 172 aircraft wing model based on the study by Hidayat et al. [14] 

 
(a) 

 
(b) 

Figure 3: Plot of lift coefficient versus angle of attack from: (a) validation study in XFLR5,                             
(b) reference literature by Hidayat et al. [14]  

3. Results and Discussion 

Figure 4 shows the airfoil analysis results for both the Phoenix and NACA 0009 airfoils from the 
XFLR5 software. In this figure, the result for Phoenix airfoil is marked by red color whereas those for 
the NACA 0009 airfoil is indicated by blue color. Figure 4(a) depicts plot of lift coefficient, C1 versus 
angle of attack, . It essentially shows how these two airfoils behave in three main regions: linear, non-
linear and post stall regions. As can be observed, value of C1 initially increases linearly with increment 
in . However, at some point, C1 starts to decrease with further increase of  until it reaches the stall 
region, where the value of C1 decreases drastically. At this stall region, the wing has more pressure on 
its upper surface than its lower surface. For the Phoenix airfoil, it starts losing lift and enters stall region 
at  = 11°. At the same angle of attack, referring to Figure 4(b), it can be seen that the drag coefficient, 
Cd increases exponentially, which results in higher drag and decrease in the ratio of Cl/Cd as presented 
in Figure 4(c). Similar observations can be made with regard to the results for NACA 0009 airfoil, which 
appears to stall at lower angle of attack than that for the Phoenix airfoil. 



 
 Article 

 

Journal of Aerospace Society Malaysia, 2023, Vol. 1, No. 1 11 
 

 
(a) C1 versus  

 
(b) Cd versus  

 
(c) C1/Cd versus  

 
(d) Cm versus  

Figure 4: Airfoil analysis results for Phoenix airfoil (red) and NACA 0009 airfoil (blue)  

On the other hand, the analysis results from XFLR5 on the designed model are presented in Figure 
5. Of particular interest in terms of stability is the plot of the moment coefficient, CM versus  that is 
shown in Figure 5(d). It can be observed that the slope of this CM versus  plot is positive, which means 
that the plane model fulfills the longitudinal static stability criterion and can be trimmed. However, the 
plane cannot be trimmed at positive angles of attack and this condition is reflected by the negative value 
of angle of attack where the line plot intercepts the -axis. Meanwhile, looking at Figure 5(c) that depicts 
the plot of CL/CD versus , the value of CL/CD starts to decrease after  = 5° and this implies that plane 
is maybe close to entering its stall region where drag increases and lift decreases. Using the aerodynamics 
data obtained from XFRL5, the longitudinal coefficients were calculated using MATLAB. For flapping 
angle of 0°, the calculated values are tabulated in Table 2. These coefficients were then applied to obtain 
the dynamics model, natural frequency, damping ratio and eigenvalues. Finally, with this information, 
the stability of the model could be determined.  

For longitudinal dynamics, the eigenvalues are found to be -5.5233 + 34.9633i, -5.5233 – 34.9633i, 
-0.0285 + 0.2335i, and -0.0285 – 0.2335i. It can be observed that the eigenvalues are complex and the 
real parts of the root are negative. This indicates that the system is dynamically stable, which means that 
if the system was given an initial disturbance, the motion would be sinusoidal but would not grow with 
time and therefore it is considered to be stable. The natural frequency for the short period and phugoid 
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mode were found to be 35.3969 and 0.2352, respectively. In the meantime, damping ratios for the short 
period and phugoid mode were found to be 0.1560 and 0.1210, respectively. 

 
(a) CL versus  

 
(b) CD_viscous versus  

 
(c) CL/CD versus  

 
(d) CM versus  

Figure 5: Aerodynamics analysis results of the designed plane model   

Table 2: Longitudinal coefficients at flapping angle of 0° as obtained from MATLAB  

Stability Coefficients Value 

𝐶𝑥𝑢
 -0.0540 

𝐶𝑋𝑎
 0.0543 

𝐶𝑧𝑢
 -0.1440 

𝐶Z𝛼
 -4.6680 

𝐶𝐙𝛼̇
 -1.3491 

𝐶𝑧𝑞
 -2.8437 

𝐶𝑍𝛿𝑒
 -0.2427 

𝐶𝑚𝑎
 -2.5456 

𝐶𝑚𝛼̇
 -3.1619 

𝐶𝑚𝑞
 -6.6650 

𝐶𝑚𝛿𝑒
 -0.5688 
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Moreover, Figure 6 presents the summary for the longitudinal motion at 0° pitching. The first plot 
in Figure 6(a) shows the behavior of forward speed, u versus time, t. It shows that the amplitude of u 
is decreasing as time increases. In this case, the amplitude decreases to -40 in 10 seconds, which might 
indicate that aircraft is not generally stable in terms of forward speed. This situation might be because 
the plane model does not have a propulsive system since it is a glider and changes in thrust is expected. 
Meanwhile Figure 6(b) shows the change of vertical speed, w with time, t. The plot indicates that the 
amplitude of w oscillates between 0 and -0.4 at the start for roughly less than 1 second before becoming 
stable with minimum change in amplitude. In the meantime, Figure 6(c) shows the plot of pitch change, 
q versus time, t. It can be observed from the plot that the amplitude of q becomes constant after nearly 
half a second. Its amplitude appears to oscillate between 2 to -6 at the beginning and then decease to 0. 
Lastly, the final plot in Figure 6(d) shows the change in pitch angle,  against time, t. It can be seen in 
the plot that the change in amplitude of  is very small, which ranges  between 0 to -0.4. Furthermore, 
the amplitude oscillates between -0.2 to -0.4 in about 8 seconds, which is considered very stable. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6: Longitudinal response for pitching angle of 0°   

The same analysis was repeated for other flapping angles from -40° to 40° and the comparison of 
obtained results in terms of the natural frequency in longitudinal long period mode is shown in Figure 
7. It can be observed that the highest frequency of about 35 rad/sec was recorded at 0° angle while the 
lowest frequency of 21 rad/sec was recorded at both 40° and -40° angles. In general, it can be seen that 
as the flapping angle increases, the natural frequency decreases. On the other hand, Figure 8 shows the 
comparison of natural frequency for short period mode at different flapping angles. In short, the angles 
of 0°, 10° and 20° appear to have the same frequency of 0.235 rad/sec while all other angles have higher 
frequency with maximum of 0.266 rad/sec for flapping angles of 40° and -40°. Subsequently, essentially 
similar observations for the comparison of damping ratios at different flapping angles were obtained as 
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illustrated by Figure 9 and Figure 10. Furthermore, Table 3 tabulates the corresponding longitudinal 
eigenvalues for long and short period modes. It can be seen that all of the eigenvalues have a positive 
real root, which indicates that the aircraft is stable. Additionally, as flapping angle moves further from 
0°, the eigenvalues come closer to the origin point, which is 0.   

 
Figure 7: Natural frequency comparison for longitudinal long period  

 
Figure 8: Natural frequency comparison for longitudinal short period  

 
Figure 9: Damping ratio comparison for longitudinal long period  
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Figure 10: Damping ratio comparison for longitudinal short period   

Table 3: Longitudinal eigenvalues for all considered flapping angles  

Angle (°) Mode Eigenvalues 

40 
Short period -3.7795 ± 25.1072i 

Phugoid -0.0363 ± 0.2635i 

30 
Short period 

-4.1378 ± 26.8753i 

Phugoid 
-0.0331 ± 0.252i 

20 
Short period -4.4718 ± 28.6654i 

Phugoid 
-0.0284 ± 0.2335i 

10 
Short period -4.7547 ± 30.1062i 

Phugoid -0.0284 ± 0.2335i 

0 
Short period -5.5233 ± 34.9633i 

Phugoid -0.0285 ± 0.2335i 

-10 
Short period -4.741 ± 30.0785i 

Phugoid -0.0284 ± 0.2335i 

-20 
Short period -4.5081 ± 28.8478i 

Phugoid -0.03 ± 0.2398i 

-30 
Short period -4.1629 ± 27.0252i 

Phugoid -0.0331 ± 0.0252i 

-40 
Short period -3.8021 ± 25.1573i 

Phugoid -0.0363 ± 0.2635i 

4. Conclusion 

In this study, a model of flapping wing plane has been constructed using Phoenix and NACA 0009 
airfoils as the cross-sectional shape of the main wing and tail sections, respectively. This flapping wing 
vehicle’s model requires the tail section to provide balance as the main function of this tail section is to 
produce a moment that counters the moment that is produced by the main wing section. Based on the 
conducted stability analysis, it was demonstrated that this model could perform well for flapping wing 
vehicles. The results show that the longitudinal motion is stable for the range of flapping angle between 
40° to -40°. The natural frequency is shown to increase as the flapping angle increases from 0° to 40° 
and -40°. For the short period mode’s eigenvalue, the real part moves towards the origin as the flapping 
angle increases from 0° to 40° and -40°. On the other hand, for the phugoid mode’s eigenvalue, the 
real part is shown to move away from the origin to the left half plane as the flapping angle is increased 
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from 0° to 40° and -40°. The subsequent future work can be done on evaluating the dynamics stability 
of the flapping wing model at a lower Reynolds number in the range of 104 to 105. The sizing and shape 
of the airfoils can also be explored to find the optimal design for use in MAVs at low Reynolds number. 
This will provide designers with more understanding and a range of suitable options in designing MAVs. 
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